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Attention is thought to increase information processing efficiency 
throughout the brain through several convergent mechanisms1. 
Neurophysiology studies in early visual areas have shown that  
spatial attention changes response baseline, response gain and con-
trast gain2–4. However, because the brain pools information across 
successive stages of processing, attentional modulation of baseline and 
gain at early stages likely causes changes in neuronal tuning in higher 
sensory and cognitive brain areas3,5. Indeed, feature-based attention 
can cause modest changes in tuning of single neurons even as early 
as V4 (refs. 5,6), but tuning changes of single neurons in prefrontal 
cortex can be substantial7–9. Tuning shifts in single neurons change 
the way that information is represented across the neural population, 
warping the representation to favor certain signals at the expense of 
others5. Thus, it has been proposed that tuning shifts reflect the oper-
ation of a matched-filter mechanism that optimizes task performance 
by expanding the cortical representation of attended targets5,10.

Attentional warping of cortical representation might be particu-
larly valuable during demanding tasks such as natural visual search. 
Recent evidence suggests that the brain represents thousands of object 
categories by organizing them into a continuous semantic similarity 
space (Fig. 1a) that is mapped systematically across visual cortex11. 
Because natural scenes are cluttered with many different objects, they 
may elicit patterns of brain activity that are widely distributed across 
this semantic space, making target detection difficult. Attention could 
markedly increase sensitivity for the target and improve target detec-
tion under these demanding conditions5 by expanding the cortical 
representation of behaviorally relevant categories and compressing 
the representation of irrelevant categories (Fig. 1b,c).

It is currently unknown whether attention warps the cortical rep-
resentation of sensory information in the human brain. To search for 

evidence for this complex attentional effect, we exploited the fact that 
attention would expand the representation of an attended category 
by causing neural populations throughout visual and nonvisual cor-
tex to shift tuning toward the target5–9 (Supplementary Fig. 1). We 
hypothesized that visual search for a single object category should 
cause tuning shifts in single voxels measured by functional magnetic 
resonance imaging (fMRI; Fig. 1d–f).

To identify semantic tuning shifts, we measured category tuning 
in single voxels during a natural category–based visual search task 
(Fig. 2). We recorded whole-brain fMRI data from five human sub-
jects while they viewed 60 min of natural movies (Online Methods). 
Subjects maintained steady fixation while covertly searching for 
‘humans’ or ‘vehicles’. These categories were used because they are 
quite distinct from one another, they occur commonly in real-world 
scenes and they are common targets of visual search12,13.

Category-based attention tasks have been used in several previous 
fMRI experiments12,14,15. However, these earlier studies used a small 
set of object categories and region-based data analysis procedures. 
Thus, they did not explore voxel-based tuning and could not distin-
guish voxel-based changes in tuning from changes in response base-
line or gain. To maximize our ability to detect tuning changes in single 
voxels, we used complex natural movie stimuli containing hundreds 
of different object and action categories16,17. To remove attentional 
effects on response baseline and gain, we normalized the blood oxygen 
level–dependent (BOLD) responses of each voxel to have zero mean 
and unit variance individually in each attention condition before fur-
ther modeling. This procedure allowed us to clearly separate tuning 
changes from simple modulation of response baseline or gain.

We then employed a previously developed voxel-wise modeling 
approach to obtain accurate estimates of category tuning in single  

1Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA. 2Program in Bioengineering, University of California, Berkeley, California, USA. 
3Department of Psychology, University of California, Berkeley, California, USA. 4Present address: Center for Information and Neural Networks, National Institute of 
Information and Communications Technology, Suita, Osaka, Japan. Correspondence should be addressed to J.L.G. (gallant@berkeley.edu).

Received 17 January; accepted 18 March; published online 21 April 2013; doi:10.1038/nn.3381

Attention during natural vision warps semantic 
representation across the human brain
Tolga Çukur1, Shinji Nishimoto1,4, Alexander G Huth1 & Jack L Gallant1–3

Little is known about how attention changes the cortical representation of sensory information in humans. On the basis of 
neurophysiological evidence, we hypothesized that attention causes tuning changes to expand the representation of attended 
stimuli at the cost of unattended stimuli. To investigate this issue, we used functional magnetic resonance imaging to measure 
how semantic representation changed during visual search for different object categories in natural movies. We found that many 
voxels across occipito-temporal and fronto-parietal cortex shifted their tuning toward the attended category. These tuning shifts 
expanded the representation of the attended category and of semantically related, but unattended, categories, and compressed 
the representation of categories that were semantically dissimilar to the target. Attentional warping of semantic representation 
occurred even when the attended category was not present in the movie; thus, the effect was not a target-detection artifact.  
These results suggest that attention dynamically alters visual representation to optimize processing of behaviorally relevant 
objects during natural vision.
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cortical voxels and in each individual subject11,18–21. The WordNet 
lexicon22 was used to label 935 object and action categories in the  
movies (Supplementary Fig. 2). Regularized linear regression was 
used to fit voxel-wise models that optimally predicted the meas-
ured BOLD responses from the categorical indicator variables 
(Supplementary Fig. 3). We estimated separate models using data 
acquired during visual search for humans and for vehicles. The result-
ing model weights give the category tuning vectors for each voxel 
under each attention condition.

RESULTS
Attentional changes in semantic representation can be inferred  
by comparing category tuning vectors across attention conditions 
(Fig. 3). However, inferences drawn from this comparison will only 
be justified and functionally important if the fit category models 
can successfully predict BOLD responses to novel natural stimuli.  
To address this issue, we validated the prediction performance of 
category models on separate data reserved for this purpose. Prediction 
scores were defined as the Pearson’s correlation between the BOLD 
responses measured in the validation data set and those predicted 
by the fit models (Online Methods). All statistical significance levels 
were corrected for multiple comparisons using false discovery rate 
(FDR) control23.

We found that category models provided accurate response 
predictions across many regions of visual and nonvisual cortex 

(Supplementary Fig. 4). Overall, 83.7 ± 5.12% (mean ± s.d. across 
subjects) of cortical voxels were significantly predicted by the cat-
egory model (t test, P < 0.05). The category model explained more 
than 20% of the response variance in 11.60 ± 5.84% (mean ± s.d.) of 
these voxels across subjects. These results suggest that category tuning 
vectors accurately reflect category responses of many cortical voxels 
during visual search.

If attentional tuning changes are statistically significant, then cat-
egory models for individual attention conditions should yield better 
response predictions than a null model fit by pooling data across con-
ditions. To assess significance, we therefore compared the prediction 
scores obtained from category models to those obtained using null 
models. We found that 59.57 ± 8.31% (mean ± s.d. across subjects) of 
cortical voxels exhibited significant tuning changes (t test, P < 0.05). 
Across subjects, 17.13 ± 0.97% (mean ± s.d.) of these voxels also had 
high prediction scores (greater than 1 s.d. above the mean), yield-
ing 4,245–7,785 well-modeled voxels in individual subjects. Control 
analyses revealed that these tuning changes could not be attributed 
to nuisance factors, including eye movements, head motion, physi-
ological noise and spatial attention (Online Methods). Furthermore, 
because all responses were z scored individually in each attention 
condition, these results cannot be explained by additive or multipli-
cative modulations of responses in single voxels. Thus, they suggest 
that category-based attention causes substantial tuning shifts in many 
cortical voxels.
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Figure 1 Tuning-shift hypothesis predicts that 
attention warps semantic representation.  
(a–c) Hypothesized changes in semantic represen-
tation. Previous studies have suggested that the 
brain represents categories by organizing them 
into a continuous space according to semantic 
similarity. (a) During passive viewing, semantically 
similar categories project to nearby points in the 
semantic space. (b,c) The tuning-shift hypothesis 
predicts that attention to one specific category 
expands the representation of both the attended 
and nearby categories in the semantic space and 
compresses the representation of distant categories.  
(d–f) Attentional warping of semantic represen-
tation implies corresponding changes in voxel-
wise semantic tuning. (d) During passive viewing 
cortical voxels (orange dots) are tuned for different 
categories, and can also be visualized in the 
semantic space as in a. (e,f) During visual search, 
many voxels should shift their tuning toward the 
attended category to expand representation of the 
corresponding part of semantic space. This causes 
fewer voxels to be tuned for distant categories.
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Figure 2 Voxel-wise tuning vectors are measured 
from BOLD responses evoked by natural movies. 
Tuning changes in single voxels are a unique, 
diagnostic aspect of the tuning-shift hypothesis. 
To test this hypothesis, we measured changes in 
voxel tuning during covert visual search for either 
humans or vehicles in complex natural movies. 
A separate category model was fit to each voxel 
in each attention condition to optimally predict 
evoked BOLD responses (dashed lines indicate 
predicted response, solid lines indicate measured 
response). The category model gives voxel tuning 
under each condition, and tuning shifts can be 
identified by comparing tuning across conditions.
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Our experiment used a category-based attention task that required 
attention to humans or vehicles. However, complex natural movies 
may contain low-level features that are correlated with these semantic 
categories. Do the attentional tuning shifts shown here reflect cat-
egory-based attention or are they a result of attention to correlated 
low-level features? To address this issue, we fitted simpler structural 
encoding models that reflect tuning for elementary features, such 
as spatio-temporal frequency, orientation and eccentricity (Online 
Methods). We then compared predictions of category models and 
structural models across well-modeled voxels that showed significant 
tuning shifts in the category-based attention task.

We found that the average prediction score of structural models was 
only 0.22 ± 0.03 (mean ± s.d. across subjects), which is significantly 
lower than that of category models (0.54 ± 0.11, randomized t test, 
P < 10−4). We also found that the percentage of response variance 
explained by structural tuning shifts was only 1.53 ± 0.68% (mean ±  
s.d.), which is significantly lower than that explained by category-
based tuning shifts (13.57 ± 7.65%, Wilcoxon signed-rank test, P < 
10−4). These findings suggest that tuning for elementary visual features 
cannot account for the category-based tuning shifts measured here.

Next, we asked whether these changes in category tuning are con-
sistent with the tuning-shift hypothesis5, in which attention warps 
semantic representation to favor behaviorally relevant categories 
at the expense of irrelevant categories. The tuning-shift hypothesis 
makes three explicit and diagnostic predictions about how atten-
tion alters semantic representation. First, it predicts that attention 
causes tuning shifts toward the attended category when the targets 
are present, expanding the representation of the attended category. 
Second, it predicts that attention causes tuning shifts toward the 
attended category even when no targets are present. Finally, it predicts  
that attention expands the representation of unattended catego-
ries that are semantically similar to the target and compresses the 

 representation of categories that are semantically dissimilar to the 
target. We tested the tuning-shift hypothesis by evaluating each of 
these predictions in turn.

Tuning shifts in the presence of targets
To determine whether attention causes tuning shifts toward the 
attended category when the targets are present, we first projected 
voxel-wise tuning vectors measured during visual search into a 
continuous semantic space. The semantic space was derived from 
principal components analysis of tuning vectors measured during a 
separate passive-viewing task (Online Methods). Different voxels that 
are tuned for semantically similar categories will project to nearby 
points in this space. We then visualized the distribution of tuning 
across well-modeled voxels that had significant category models  
(t test, P < 0.05). We found that most well-modeled voxels were selec-
tively tuned for the attended category, and attention caused tuning 
shifts in most of these voxels (Fig. 4a).

We quantified the magnitude and direction of tuning shifts across 
attention conditions by measuring the selectivity of voxel tuning 
for humans or vehicles under each condition (Online Methods and 
Supplementary Figs. 5 and 6a–e). We then computed a tuning shift 
index (TSI) that summarizes the difference in selectivity for the 
attended versus unattended category (Online Methods). Under this 
scheme, a voxel that shifts toward the attended category will have a 
positive TSI. We found that the mean TSI across well-modeled voxels 
was significantly greater than 0 in all subjects (Wilcoxon signed-rank 
test, P < 10−6; Supplementary Fig. 7). Because all responses were 
z scored individually in each attention condition before TSI values 
were calculated, these tuning shifts cannot be explained by changes in 
voxel response baseline or gain (see Discussion). Thus, these results 
are consistent with the view that attention changes tuning to expand 
the representation of the attended category.
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Figure 3 Attentional tuning changes for a single voxel in lateral occipital complex. Tuning for 935 object and action categories in a single voxel selected 
from lateral occipital complex (LO) in subject S1, during search for humans (left) and for vehicles (right). Each node in these graphs represents a 
distinct object or action, and a subset of the nodes has been labeled to orient the reader. The nodes have been organized using the hierarchical relations 
found in the WordNet lexicon. Red versus blue nodes correspond to categories that evoked above- and below-mean responses. The size of each node 
shows the magnitude of the category response. This well-modeled lateral occipital complex voxel (a prediction score of 0.401) exhibited significant 
tuning changes across attention conditions (t test, P < 10−6). The voxel was strongly tuned for the attended category in both conditions, and weaker 
tuning was observed for the unattended categories.
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Cortical distribution of tuning shifts
Previous neurophysiology studies have suggested that tuning shifts 
should be widespread across the brain, extending from higher order 

visual areas into frontal cortex5–9. To visualize the distribution of 
tuning shifts across cortex, we projected TSI values onto cortical flat 
maps. We found that voxels in many different brain regions shifted 

Figure 4 Attention causes tuning shifts in single voxels. (a) Semantic 
tuning of single voxels during two attention conditions: search for humans 
(left) or vehicles (right). To assess attentional changes, we projected 
voxel-wise tuning vectors into a continuous semantic space. The semantic 
space was derived from principal components analysis (PCA) of tuning 
vectors measured during a separate passive-viewing task. Horizontal and 
vertical axes correspond to the second and third principal components 
(the first principal component distinguishes categories with high versus 
low stimulus energy and so is not shown here). A total of 7,785 well-
modeled voxels with significant model weights (t test, P < 0.05) and 
high prediction scores (greater than 1 s.d. above the mean) are shown for 
subject S1. Each voxel is represented with a dot whose color indicates 
the TSI: red or blue for shifts toward or away from the target, respectively. 
The positions of the idealized templates for attended categories are shown 
as colored circles. The marginal distributions are displayed with separate 
histograms (green). Most well-modeled voxels strongly shifted toward the 
attended category (Wilcoxon signed-rank test, P < 0.05). (b) The TSIs 
for subject S1 are shown on a cortical flat map of the right hemisphere 
(RH). The color bar represents the 95% central range of TSIs, and 
voxels with insignificant TSIs appear in gray (P > 0.05, between dashed 
black lines). Regions of fMRI signal dropout and motor areas excluded 
from all analyses are shown with dark gray patches. The boundaries of 
cortical areas identified by standard localizers are indicated with solid 
(functionally inferred) and dashed (anatomically inferred) white lines 
(Supplementary Table 1). Major anatomical landmarks (blue font) and 
sulci (orange font and black lines) are also labeled (Supplementary  
Table 2). CeS, central sulcus; CiS, cingulate sulcus; CoS, collateral 
sulcus; IFS, inferior frontal sulcus; IPS, intraparietal sulcus; ITS, inferior  
temporal sulcus; LO, lateral occipital complex; MTS, middle temporal 
sulcus; PfC, prefrontal cortex; PoCeS, postcentral sulcus; PrCu, precuneus;  
SFS, superior frontal sulcus; STS, superior temporal sulcus; TPJ, temporo-
parietal junction. Voxels in many brain regions shift their tuning toward the 
attended category. These include most of ventral-temporal cortex, lateral occipital complex, IPS, IFS, SFS, and dorsal bank of CiS. In contrast, PrCu, TPJ, PfC 
and areas along the anterior CiS shifted their tuning away from the search target. Data sets are available at http://gallantlab.org/brainviewer/cukuretal2013.
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Figure 5 Attention causes different degrees of  
tuning shifts in functional ROIs. (a) Prediction 
scores (Pearson’s r, mean ± s.e.m. results 
averaged across all five subjects). RET, early 
visual areas V1–3; FFA, fusiform face area; 
EBA, extrastriate body area; MT+, human MT; 
LO, lateral occipital complex; TOS, transverse 
occipital sulcus; PPA, parahippocampal place 
area; RSC, retrosplenial cortex; FEF, frontal  
eye fields; SEF, supplementary eye fields;  
FO, frontal operculum. The average prediction 
score in category-selective areas in occipito-
temporal cortex (FFA, EBA, lateral occipital 
complex and TOS) was 0.48 ± 0.07 (mean ± s.d.),  
and the average prediction score in more 
anterior brain areas in frontal cortex  
(FEF, SEF and frontal operculum) was  
0.49 ± 0.07 (mean ± s.d.). (b) Tuning shift 
indices (mean ± s.e.m.) in functional ROIs. 
TSIs were significantly greater than 0 in all 
ROIs (Wilcoxon signed-rank test, P < 10−6). 
Furthermore, TSI increased toward later stages 
of visual processing. (c) Fraction of the overall 
tuning change (mean ± s.e.m.) explained by 
tuning changes for attended categories.  
(d) Fraction of the overall tuning change  
(mean ± s.e.m.) explained by tuning changes  
for unattended categories (that is, excluding both humans and vehicles). The degree of tuning shift (that is, TSI) was positively correlated with the 
fraction of variance explained by tuning changes for attended categories (r = 0.86 ± 0.02, t test, P < 10−6).
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their tuning toward the attended category (Fig. 4b and Supplementary  
Fig. 6a–e; data sets are available at http://gallantlab.org/brainviewer/
cukuretal2013). These include most of ventral-temporal cortex, the 
lateral-occipital and intraparietal sulci, the inferior and superior fron-
tal sulci, and the dorsal bank of the cingulate sulcus (Supplementary 
Figs. 8 and 9). In contrast with most brain regions, voxels in the 
precuneus, temporo-parietal junction, anterior prefrontal cortex 
and anterior cingulate sulcus shifted their tuning away from the 
attended category. This finding suggests that these brain areas are 
involved in distractor detection and in error monitoring during  
visual search24,25.

To examine how specific brain areas change their representations of 
attended and unattended categories, we performed detailed analyses 
of tuning shifts in several common regions of interest (ROIs). We 
found that regions in higher order visual cortex and more anterior 
brain areas had high prediction scores, indicating that tuning shifts 
in these regions are functionally important (Fig. 5a). TSI was small 
in retinotopic early visual areas, but was significantly larger in more 
anterior brain areas that correspond to later stages of visual processing 
(Wilcoxon signed-rank test, P < 10−6; Fig. 5b). This result implies that 
attentional tuning shifts become progressively stronger toward later 
stages of processing. We also found that these tuning shifts occurred for 
both attended (that is, humans and vehicles; Fig. 5c) and unattended 
categories (Wilcoxon signed-rank test, P < 10−6; Fig. 5d). This finding 
is consistent with an attentional mechanism that alters the representa-
tion of the entire semantic space during visual search (Supplementary 
Fig. 1d). Finally, we found that tuning changes for attended categories 
accounted for a relatively larger fraction of the overall tuning change in 
more anterior brain areas compared with earlier visual areas (Fig. 5c),  
whereas those for unattended categories accounted for a relatively 
smaller fraction of tuning changes (Fig. 5d). Taken together, these 

results suggest that more anterior brain areas are primarily involved 
in representing the attended category and that visual representations 
in more frontal areas are relatively more dependent on the search task 
than those at earlier stages of visual processing5–9,26.

Tuning shifts in the absence of targets
The second prediction of the tuning-shift hypothesis is that attention 
causes tuning changes even when no targets are present. To address 
this issue, we estimated voxel tuning using only those segments of 
the movies that did not contain humans or vehicles. Note that, as any 
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Figure 6 Semantic tuning for unattended categories shifts toward the 
attended category even when no targets are present. (a) Distribution of 
semantic tuning across the cortex (subject S1, right hemisphere) during 
passive viewing. Tuning was estimated from responses to all available 
movie clips. A four-dimensional semantic space was derived from these 
data using PCA. The tuning vector for each cortical voxel was then 
projected into this space and the projections onto the second, third and 
fourth principal components were assigned to the red, green and blue 
channels. Voxels with similar tuning projected to nearby points in the 
semantic space and so they are assigned similar colors. Insignificant 
voxels are shown in gray. Yellow-green voxels were more selectively tuned 
for animals and body parts and purple-red voxels were more selectively 
tuned for geographic locations and movement. Anatomical landmarks 
are labeled as in Figure 4b. (b) Distribution of semantic tuning for the 
subject shown in a, but during search for humans. Tuning was estimated 
only from responses evoked by movie clips in which the target did not 
appear. Data are presented as in a. Yellow-green voxels that are tuned 
for animals and body parts predominated during search for humans. 
Many voxels in posterior areas that were tuned for vehicles under passive 
viewing (for example, PPA, RSC and TOS) shifted their tuning away from 
vehicles, and many voxels that were not tuned for humans under passive 
viewing (in FEF, frontal operculum, IPS, PfC and insular cortex) shifted 
their tuning toward humans. (c) Distribution of semantic tuning for the 
subject shown in a, but during search for vehicles. Tuning was estimated 
only from responses evoked by movie clips in which the target did not 
appear. Data are presented as in a. Purple-magenta voxels that were 
tuned for geographic locations and artifacts predominated during search 
for vehicles. Many voxels in posterior areas that were tuned for humans 
under passive viewing (for example, EBA, FFA, TPJ and PrCu) shifted 
their tuning away from humans, and many voxels that were not tuned for 
vehicles under passive viewing (in FEF, frontal operculum, IPS, PfC and 
insular cortex) shifted their tuning toward vehicles. Data sets are available 
at http://gallantlab.org/brainviewer/cukuretal2013.
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systematic differences in arousal, respiration and spatial attention 
across attention conditions are most likely to occur when the targets 
are present, this analysis also serves as a powerful control against 
such nuisance factors (Online Methods). Because data recorded 
when the targets were present were excluded from analysis, tuning 
for the attended categories could not be assessed directly. However, 
our modeling framework allowed us to measure tuning shifts for the 
remaining categories and to infer the direction of shifts with respect 
to the attended categories from these measurements.

To assess the direction of tuning shifts in the absence of the targets, 
we projected the tuning vectors estimated in the absence of the targets 
into the semantic space. We found that voxels in many brain regions 
shifted their tuning toward the attended category even when no tar-
gets were present (Fig. 6 and Supplementary Fig. 10a–e). The mean 
TSI across the population of well-modeled voxels was significantly 
greater than 0 in all subjects (Wilcoxon signed-rank test, P < 10−6; 
Supplementary Fig. 11). These results indicate that attention causes 
tuning shifts toward the attended category even when no targets are 
present and that attentional tuning shifts are not a mere consequence 
of target detection.

Semantic representation of unattended categories
The third prediction of the tuning-shift hypothesis is that attention 
expands the representation of categories that are semantically similar 
to the attended category, even when no targets are present. If the rep-
resentation of an unattended category is expanded, its representation 
should shift toward the representation of the attended category (that 
is, the region of the semantic space that many voxels are tuned for).  
To address this issue, we assessed how the similarity between rep-
resentations of unattended and attended categories changed across 
attention conditions. The similarity between representations of two 
categories was measured using Pearson’s correlation between cor-
responding BOLD response patterns across well-modeled voxels27. 
Responses for unattended and attended categories were estimated 
using target-absent and target-present movie segments, respectively.

We found that, during search for humans, representations of ani-
mals, body parts, action verbs and natural materials shifted toward 
the representation of humans. In contrast, during search for vehicles,  

representations of tools, devices and structures shifted toward the 
representation of vehicles (Wilcoxon signed-rank test, P < 10−4;  
Fig. 7). This result suggests that attention expands the representation of 
unattended categories that are semantically similar to the target at the 
expense of categories that are semantically dissimilar to the target.

DISCUSSION
Our results indicate that category-based attention during natural 
vision causes semantic tuning changes that cannot be explained by 
additive or multiplicative response modulations in single voxels. 
These tuning changes altered the cortical representation of both 
attended and unattended categories. Furthermore, attentional changes 
in tuning for unattended categories occurred even when the attended 
categories were not present in the movie. These effects are consistent 
with an attentional mechanism that acts to expand the representation 
of semantic categories nearby the target in the semantic space at the 
cost of compressing the representation of distant categories.

Because we measured hemodynamic changes, we cannot make 
direct inferences about the underlying neural mechanisms mediat-
ing tuning shifts. Several possible neural mechanisms might conceiv-
ably contribute to semantic tuning changes in single voxels. When 
the targets are present in the display, then it is possible that changes 
in response baseline or gain of single neurons that are tuned to the 
attended targets contribute to tuning changes. However, tuning 
changes for unattended categories that are observed when no tar-
gets are present cannot be explained by this mechanism; because the 
attended categories were never present in these cases, neurons tuned 
only to the attended categories never entered into the model estima-
tion procedure and therefore could not have any effect on estimated 
voxel-wise tuning curves.

Our results are consistent with existing neurophysiology studies 
that have demonstrated tuning shifts in single neurons as early as 
area V4 (refs. 5,6), and that have shown far stronger tuning shifts at 
relatively higher levels of visual and cognitive processing7–9. Some 
of these single neuron studies have reported that tuning shifts are 
consistent with a matched-filter mechanism that shifts tuning toward 
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Figure 7 Attention expands the representation of unattended categories 
that are semantically similar to the attended category. The tuning-shift  
hypothesis predicts that attention expands the representation of 
unattended categories that are nearby the attended category in the 
semantic space. This implies that the representation of unattended 
categories that are semantically similar to the target will shift toward 
the representation of the attended category. To address this issue, we 
measured the similarity of BOLD response patterns evoked by unattended 
categories to those evoked by the attended category. In each subject, 
response patterns were estimated across a total of 4,245–7,785 well-
modeled voxels that were used in the main analysis. The response patterns 
for unattended and attended categories were estimated using target-
absent and target-present movie segments, respectively. The similarity of 
response patterns was quantified using Pearson’s correlation (r) and the 
results were averaged across subjects. Each node represents a distinct 
object or action, and some nodes have been labeled to orient the reader. 
The nodes have been organized using the hierarchical relations found 
in the WordNet lexicon. The size of each node shows the magnitude of 
change in similarity (Wilcoxon signed-rank test, P < 10−4; see legend at 
the bottom). During search for humans, representations of semantically 
similar categories (for example, animals, body parts, action verbs and 
natural materials) shifted toward the representation of humans (green 
nodes). During search for vehicles, representations of semantically similar 
categories (for example, tools, devices and structures) shifted toward the 
representation of vehicles (magenta nodes).
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the attended target, expanding the representation of attended stimuli 
at the cost of unattended stimuli. Our results are also consistent with 
theoretical expectations based on the anatomical structure of the cor-
tical hierarchy; because neurons pool information across successive 
stages of processing, attentional modulation of baseline or gain at one 
level must inevitably cause tuning changes at subsequent levels3,5. 
Thus, it is reasonable to expect that changes in voxel tuning at least 
partly reflect tuning shifts in individual neurons in the underlying 
neural population.

Although natural movies have strong face validity, correlations 
inherent in natural movies could potentially complicate interpretation 
of the results. We took several measures to ensure that stimulus cor-
relations did not confound our results. First, the collection of movies 
used in the experiments was highly diverse. Second, we used a regres-
sion-based modeling approach that minimizes the effect of residual 
correlations on the fit models. Finally, we performed control analyses 
on raw BOLD responses to rule out biases resulting from correlations 
between attended and unattended categories (Online Methods).

Given that our data are finite, there is always some chance that 
residual correlations may introduce some bias in the results. However, 
artificial stimuli that contain only a small number of categories  
introduce much more substantial and pernicious bias, and are there-
fore more likely to lead to misinterpretation. Interpretation of exper-
iments that use limited stimulus sets inevitably relies on a strong 
assumption of linearity, that is, that responses to multiple objects 
in a natural context will be predictable from responses to isolated 
objects. In contrast, natural stimuli do not require any such linearity 
assumptions. Note, however, that this important issue is really not 
relevant to this study. The main goal of this study was not to measure 
tuning, but rather to measure changes in tuning between different 
search tasks. Because natural stimuli have high ecological relevance 
for natural visual search, natural movies appear to be better suited 
for these measurements.

An important question to be answered is the role of bottom-up 
processing versus top-down feedback in measured tuning changes. 
Because we used the same movie stimulus for the two separate search 
tasks in our experiment, all attentional tuning changes between the 
two tasks must necessarily reflect top-down modulatory effects.  
We found small tuning shifts in retinotopic early visual areas and  
significantly larger tuning shifts in higher visual areas in occipito-
temporal cortex and relatively more anterior brain areas. We also 
found that tuning shifts could not be explained by response modula-
tions for lower-level visual features that are known to be represented 
in early visual areas. These results imply that attentional modula-
tions primarily warp semantic representation at later stages of visual 
processing. However, the slow nature of BOLD responses makes  
it difficult for any fMRI study to measure the temporal relation-
ship between signals arising in different brain areas at these later  
stages of processing.

The way that attention optimizes target detection depends not only 
on the target, but also on the similarity between the target and the dis-
tractors28. If the target is very different from the distractors, then tar-
get detection can be optimized by shifting tuning toward the target5.  
However, if the target is very similar to the distractors, target detection 
can be improved by enhancing the representation of task-irrelevant 
features that optimally distinguish the target from the distractors29. 
Here, the attentional targets were highly distinct (humans and vehi-
cles), so it is natural to expect that tuning should shift toward the 
target. An important topic for future research will be to determine 
whether attention causes tuning shifts toward task-irrelevant features 
when the target and distractors are very similar.

In conclusion, we found that natural visual search for a single cat-
egory warps the entire semantic space, expanding the representation of 
nearby semantic categories at the cost of more distant categories. This 
effect suggests a more dynamic view of attention than is assumed under 
the conventional view that attention is a simple mechanism that merely 
modulates the baseline or gain of labeled lines. This dynamic mecha-
nism can improve the effective resolution of the visual system for natu-
ral visual search, and it likely enables the use of limited neural resources 
to perform efficient search for many different object categories. Overall, 
these findings help explain the astounding human ability to perform 
complex visual tasks in an ever-changing natural environment.

METhODS
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METhODS
Subjects. Five healthy adult volunteers (five males) with normal or corrected 
to normal vision participated in this study: S1 (age 30), S2 (age 32), S3 (age 25), 
S4 (age 25) and S5 (age 26). The experimental procedures were approved by  
the Institutional Review Board at the University of California, Berkeley, and  
written informed consent was obtained from all subjects.

Stimuli. For each attention condition in the main experiment, 1,800 s of continu-
ous color natural movies (24° × 24°, 512 × 512 pixels) were presented without 
repetition in a single session. The stimuli were compiled by combining many 
short clips (10–20 s) from a diverse selection of natural movies19. Only humans 
or only vehicles were each presented for 450 s, the two categories co-occurred for 
450 s, and both categories were absent for 450 s. Humans and vehicles appeared 
in highly diverse scenes and in many different positions, sizes and viewpoints.  
A fixation spot (0.16° square) was superimposed on the movies and its color  
was alternated at 1 Hz, rendering it continuously visible. The stimuli were pre-
sented at a rate of 15 Hz using an MR-safe projector (Avotec) and a custom-built 
mirror system.

experimental procedure. Each subject participated in a total of seven scan ses-
sions. Functional localizer, retinotopic mapping and anatomical data were col-
lected in two sessions. Functional scans for the main experiment were collected 
in a single scan session. To increase sensitivity for the analysis performed in the 
absence of the target stimuli, we collected another session of functional data using 
the same experimental design, but with a different set of movie clips. To construct 
the continuous semantic space, we presented 7,200 s of natural movies in three 
separate sessions while subjects performed a passive-viewing task.

In the main experiment, subjects fixated continuously while covertly search-
ing for humans or vehicles in natural movies. To ensure continuous vigilance, 
subjects depressed a response button continuously whenever an exemplar of the  
attended category was present in the movies. The data for each attention condi-
tion were recorded in three separate 10-min runs. The movie clips in each run 
were selected randomly without repetition. To avoid sampling bias, we presented 
an identical set of movie clips for both attention conditions. The presentation 
order of these clips was counterbalanced across the conditions. Four mutually 
exclusive classes of stimuli (that is, only humans, only vehicles, both humans 
and vehicles, and neither humans nor vehicles) were randomly interleaved and 
evenly distributed in and across the runs. The attended category was fixed in each 
run. The attention conditions were alternated in consecutive runs. A cue word, 
humans or vehicles, was displayed before each run to indicate the attended cat-
egory. To compensate for hemodynamic transients caused by movie onset, each 
run was preceded by the last 10 s of that run. Data collected during the transient 
period were discarded.

mRI protocols. MRI data were acquired on a 3 T Siemens scanner located at the 
University of California, Berkeley using a 32-channel head coil. Functional data 
were acquired using a T2*-weighted gradient-echo EPI sequence customized 
with a water-excitation radiofrequency pulse to prevent contamination from fat 
signal. The following parameters were prescribed: repetition time = 2 s, echo 
time = 34 ms, flip angle = 74°, voxel size = 2.24 × 2.24 × 3.5 mm3, field of view = 
224 × 224 mm2, and 32 axial slices to cover the entire cortex. Head motion was 
minimized with foam padding. To reconstruct cortical surfaces, we collected 
anatomical data with 1 × 1 × 1 mm3 voxel size and 256 × 212 × 256 mm3 field 
of view using a three-dimensional T1-weighted MP-RAGE sequence. The ana-
tomical and retinotopic mapping data for subjects S2 and S3 were obtained on a  
1.5 T Philips Eclipse (Philips Medical Systems) scanner.

data pre-processing. Functional scans were intra- and inter-run aligned using 
the Statistical Parameter Mapping toolbox (SPM8, http://www.fil.ion.ucl.ac.uk/
spm/software/spm8/). All volumes were aligned to the first image from the first 
functional run for each subject. Non-brain tissue was excluded from further 
analysis using the Brain Extraction Tool (BET, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
BET). Voxels whose BOLD responses are primarily driven by button presses were 
identified using a motor localizer that included a button-press task. The identified 
voxels were contained in the primary motor, somatosensory motor and premotor 
cortices, and voxels in these regions were excluded from analysis. The cortical 
surface of each subject was reconstructed from anatomical data using Caret5 

(http://www.nitrc.org/projects/caret/). Cortical voxels were identified as the set 
of voxels in a 4-mm radius of the cortical surface. Subsequent analyses were 
restricted to 47,125–53,957 cortical voxels identified for the various subjects.

The low-frequency drifts in voxel responses were estimated using a 240-s-long 
cubic Savitzky-Golay filter for each run (10 min). The drifts were removed from 
the responses, which were then normalized to have zero mean and unit variance. 
Neither spatial nor temporal averaging was performed on the data during pre-
processing and model-fitting stages. The data from separate subjects were not 
transformed into a standard brain space.

Functional localizer and retinotopic mapping data were used to assign voxels 
to the corresponding ROIs11. All functional ROIs were defined on the basis of 
relative response levels to contrasting stimuli (t test, P < 10−5, uncorrected).

category model. The object and action categories in each 1-s clip of the natu-
ral movie stimulus were manually labeled using terms from the WordNet lexi-
con22. Three naive raters performed the labeling, and potential conflicts were 
resolved by conferral among all raters. In WordNet, words are grouped into sets 
of synonyms according to the concepts they describe and are organized into a 
hierarchical network of semantic relations on the basis of word meaning. By 
definition, the existence of a category in a given scene indicates the existence 
of all of its superordinate categories. For example, if a clip is labeled with ‘child’, 
it also contains the following categories: offspring, relative, person, organism, 
living thing, whole, object and entity. To facilitate labeling, the raters exploited 
these hierarchical relationships in WordNet. The raters initially labeled 604 object 
and action categories, and inferred the presence of 331 superordinate categories 
from these initial labels.

A stimulus time course (categories × seconds) was then formed using a binary 
variable to indicate the presence or absence of each category in each 1-s movie 
clip. The category model fit to each voxel describes evoked responses as a weighted 
linear combination of these indicator variables. The predicted response of each 
voxel to any category is the sum of weights for all the categories it encompasses 
(including itself). In other words, the weight for each category is the estimated 
difference between the response to that specific category and the cumulative 
response to all of its superordinate categories.

Retinotopically organized early visual areas (V1–4) are selective to structural 
characteristics of visual stimuli19. To ensure that model fits were not biased by 
structural differences in movie clips, one additional regressor was included in the 
model that characterizes the total motion energy in each 1-s clip. This regressor 
was computed as the average response of 2,139 space-time quadrature Gabor filter 
pairs to the movie stimuli. The filters were selected to cover the entire image space 
(24° × 24°) and reflected a wide range of preferred receptive-field sizes, orienta-
tions and spatiotemporal frequencies. In addition, to ensure that semantic tuning  
changes do not simply reflect tuning changes for elementary visual features,  
a separate structural model (with all 2,139 filter pairs) was fit to each voxel.

To ensure that the results were not biased by the hierarchical relationships in 
WordNet, reduced category models were fit using the subset of regressors for 
the 604 initially labeled categories. The data presented here was also analyzed in 
this separate framework, and no substantial discrepancies were observed in the 
obtained results. Furthermore, the original full category model outperformed 
this reduced category model in terms of prediction accuracy of BOLD responses 
(Supplementary Fig. 12). This indicates that the full category model provides a 
better description of category selectivity in cortical voxels.

model fitting. The model for each attention condition was fit separately to 1,800 s  
of stimuli and responses. The stimulus time course was down-sampled by a fac-
tor of 2 to match the sampling rate of the measured BOLD responses. To model 
the slow hemodynamic response, each category was assigned a distinct time- 
inseparable finite impulse response filter with delays restricted to 2–6 s before 
the BOLD responses. All model parameters were simultaneously fit using  
L2-regularized linear regression.

To assess the significance of attentional tuning changes, a jackknifed model 
training and validation procedure was repeated 1,000 times. At each turn, 20% of 
the samples were randomly held out to validate the model performance. The regu-
larization parameter (λ) for regression was selected with tenfold cross-validation 
on the remaining 80% of training samples. These samples were further split into 
10% testing and 90% training sets at each fold. The trained models were tested 
on the 10% held-out sets by computing prediction scores. Prediction score was 

np
g

©
 2

01
3 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET
http://www.nitrc.org/projects/caret/


nature neurOSCIenCe doi:10.1038/nn.3381

taken as the correlation coefficient (Pearson’s r) between the actual and predicted 
BOLD responses. The optimal λ was determined for each voxel by maximizing 
the average prediction score. To prevent potential bias in the models, we selected a 
final λ value as an intermediate between the optima for models from two attention 
conditions. The model-fitting procedures were performed with in-house software 
written in Matlab (MathWorks).

characterizing tuning shifts. Attentional tuning shifts toward the target will 
increase the degree of tuning selectivity (tuning strength) for the attended cat-
egory. Thus, the magnitude and direction of tuning shifts can be assessed by 
measuring the tuning strengths for humans and vehicles separately during each 
attention condition. Tuning strengths for humans and vehicles were quantified 
as the similarity between voxel tuning and idealized templates tuned solely for 
humans and vehicles, respectively. The templates were constructed by identifying 
the set of labels that belong to these categories (Supplementary Fig. 5). Tuning 
strength for each category was then quantified as Pearson’s correlation between 
voxel tuning and the corresponding template.
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Here, si,H is the tuning strength for humans and si,V is the tuning strength for 
vehicles during attention condition i (i = H: search for humans, and i = V: search 
for vehicles). Meanwhile, wi is the voxel-wise tuning vector during condition i, 
and tH and tV are the templates for humans and vehicles, respectively. Finally, TSI 
was quantified using the measured tuning strengths for each voxel.
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Here, the numerator measures the difference in tuning strength for the 
attended versus unattended category, summed across two attention conditions. 
The denominator scales the TSI to range in [−1, 1]. Tuning shifts toward the 
attended category will yield positive TSIs, with a value of 1 in the case of a perfect 
match between voxel tuning and idealized template for the attended category.  
In contrast, tuning shifts away from the attended category will yield negative  
TSIs, with a value of −1 in the case of a total mismatch between voxel tuning 
and idealized template for the attended category. Finally, a TSI of zero indi-
cates that the voxel tuning did not shift between the two attention conditions. 
Complementary tuning-shift analyses were performed in individual ROIs. For 
each attention condition, the mean tuning shift in each ROI was computed  
by averaging the TSI values of the corresponding set of voxels with significant 
models (t test, P < 0.05, FDR corrected) and positive prediction scores.

eye-movement and behavioral controls. Eye movements are a legitimate concern 
in many experiments on visual perception and attention, especially when naive 
subjects are tested. However, four lines of evidence suggest that eye movements 
were not a problem in our experiment and that they could not have accounted for 
our results. First, all of the subjects tested in this experiment were highly trained 
psychophysical observers who had extensive experience in fixation tasks. Based 
on our previous work with trained and naive subjects, we fully expected that our 
trained observers would fixate much better than the naive subjects used in many 
attention experiments.

Second, we found no statistical evidence that fixation differed across attention 
conditions in the main and control analyses for any of the observers. Subjects’ eye 
positions were monitored at 60 Hz throughout the scans using a custom-built 
camera system equipped with an infrared source (Avotec) and the ViewPoint 
EyeTracker software suite (Arrington Research). The eye tracker was calibrated 
before each run of data acquisition. A nonparametric ANOVA test was used to 
determine systematic differences in the distribution of eye positions. The eye posi-
tion distributions were not affected by attention condition (P > 0.24), or by target 
presence or absence (P > 0.61). To determine whether the results were biased 
by explicit eye movements during target or distractor detection, we also ana-
lyzed the distribution of eye positions during 250-ms, 500-ms and 1-s windows  
around target onset and target offset. The eye position distributions were not 

affected by target onset (P > 0.26) or offset (P > 0.49). Furthermore, there were 
no significant interactions between any of the aforementioned factors (P > 0.14). 
To determine whether the results were biased by rapid moment-to-moment vari-
ations in eye position, we examined the moving-average s.d. of eye position in a 
200-ms window (to capture potential saccades). There were no effects of attention 
condition (P > 0.13), target presence or absence (P > 0.52), target onset (P > 0.47), 
or target offset (P > 0.17), and there were no significant interactions between 
these factors (P > 0.22).

Third, although there may be some micro-saccade scale eye movements 
during covert visual search, we found no statistical evidence for a bias in the 
recorded BOLD responses across attention conditions. Specifically, there were no 
significant differences in BOLD responses resulting from interactions between 
the search task and scenes likely to contain the attended category or scenes that 
contained objects that share visual features with the attended category (two-way 
ANOVA, F < 1.8, P > 0.18, FDR corrected). Because we measured attentional 
tuning shifts using BOLD responses, this analysis indicates that small eye move-
ments could not have accounted for our results.

Finally, to further ensure that the results were not confounded by eye  
movements, we regressed the moving-average s.d. of eye position out of the 
BOLD responses, and then we repeated the entire modeling procedure on these 
filtered data. Including this nuisance regressor did not affect the model fits or 
the results in any brain regions in which the category model provided significant 
response predictions.

Behavioral responses were also recorded during the scans with a fiber-optic 
response pad (Current Designs). A hit was defined as a button response detected 
within 1 s of the target onset in the movies. A false alarm was defined as a button 
response when the target was absent from the movies. The behavioral perform-
ance, as measured by the sensitivity index (d′), was compared across the two 
attention conditions using Wilcoxon rank-sum tests. Participants performed 
equally well when searching for either category, indicating that the task difficulty 
was balanced across attention conditions (Supplementary Fig. 13).

Head-motion and physiological-noise controls. To ensure that our results were 
not biased by head motion or physiological noise, we used estimates of these nui-
sance factors to regress them out of the BOLD responses, and we then repeated the 
entire modeling procedure on these filtered data. The moment-to-moment vari-
ations in head position were estimated during motion correction pre-processing.  
These six-parameter affine transformation estimates of head position were used to 
create head-motion regressors. The cardiac and respiratory states were recorded 
using a pulse oximeter and a pneumatic belt. These recordings were used to create 
pulse-oximetry and respiratory regressors as low-order Fourier series expansions 
of the cardiac and respiratory phases. The inclusion of these various nuisance 
regressors did not affect the model fits or the results in any brain region in which 
the category model provided significant response predictions.

Spatial-attention controls. Given the stimulus correlations inherent in natural 
movies, differences in spatial attention across attention conditions might have 
confounded our results, even in the absence of targets. We performed two addi-
tional control analyses to ensure that the results derived from target-absent movie 
clips were not biased by stimulus correlations. First, all target-absent movie clips 
were coded to indicate whether they contained objects that shared visual fea-
tures with humans (that is, scenes that contain animals, body parts or animate 
motion) or with vehicles (that is, scenes that contain inanimate objects such as 
artifacts, buildings or devices). Thereafter, a two-way ANOVA was performed 
on the evoked BOLD responses to determine whether there was any interac-
tion between scene content and attended category. There were no significant 
interactions between scene content and attended category (F < 1.8, P > 0.18, 
FDR corrected).

Second, all target-absent movie clips were coded to indicate whether humans 
were likely to appear (that is, scenes that contain animate motion, tools for human 
use, buildings or rooms) or whether vehicles were likely to appear (that is, scenes 
of urban areas or cities, and scenes containing roads or highways). Another 
two-way ANOVA was performed on the evoked BOLD responses to determine 
whether there was any interaction between scene type and attended category. 
There were no significant interactions between scene type and attended category 
(F < 2.0, P > 0.16, FDR corrected). Thus, we found no evidence for an interaction 
between scene content or type and the attentional target. These results suggest 
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that the tuning shifts reported here are not biased by systematic differences in 
spatial attention across attention conditions.

construction of the semantic space. To construct the continuous semantic space, 
we collected functional data while subjects passively viewed 7,200 s of natural 
movies. Voxel-wise tuning vectors were estimated using these data and follow-
ing identical procedures to the main experiment. A semantic space of cortical 
representation was then derived using PCA across the tuning vectors of cortical 
voxels (following procedures described in ref. 11). PCA ensures that voxels tuned 
for similarly represented categories project to nearby points in the semantic space, 
whereas voxels tuned for dissimilarly represented categories project to distant 
points. Each principal component represents a distinct dimension of the semantic 
space, ordered according to percentage of variance explained. To maximize the 
quality of the semantic space, we selected only the first six principal components 
that captured approximately 30% of the variance. To perform analyses of atten-
tional tuning changes in the semantic space, voxel-wise tuning vectors obtained 
under different attention conditions were first projected onto these principal 
components. The results did not substantially vary with the number of principal 
components used to define the semantic space.

control analysis in the absence of target stimuli. A control analysis was per-
formed to assess tuning changes for unattended categories in the absence of target 
stimuli. To increase sensitivity, additional functional data were collected in all 
subjects using the same experimental procedure. A total of 1,800 s of stimuli were 
compiled from a different selection of movie clips than those used in the main 
experiment. To estimate tuning, the BOLD responses to movie clips in which no 
humans or vehicles appeared were pooled across this additional session and the 
main experiment (yielding 900 s total). Tuning during each attention condition 
was estimated separately.

Tuning changes for unattended categories were measured, and the direction of 
tuning shifts with respect to the attended categories was then inferred from these 
measurements. For this purpose, we used the semantic space that assesses the 
similarity between the attended categories and remaining ones in terms of cortical 
representation. Specifically, if a single voxel’s tuning shifts toward categories simi-
lar to humans, then we should find that its tuning vector is closer to the humans 
template than the vehicles template in the semantic space. To test this prediction, 
voxel-wise tuning vectors in the control analysis and the template vectors for the 
attended categories were projected into the semantic space. Thereafter, TSI was 
quantified following procedures in the main analysis, but, to increase sensitiv-
ity, we first computed the tuning change between the two attention conditions. 
We then computed an idealized tuning change between the template vectors in 
the semantic space. Finally, TSI was taken as the correlation between the actual 
and idealized tuning changes. As in the main analysis, tuning shifts toward the 
attended category will yield positive TSI values, whereas tuning shifts away from 
the target will yield negative TSI values.

The mean TSI was significantly greater than 0 in all subjects (Wilcoxon signed-
rank test, P < 10−6; Supplementary Fig. 11). This result clearly shows that atten-
tion shifts tuning of unattended categories toward the attended category even 
when the targets are not present. Furthermore, the tuning shifts were in consist-
ent directions across the main (Supplementary Fig. 7) and control analyses for 
an average of 65.42 ± 7.73% (mean ± s.d., averaged across subjects) of cortical  
voxels. Although the direction of tuning shifts was highly consistent, the mean 
TSI was larger in the main analysis (when targets were present) than in the control 
analysis (when targets were excluded). TSI distributions were also less bimodal 
in the main analysis than in the control analysis. These differences are caused by 
two factors. First, the attentional effects on BOLD responses were strongest for 
the attended categories. Thus, tuning changes obtained when the targets were 
present (main analysis) were naturally stronger than the tuning changes that 
occurred when the targets were absent (control analysis). This reduced the TSI 
values in the control analysis.

Second, different metric spaces were used to estimate the TSI distributions 
in the main and the control analyses. In the main analysis, TSI was computed 
across 935 dimensions of the category model, and each category was treated as a 
separate dimension. As such, a tuning shift in the direction of humans represents 
tuning changes for humans alone. Thus, the main analysis only considers tuning 
changes for the attended categories, which account for 38.79 ± 0.07% (mean ± 
s.d.) of tuning changes in cortical voxels. However, in the control analysis, TSI 
was computed across six dimensions of the semantic space that organizes catego-
ries according to semantic similarity. A tuning shift in the direction of humans 
represents tuning changes for both humans and nearby categories in this space. 
Thus, the control analysis considers tuning changes for both attended and unat-
tended categories, and tuning shifts toward the attended categories account for 
72.70 ± 0.04% (mean ± s.d.) of tuning changes in cortical voxels. This causes TSI 
distributions to be more bimodal in the control analysis.

cortical flat map visualization. The cortical surface of each hemisphere was 
flattened after five relaxation cuts were applied to reduce distortions. For surface-
based visualization, functional data were aligned to the anatomical data using 
in-house Matlab scripts (MathWorks). The functional data were then projected 
onto the cortical surface. Each point in the generated flat maps corresponded to 
an individual voxel.

A custom color map was designed to simultaneously visualize the cortical 
distribution of tuning strength for the attended categories. The tuning strengths 
(that is, sH for humans and sV for vehicles) were measured as the correlations 
between the voxel-wise tuning vectors and the idealized templates tuned solely 
to these attended categories. Distinct colors were assigned to six landmark values 
of the pair (sV, sH): red for (0.75, 0), turquoise for (−0.75, 0), green for (0, 0.75), 
magenta for (0, −0.75), gray for (0, 0), and black for (−0.75, −0.75). The colors 
for the remaining values were linearly interpolated from these landmarks. A gray 
color was assigned to voxels with insignificant model weights.

A separate color map was designed to visualize the cortical distribution of 
semantic tuning. For this purpose, voxel-wise tuning vectors for each attention 
condition were projected into the semantic space. The first four principal com-
ponents that captured approximately 20% of the variance were selected. The 
first principal component mainly distinguishes categories with high versus low 
stimulus energy and so was not visualized. The projections onto the second, third 
and fourth principal components were assigned to the red, green and blue chan-
nels. Voxels with similar semantic tuning project to nearby points in the semantic 
space and so they were assigned similar colors. In this color map, voxels tuned 
for humans and communication verbs appeared in shades of green-cyan. Voxels 
tuned for animals and body parts appeared in yellow-green, whereas those tuned 
for movement verbs appeared in red. Voxels tuned for locations, roads, devices 
and artifacts appeared in shades of purple, whereas those tuned for buildings and 
furniture appeared in blue. Finally, voxels tuned for vehicles appeared in magenta. 
A gray color was assigned to voxels with insignificant model weights.

Statistical procedures. Statistical comparisons of prediction scores were based 
on raw correlation coefficients between the predicted and actual responses. 
Prediction scores were Fisher transformed, and one-sided t tests were applied 
to assess significance. Although this procedure is appropriate for significance 
testing, noise in the measured BOLD responses biases raw correlation values 
downward30. Thus, to attain reliable estimates of model performance across  
subjects, correlation values were corrected for noise bias11.

Unless otherwise noted, all other comparisons were performed using one-
sided nonparametric Wilcoxon signed-rank tests. All statistical significance levels 
were corrected for multiple comparisons using FDR control23.

30. David, S.V. & Gallant, J.L. Predicting neuronal responses during natural vision. 
Network 16, 239–260 (2005).
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