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SUMMARY

The desire to know what the future holds is a powerful
motivator in everyday life, but it is unknown how this
desire is created by neurons in the brain. Here we
show that when macaque monkeys are offered a
water reward of variable magnitude, they seek ad-
vance information about its size. Furthermore, the
same midbrain dopamine neurons that signal the ex-
pected amount of water also signal the expectation
of information, in a manner that is correlated with
the strength of the animal’s preference. Our data
show that single dopamine neurons process both
primitive and cognitive rewards, and suggest that
current theories of reward-seeking must be revised
to include information-seeking.

INTRODUCTION

Dopamine-releasing neurons located in the substantia nigra pars

compacta and ventral tegmental area are thought to play

a crucial role in reward learning (Wise, 2004). Their activity bears

a remarkable resemblance to ‘‘prediction errors’’ signaling

changes in a situation’s expected value (Schultz et al., 1997;

Montague et al., 2004). When a reward or reward-predictive

cue is more valuable than expected, dopamine neurons fire

a burst of spikes; if it has the same value as expected, they

have little or no response; and if it is less valuable than expected,

they are briefly inhibited. Based on these findings, many theories

invoke dopamine neuron activity to explain human learning and

decision-making (Holroyd and Coles, 2002; Montague et al.,

2004) and symptoms of neurological disorders (Redish, 2004;

Frank et al., 2004), inspired by the idea that these neurons could

encode the full range of rewarding experiences, from the primi-

tive to the sublime. However, their activity has almost exclusively

been studied for basic forms of reward such as food and water. It

is unknown whether the same neurons that process these basic,

primitive rewards are involved in processing more abstract,

cognitive rewards (Schultz, 2000).

We therefore chose to study a form of cognitive reward that is

shared between humans and animals. When people anticipate

the possibility of a large future gain—such as an exciting new

job, a generous raise, or having their research published in

a prestigious scientific journal—they do not like to be held in
suspense about their future fate. They want to find out now. In

other words, even when people cannot take any action to influ-

ence the final outcome, they often prefer to receive advance

information about upcoming rewards. Here we define ‘‘advance

information about upcoming rewards’’ as a cue that is available

before reward delivery and is statistically dependent on the

reward outcome. We do not mean information in the quantitative

sense of mathematical information theory (Supplemental Note A

available online). Related concepts have been arrived at inde-

pendently in several fields of study. Economists have studied

‘‘temporal resolution of uncertainty’’ (Kreps and Porteus, 1978),

and have shown that humans often prefer their uncertainty to

be resolved earlier rather than later (Chew and Ho, 1994; Ahl-

brecht and Weber, 1996; Eliaz and Schotter, 2007; Luhmann

et al., 2008). Experimental psychologists have studied ‘‘ob-

serving behavior’’ (Wyckoff, 1952), and have shown that a class

of observing behavior that produces reward-predictive cues can

be a powerful motivator for rats, pigeons, and humans (Wyckoff,

1952; Prokasy, 1956; Daly, 1992; Lieberman et al., 1997). To

date, however, there has not been a rigorous test of this prefer-

ence in nonhuman primates, the animals in which the reward-

predicting activity of dopamine neurons has been best

described (Schultz, 2000; Schultz et al., 1997; Montague et al.,

2004) (Supplemental Note B).

To this end, we developed a simple decision task allowing rhe-

sus macaque monkeys to choose whether to receive advance

information about the size of an upcoming water reward. We

found that monkeys expressed a strong behavioral preference,

preferring information to its absence and preferring to receive

the information as soon as possible. Furthermore, midbrain

dopamine neurons that signaled the monkey’s expectation of

water rewards also signaled the expectation of advance informa-

tion, in a manner that was correlated with the animal’s prefer-

ence. These results show that the dopaminergic reward system

processes both primitive and cognitive rewards, and suggest

that current theories of reward-seeking must be revised to

include information-seeking.

RESULTS

Behavioral Preference for Advance Information
We trained two monkeys to perform a simple decision task (‘‘infor-

mation choice task,’’ Figure 1A). On each trial two colored targets

appeared on the left and right sides of a screen, and the monkey

had to choose between them by making a saccadic eye
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movement. Then, after a delay of a few seconds, the monkey

received either a big or a small water reward. The monkey’s choice

had no effect on the reward size—both reward sizes were always

equally probable. However, choosing one of the colored targets

produced an informative cue—a cue whose shape indicated the

size of the upcoming reward. Choosing the other color produced

a random cue—a cue whose shape was randomizedand therefore

had no meaning. The positions of the targets were randomized on

each trial. To familiarize monkeys with the two options, we inter-

leaved choice trials with forced-information trials and forced-

random trials, in which only one of the targets was available.

After only a few days of training, both monkeys expressed

a strong preference to view informative cues (Figure 1B). Monkey

Z chose information about 80% of the time, and monkey V’s

choice rate was even higher, close to 100%. Their preference

for advance information cannot be explained by a difference in

the amount of water reward, because information did not allow

monkeys to obtain extra water from the reward-delivery appa-

ratus (Figure S1), and had little effect on whether they completed

a trial successfully (<2% error rate for each target, Figure S2).

An important concern is that advance information might

have allowed monkeys to extract a greater amount of subjective

value from the water reward by physically preparing for its

delivery—for instance, by tensing their cheek muscles to swish

water around in their mouths in a more pleasurable fashion (Per-

kins, 1955). We therefore introduced a second task that equal-

ized the opportunity for simple physical preparation (Mitchell

et al., 1965) (‘‘information delay task,’’ Figure 2A). Monkeys again

chose between informative and random cues, but afterward

a second cue appeared that was always informative on every

trial. Thus, information was always available well in advance of

reward delivery; the choice was between receiving the informa-

tion immediately, or after a delay.

Soon after being exposed to the new task, both monkeys ex-

pressed a clear preference for immediate information, compa-

rable to their preference in original task (Figure 2B). We then

reversed the relationship between cue colors and information

content, and monkeys switched their choices to the newly infor-

mative color (Figure 2B, Figure S3). We conclude that monkeys

treated information about rewards as if it was a reward in itself,

preferring information to its absence and preferring to receive it

as soon as possible.

Dopamine Neurons Signal Advance Information
To understand the neural basis of the rewarding value of informa-

tion, we recorded the activity of 47 presumed midbrain dopa-

mine neurons while monkeys performed the information choice

task shown in Figure 1. As in previous studies, we focused on

neurons that were presumed to be dopaminergic based on

A

B

Figure 1. Behavioral Preference for Advance Information

(A) Information choice task. Fractions represent probabilities of different trial

types.

(B) Percent choice of information for each monkey. Each dot represents

a single day of training. The mean number of choice trials per session was

152 for monkey V (range: 71–203) and 161 for monkey Z (range: 39–285).

The gray region is the Clopper-Pearson 95% confidence interval for each day.

A

B

Immediate information

Delayed information

Big

Small

Big

Small

2250 ms2250 ms 2250 ms2250 ms2,250 ms 1,500 ms

Monkey V Monkey Z 

Choice of
Immediate
Information

Reversal

Session # 
1 10

  0%

 50%

100%
Reversal

95% CI

Session # 
1 10 20

  0%

 50%

100%

Figure 2. Behavioral Preference for Immediate Delivery of Infor-
mation

(A) Information delay task. The fixation point and target configurations (not

shown here) were the same as in the information choice task shown in

Figure 1A.

(B) Percent choice of immediate information. Conventions as in Figure 1B. The

vertical line labeled ‘‘reversal’’ marks the time when the informative and

random cue colors were switched. The mean number of choice trials per

session was 151 for monkey V (range: 50–222) and 111 for monkey Z (range:

35–176). The behavioral preference started below 50% because the cue colors

were reused from a pilot experiment; the informative color had been previously

trained as random, and vice versa (Figure S3).
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Figure 3. Dopamine Neurons Signal Information

(Top) Firing rate of an example neuron. Trials are sorted sepa-

rately for each task event, as follows. Target: forced-informa-

tion (red), choice-information (pink), forced-random (blue).

Cue: informative cues (red) indicating that the reward is big

(solid) or small (dashed); random cues (blue) with the same

shape as informative cues for big (solid, cross shape) or small

(dashed, wave shape) rewards. Reward: informative (red) trials,

the same trials as for the cue response; random (blue) trials,

where the reward was big (solid) or small (dashed). The firing

rate was smoothed with a Gaussian kernel, s = 20 ms. (Bottom)

Rasters for individual trials. Each row is a trial, and each dot is

a spike. Colors are the same as in the firing rate display, except

that dark colors correspond to dashed lines.
standard electrophysiological criteria and that signaled the value

of water rewards (henceforth referred to as dopamine neurons)

(Experimental Procedures). Figure 3 shows an example neuron

that carried a strong water reward signal. On trials when the

monkey viewed informative cues, the neuron was phasically

excited by the cue indicating a large reward, and inhibited

by the cue indicating a small reward. In contrast, on trials when

the monkey was forced to view uninformative random cues,

the neuron had little response to the cues but was strongly

responsive to the later reward outcome, excited when the

reward was large and inhibited when it was small. Thus, consis-

tent with previous studies, this neuron signaled changes in the

monkey’s expectation of water rewards.

The same neuron also responded to the targets indicating the

availability of information. On forced trials when only one target

was available, the neuron was excited by the informative-cue

target and inhibited by the random-cue target. On choice trials

when both targets were available, the monkey always chose to

receive information, and the neuron responded much as it did

when the informative-cue target was presented alone. Thus,

this dopamine neuron signaled changes in both the expectation

of water and the expectation of information.

This pattern of responses was quite common in dopamine

neurons. We measured each neuron’s discrimination between

targets, cues, and rewards using the area under the receiver

operating characteristic (ROC) (Figures 4B–4D, Experimental

Procedures). This measure ranges from 0.5 at chance levels to

0.0 or 1.0 for perfect discrimination. As in the example, neurons

discriminated strongly between informative reward-predicting

cues and between randomly sized rewards, but only weakly

between uninformative random cues and between fully predict-

able rewards (Figures 4C and 4D). The same neurons also

discriminated between the targets, with clear preferential activa-

tion by the target that predicted advance information (Figure 4B).

The discrimination was highly similar when measured using

either forced-information or choice-information trials in indepen-

dent data sets (rho = 0.68, p < 10�4; Experimental Procedures),

indicating that the neural preference for information was repro-

ducible and consistent across different stimulus configurations.

The same pattern occurred in both monkeys (Figure S4) and

could be seen in the population average firing rate (Figure 4A).
There was also a tendency for neurons to have a weak initial

excitation for each task event (Figures 4A and S4). This nonspe-

cific response is probably due to the animal’s initial uncertainty

about the stimulus identity (Kakade and Dayan, 2002; Day et al.,

2007) or stimulus timing (Fiorillo et al., 2008; Kobayashi and

Schultz, 2008). We did not observe a predominant tendency for

neurons to have anticipatory tonic increases in activity before

the delivery of probabilistic rewards, a phenomenon that has

been reported in one study (Fiorillo et al., 2003) but not others (Sa-

toh et al., 2003;Morris etal., 2006;Bayerand Glimcher,2005;Mat-

sumoto and Hikosaka, 2007; Joshua et al., 2008). This may be due

to differences in task design such as the size of the reward or the

manner in which the reward was signaled (Fiorillo et al., 2003).

An important question is whether dopamine neurons signal the

presence of information per se, or whether they truly signal how

much it is preferred. In the latter case, there should be a correla-

tion between the neural preference for information, expressed as

the neural discrimination between the informative-cue target and

the random-cue target, and the behavioral preference for infor-

mation, expressed as a choice percentage. Such correlations

were indeed present, both between-monkeys and within-

monkey. Between-monkeys, monkey V expressed a stronger

behavioral preference for information than monkey Z (Figure 1B),

and also expressed a stronger neural preference (p = 0.02, Fig-

ure 5A). Within-monkey, during the sessions in which monkey

Z’s behavioral preference was strongest, the neural preference

was enhanced (rho = 0.44, p = 0.02, Figure 5D). On the other

hand, behavioral preferences for information were not signifi-

cantly correlated with neural discrimination between water-

related cues or water rewards (all p > 0.25, Figures 5B, 5C, 5E,

and 5F). Thus, consistent with evidence that dopamine neurons

signal the subjective value of liquid rewards (Morris et al., 2006;

Roesch et al., 2007; Kobayashi and Schultz, 2008), they may also

signal the subjective value of information.

DISCUSSION

Here we have shown that macaque monkeys prefer to receive

advance information about future rewards, and that their behav-

ioral preference is paralleled by the neural preference of midbrain

dopamine neurons. Thus, the same dopamine neurons that
Neuron 63, 119–126, July 16, 2009 ª2009 Elsevier Inc. 121
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signal primitive rewards like food and water also signal the cogni-

tive reward of advance information.

Monkeys expressed a strong preference for advance informa-

tion even though it had no effect on the final reward outcome.

This is consistent with the intuitive belief that, all things being equal,

it is better to seek knowledge than to seek ignorance. It also

provides an explanation for the puzzling fact that the brain devotes

a great deal of neural effort to processing reward information even

when this is not required to perform the task at hand. For example,

many studies use passive classical conditioning tasks in which

informative cues are followed by rewards with no requirement for

the subject to take any action. In these tasks the brain could simply

ignore the cues and wait passively for rewards to arrive. Yet even

after extensive training, many neurons continue to use the cue

information to predict the size, probability, and timing of reward

delivery (e.g., Tobleretal., 2003; Joshuaetal., 2008). Inother tasks,

neurons persist in predicting rewards even when the act of predic-

tion is harmful, causing maladaptive behavior that interferes with

reward consumption (e.g., refusing to perform trials with low pre-

dicted value; Shidara and Richmond, 2002; Lauwereyns et al.,

2002). These observations suggest that the act of prediction has

a special status, an intrinsic motivational or rewarding value of its

own. Our data provide strong evidence for this hypothesis. When

given an explicit choice, monkeys actively sought out the advance

information that was necessary to make accurate reward predic-

tions at the earliest possible opportunity.

A limitation of our study is that it does not determine the precise

psychological mechanism by which value is assigned to informa-

A

B C D

Figure 4. Analysis of the Dopamine Neuron Population

(A) Population average firing rate. Conventions as in Figure 3.

Gray bars indicate the time windows used for the ROC anal-

ysis. Colored bars indicate time points with a significant differ-

ence between selected pairs of task conditions (p < 0.01, Wil-

coxon signed rank test), as follows. Target: force-info versus

force-rand (red), choice-info versus force-rand (pink); Cue:

info-big versus info-small (red), rand-cross versus rand-wave

(blue); Reward: info-big versus info-small (red), rand-big versus

rand-small (blue).

(B–D) Neural discrimination between task conditions in

response to the targets (B), cues (C), and rewards (D). Each

dot’s (x, y) coordinates represent a single neuron’s ROC area

for discriminating between the pairs of task conditions listed

on the x and y axes. A discrimination of 1 indicates perfect pref-

erence for the condition listed next to ‘‘1’’ (e.g., ‘‘Choice info’’);

discrimination of 0 indicates perfect preference for the condi-

tion listed next to ‘‘0’’ (e.g., ‘‘Force rand’’). Note that in (B) the

x and y coordinates were both calculated using the same set

of forced-random trials. Colored dots indicate neurons with

significant discrimination between the conditions listed on

the y axis (red), x axis (blue), or both axes (magenta) (p <

0.05, Wilcoxon rank-sum test).

tion. There are several possibilities. Theories from

experimental psychology suggest that in our task

the value of viewing informative cues would simply

be the sum of the conditioned reinforcement gener-

ated by the individual big-reward and small-reward

cues. In this view, the preference for information

implies that the conditioned reinforcement is

weighted nonlinearly, so that the benefit of strong reinforcement

from the big-reward cue outweighs the drawback of weak rein-

forcement from the small-reward cue (Wyckoff, 1959; Fantino,

1977; Dinsmoor, 1983), akin to the nonlinear weighting of rewards

that produces risk seeking (von Neumann and Morgenstern,

1944). On the other hand, theories in economics suggest that pref-

erence is not due to independent contributions of individual cues

but instead comes from considering the full probability distribution

of future events. In this view, information-seeking is due to an

explicit preference for early resolution of uncertainty (Kreps and

Porteus, 1978) or an implicit preference induced by psychological

factors such as anticipatory emotions (Caplin and Leahy, 2001). In

addition, just as the value assigned to conventional forms of

reward (e.g., food) depends on the internal state of the subject

(e.g., hunger), the value assigned to information is likely to depend

on psychological factors such as personality (Miller, 1987),

emotions like hope and anxiety (Chew and Ho, 1994; Wu, 1999),

and attitudes toward uncertainty (Lovallo and Kahneman, 2000;

Platt and Huettel, 2008).

Implications of Information-Seeking for Attitudes
toward Uncertainty
In the framework of decision-making under uncertainty, advance

information reduces the amount of reward uncertainty by narrow-

ing down the set of potential reward outcomes. Our data there-

fore suggest that in our task, rhesus macaque monkeys preferred

to reduce their reward uncertainty at the earliest possible

moment, as though the experience of uncertainty was aversive.
122 Neuron 63, 119–126, July 16, 2009 ª2009 Elsevier Inc.
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Interestingly, several previous studies using similar saccadic

decision tasks came to a seemingly opposite conclusion:

macaque monkeys appeared to prefer uncertainty, choosing

an uncertain, variable-size reward instead of a certain, fixed-

size reward (McCoy and Platt, 2005; Platt and Huettel, 2008).

How can these results be reconciled? One possibility is that

they can be explained by a common principle; for instance,

perhaps monkeys treat the offer of a variable-size reward as

a source of uncertainty to be confronted and resolved. An impor-

tant point, however, is that a preference for reward variance can

be caused by factors unrelated to uncertainty—most notably, it

can be caused by an explicit preference over the probability

distribution of reward outcomes, for instance due to dispropor-

tionate salience of large rewards (Hayden and Platt, 2007) or

a nonlinear utility function (Platt and Huettel, 2008). In contrast,

the choice of information has no influence on the reward

outcome; it only affects the amount of time spent in a state of

uncertainty before the reward outcome is revealed. In this sense

the preference for advance information is a relatively pure

measurement of attitudes toward uncertainty.

Information Signals in the Dopaminergic Reward
System
Dopamine neuron activity is thought to teach the brain to seek

basic goals like food and water, reinforcing and punishing

actions by adjusting synaptic connections between neurons in

cortical and subcortical brain structures (Wise, 2004; Montague

et al., 2004). Our data suggest that the same neural system also

teaches the brain to seek advance information, selectively rein-

forcing actions that lead to knowledge about rewards in the

future. Thus, the behavioral preference for information could be

created by the dopaminergic reward system. At the neural level,

neurons that gain sensitivity to rewards through a dopamine-

mediated reinforcement process would come to represent

both rewards and advance information about those rewards in

a ‘‘common currency,’’ particularly neurons involved in reward

timing, conditioned reinforcement, and decision-making under

risk (Kim et al., 2008; Seo and Lee, 2009; Platt and Huettel,

2008). In turn, these signals could ultimately feed back to dopa-

mine neurons to influence their value signals.

An important goal for future research will therefore be to

discover how dopamine neurons measure information and

assign its rewarding value. One possibility is that dopamine

neurons receive information-related input from specialized brain

areas, distinct from those that compute the value of traditional

rewards like food and water. Indeed, signals encoding the

amount and timing of reward information, and dissociated from

preference coding of traditional rewards, have been found in

several cortical areas (Nakamura, 2006; Behrens et al., 2007;

Luhmann et al., 2008). How these information signals could be

translated into a behavioral preference, and whether they are

communicated to dopamine neurons, is unknown.

Another possibility is that dopamine neurons receive informa-

tion signals from the same brain areas that contribute to their

food- and water-related signals, such as the lateral habenula

(Matsumoto and Hikosaka, 2007). In this case, dopamine

neurons would receive a highly processed input, with different

forms of rewards already converted into a common currency

by upstream brain areas. We are currently testing this possibility

in further experiments.

Why Do Dopamine Neurons Treat Information
as a Reward?
The preference for advance information, despite its intuitive

appeal, is not predicted by current computational models of

dopamine neuron function (Schultz et al., 1997; Montague

A B C
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Figure 5. Correlation between Neural Discrimi-

nation and Behavioral Preference

(A) Histogram of single-neuron target response

discrimination between all informative trials (choice

and forced trials combined) versus forced-random

trials, separately for monkey V (left) and monkey Z

(right). Arrows, numbers, and horizontal lines indicate

the mean discrimination, and the width of the arrows

represents the 95% bootstrap confidence interval.

Red indicates statistical significance of the difference

between the monkeys.

(B and C) Same as (A), for discrimination between in-

formative big-reward and small-reward cues (B) or

between random big and small rewards (C).

(D) Plot of behavioral choice percentage against

single-neuron discrimination between all informative

trials versus forced-random trials in response to the

target. The line was fitted by least-squares regression.

Text shows Spearman’s rank correlation (rho), and red

indicates statistical significance. The data are from

monkey Z only, because monkey V almost exclusively

chose the informative target and therefore had no

behavioral variability.

(E and F) Same as (D), but for discrimination between

informative big-reward and small-reward cues (E) or

between random big and small rewards (F).
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et al., 2004), which are widely viewed as highly efficient algo-

rithms for reinforcement learning. This raises an important ques-

tion: could the information-predictive activity of dopamine

neurons be a harmful ‘‘bug’’ that impairs the efficiency of reward

learning? Or is it a useful ‘‘feature’’ that improves over existing

computational models? Here we present our hypothesis that

the positive value of advance information is a feature with

a fundamental role in reinforcement learning.

Specifically, modern theories of reinforcement learning rec-

ognize that animals learn from two types of reinforcement:

‘‘primary’’ reinforcement generated by rewards themselves,

and ‘‘secondary’’ reinforcement generated predictively, by ob-

serving sensory cues in advance of reward delivery. Predictive

reinforcement greatly enhances the speed and reliability of

learning, as demonstrated most strikingly by temporal-difference

learning algorithms (Sutton and Barto, 1998), which have

produced influential accounts of animal behavior (Sutton and

Barto, 1981) and dopamine neuron activity (Schultz et al., 1997;

Montague et al., 2004). This implies that animals should treat

predictive reinforcement as an object of desire, making an active

effort to seek out environments where reward-predictive sensory

cues are plentiful. If an animal was trapped in an impoverished

environment where reward-predictive cues were unavailable,

the consequences would be devastating: the animal’s sophisti-

cated predictive reinforcement learning algorithms would be

reduced to impotence. This can be seen clearly in our dopamine

neuron data (Figure 4A). When an action produces informative

cues, dopamine neuronssignal its value immediately, a predictive

reinforcement signal; but when an action produces uninformative

cues, dopamine neurons must wait to signal its value until the

reward outcome arrives, acting as little more than a primitive

reward detector. Thus, predictive reinforcement depends entirely

on obtaining advance information about upcoming rewards.

In light of these considerations, we propose that any learning

system driven by the ‘‘engine’’ of predictive reinforcement

must actively seek out its ‘‘fuel’’ of advance information. In this

view, current models of neural reinforcement learning present

a curious paradox: their learning algorithms are vitally dependent

on advance information, but they treat information as valueless

and make no effort to obtain it. These models do include

a form of knowledge-seeking by exploring unfamiliar actions,

but they make no effort to obtain informative cues that would

maximize learning from these new experiences. In fact, models

using the popular TD(l) algorithm (Sutton and Barto, 1998) are

actually averse to advance information (Figure S5). Our data

show that a new class of models is necessary that assign infor-

mation a positive value—perhaps representing the future reward

the animal expects to receive, as a result of obtaining better fuel

for its learning algorithm. This would be akin to the concept of

intrinsically motivated reinforcement learning (Barto et al.,

2004), in that dopamine neurons would assign an intrinsic value

to information because it could help the animal learn to better

predict and control its environment (Barto et al., 2004; Redgrave

and Gurney, 2006). Also, although dopamine neurons have been

best studied in the realm of rewards, they can also respond to

salient nonrewarding stimuli (Horvitz, 2000; Redgrave and

Gurney, 2006; Joshua et al., 2008; Matsumoto and Hikosaka,

2009). This suggests that dopamine neurons might be able to
124 Neuron 63, 119–126, July 16, 2009 ª2009 Elsevier Inc.
signal the value of information about neutral and punishing

events (Herry et al., 2007; Badia et al., 1979; Fanselow, 1979;

Tsuda et al., 1989), as part of a more general role in motivating

animals to learn about the world around them.

EXPERIMENTAL PROCEDURES

Subjects

Subjects were two male rhesus macaque monkeys (Macaca mulatta), monkey

V (9.3 kg) and monkey Z (8.7 kg). All procedures for animal care and experimen-

tation were approved by the Institute Animal Care and Use Committee and

complied with the Public Health Service Policy on the humane care and use

of laboratory animals. A plastic head holder, scleral search coils, and plastic

recording chambers were implanted under general anesthesia and sterile

surgical conditions.

Behavioral Tasks

Behavioral tasks were under the control of the REX program (Hays et al., 1982)

adapted for the QNX operating system. Monkeys sat in a primate chair, facing

a frontoparallel screen 31 cm from the monkey’s eyes in a sound-attenuated

and electrically shielded room. Eye movements were monitored using a scleral

search coil system with 1 ms resolution. Stimuli generated by an active matrix

liquid crystal display projector (PJ550, ViewSonic) were rear-projected on the

screen.

In the information choice task (Figure 1), each trial began with the appear-

ance of a central spot of light (1� diameter), which the monkey was required

to fixate. After 800 ms, the spot disappeared and two colored targets ap-

peared on the left and right sides of the screen (2.5� diameter, 10�–15� eccen-

tricity). (On forced-information and forced-random trials, only a single target

appeared). The monkey had 710 ms to saccade to and fixate the chosen

target, after which the nonchosen target immediately disappeared. At the

end of the 710 ms response window, a cue (14� diameter) was presented of

the chosen color. For the informative color, the cue was a cross on large-

reward trials or a wave pattern on small-reward trials. For the random color,

the cue’s shape was chosen pseudorandomly on each trial (see below). The

colors were green and orange, chosen to have similar luminance, and counter-

balanced across monkeys. Monkeys were not required to fixate the cue. After

2250 ms of display time, the cue disappeared and simultaneously a 200 ms

tone sounded and reward delivery began. The intertrial interval was 3850–

4850 ms beginning from the disappearance of the cue. Water rewards were

delivered using a gravity-based system (Crist Instruments). Reward delivery

lasted 50 ms on small-reward trials (0.04 ml) and 700 ms (0.88 ml, monkey

V) or 825 ms (1.05 ml, monkey Z) on large-reward trials. To minimize the effects

of physical preparation, licking the water spout was not required to obtain

rewards; water was delivered directly into the mouth.

The task proceeded in blocks of 24 trials, each block containing a random-

ized sequence of all 3x2x2x2 combinations of choice type (forced-information,

forced-random, or choice), reward size (large or small), random cue shape

(cross or waves), and informative target location (left or right). Thus, the

‘‘random’’ cues were actually quasirandom and could theoretically yield a small

amount of information about reward size, but extracting that information would

require a very difficult feat of working memory.

If monkeys made an error (broke fixation on the central spot, failed to choose

a target, or broke fixation on the chosen target before the cue appeared), then

the trial terminated, an error tone sounded, an additional 3 s were added to the

intertrial interval, and the trial was repeated (‘‘correction trial’’). If the error

occurred after the choice, only the chosen target was available on the correc-

tion trial.

The information delay task (Figure 2) was identical to the information choice

task except the cue colors and shapes were different, and a third set of always-

informative gray cues lasting for 1500 ms were appended to the cue period.

(There were also minor differences in the task parameters for monkey Z: the

duration of the first cue was 2000 ms, and the big reward volume was

�1.29 ml). The 1500 ms duration of the always-informative cue was chosen

to allow near-optimal physical preparation for rewards. With a shorter cue

duration (e.g., <750 ms), there might not be enough time to discriminate the



Neuron

Dopamine Neurons Signal Information
cue and make a physical response (e.g., compare to the latency of anticipatory

licking in Tobler et al., 2003). With a longer cue duration (e.g., >2 s), physical

preparation for reward delivery begins to be impaired by timing errors (e.g.,

compare to the time course of anticipatory licking in Fiorillo et al., 2008;

Kobayashi and Schultz, 2008). To perform a reversal (vertical lines in Fig-

ure 2B), the colors of the informative and random cues were switched.

Neural Recording

Midbrain dopamine neurons were recorded using techniques described previ-

ously (Matsumoto and Hikosaka, 2007). A recording chamber was placed over

fronto-parietal cortex, tilted laterally by 35�, and aimed at the substantia nigra.

The recording sites were determined using a grid system, which allowed

recordings at 1 mm spacing. Single-neuron recording was performed using

tungsten electrodes (Frederick Haer) that were inserted through a stainless

steel guide tube and advanced by an oil-driven micro-manipulator (MO-97A,

Narishige). Single neurons were isolated on-line using custom voltage-time

window discrimination software (the MEX program (Hays et al., 1982) adapted

for the QNX operating system).

Neurons were recorded in and around the substantia nigra pars compacta

and ventral tegmental area. We targeted this region based on anatomical at-

lases and magnetic resonance imaging (4.7T, Bruker). During recording

sessions, we identified this region based on recording depth and using land-

marks including the somatosensory and motor thalamus, subthalamic

nucleus, substantia nigra pars reticulata, red nucleus, and oculomotor nerve.

Presumed dopamine neurons were identified by their irregular tonic firing at

0.5–10 Hz and broad spike waveforms. We focused our recordings on

presumed dopamine neurons that responded to the task and appeared to

carry positive reward signals. Occasional dopamine-like neurons that upon

examination showed no differential response to the cues and no differential

response to the reward outcomes were not recorded further. We then analyzed

all neurons that were recorded for at least 60 trials and that had positive reward

discrimination for both informative cues and random outcomes, positive

reward discrimination for cues and no discrimination for outcomes, or positive

reward discrimination for outcomes and no discrimination for cues (p < 0.05,

Wilcoxon rank-sum test). We were able to examine the response properties

of 108 neurons, 84 of which met our criteria for presumed dopaminergic firing

rate, pattern, and spike waveform, and 47 of which also met our criteria for trial

count and significant reward signals. This yielded 20 neurons from monkey V

(right hemisphere) and 27 neurons from monkey Z (left hemisphere) for our

analysis.

Data Analysis

All statistical tests were two-tailed. The neural analysis excluded error trials

and correction trials. We analyzed neural activity in time windows 150–

500 ms after target onset (targets), 150–300 ms after cue onset (cues), and

200–450 ms after cue offset (rewards). These were chosen to include the major

components of the average neural response. The neural discrimination

between a pair of task conditions was defined as the area under the ROC,

which can be interpreted as the probability that a randomly chosen single-trial

firing rate from the first condition was greater than a randomly chosen single-

trial firing rate from the second condition (Green and Swets, 1966). We

observed the same results using other measures of neural discrimination

such as the signal-to-baseline ratio and signal-to-noise ratio. Confidence inter-

vals and significance of the population averages of single-neuron ROC areas

(Figures 5A–5C) were computed using a bootstrap test with 200,000 resam-

ples (Efron and Tibshirani, 1993). Consistent with previous studies of reward

coding (Schultz and Romo, 1990; Kawagoe et al., 2004; Roesch et al., 2007;

Matsumoto and Hikosaka, 2007), we observed similar neural coding of behav-

ioral preferences for both of the target locations on the screen (average ROC

area, forced-information versus forced-random: ipsilateral = 0.60, p < 10�4,

contralateral = 0.62, p < 10�4; choice-information versus forced-random: ipsi-

lateral 0.58, p < 10�4, contralateral 0.62, p < 10�4), so for all analyses the data

were combined. We could not analyze activity on choice-random trials due to

their rarity (<3 trials for most neurons). All correlations were computed using

Spearman’s rho (rank correlation). To compare neural discrimination

measured using either forced-information or choice-information trials in inde-

pendent data sets, we calculated the correlation between two values, the
discrimination between forced-information trials versus even-numbered

forced-random trials, and the discrimination between choice-information trials

versus odd-numbered forced-random trials (rho = 0.68, p < 10�4). Significance

of correlations, and of the difference in mean ROC area between the two

monkeys (Figure 5), was computed using permutation tests (200,000 permuta-

tions) (Efron and Tibshirani, 1993).

SUPPLEMENTAL DATA

Supplemental data for this article include two Supplemental Notes and five

figures with accompanying text, and can be found at http://www.cell.com/

neuron/supplemental/S0896-6273(09)00462-0.
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