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Abstract

Objective. Longitudinal designs must deal with the confound between increasing age and

increasing task experience (i.e., retest effects). Most existing methods for disentangling

these factors rely on large sample sizes and are impractical for smaller scale projects. Here,

we provide a method for separating aging and retest effects with a modest sample size.

Method. We conducted a measurement burst study in which eight participants

completed a burst of seven sessions of free recall every year for 5 years. Six control

participants completed a burst only in years 1 and 5, and should, therefore, have a smaller

retest effect but equal age effects. We modeled memory performance as a combination of

age-related change and accumulating test experience.

Results. The raw data suggested slight improvement in memory over 5 years. But

fitting the model to the yearly-testing group revealed that a substantial positive retest

effect was obscuring stability in memory performance. Supporting this finding, the control

group showed a smaller retest effect but an equal age effect.

Discussion. Measurement burst designs combined with models of retest effects allow

researchers to employ longitudinal designs in areas where previously only cross-sectional

designs were feasible.
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Modeling Retest Effects in a Longitudinal Measurement Burst Design Study of Episodic

Memory

Introduction

Inferring age-related cognitive change from cross-sectional designs is fraught with

well-known inferential problems (Baltes, 1968). Longitudinal designs, in principle, provide

a more direct measure of within-individual cognitive change and are therefore an important

complement to cross-sectional research (Hoffman, Hofer, & Sliwinski, 2011). But

longitudinal studies generally introduce retest effects (e.g., practice effects), which can

obscure age-related effects (Hoffman et al., 2011; Salthouse, 2016).

Techniques have been developed to disentangle age-related and retest-related effects

in typical longitudinal designs in which a very large sample of participants is tested once on

each measure (at each time point; e.g., Salthouse, 2016). This typical design is not

appropriate, however, when the constructs of interest cannot be reliably measured with a

single test. For example, in cross-sectional designs we have had participants complete seven

sessions of free recall to provide sufficiently reliable measures to study individual (Healey,

Crutchley, & Kahana, 2014) and age (Healey & Kahana, 2016) differences in the dynamics

of episodic memory search.

Extending this multi-session design to a longitudinal study would constitute what has

been termed a “measurement burst” design (Nesselroade, 1991; Sliwinski, 2008): A burst is

composed of multiple tests separated by a short time (e.g. days) and successive bursts are

separated by a longer time (e.g., a year). This intensive testing makes it impractical to

undertake a longitudinal study with a sample large enough to apply most existing methods

of estimating retest effects.

Sliwinski, Hoffman, and Hofer (2010) introduced a method to separate age and retest

effects in measurement burst designs. This method involves modeling changes in

performance across retests as the combined output of a linear function of age and a

non-linear function of number of retests (e.g., Munoz, Sliwinski, Scott, & Hofer, 2015).
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Here, we report the initial results of a measurement burst longitudinal study in which six

participants completed seven sessions of the free recall task each year for five years. To

establish this as a methodologically feasible approach to longitudinal research with modest

sample sizes, we attempt to separately model retest-related and age-related effects.

Method

The data are from the Penn Electrophysiology of Encoding and Retrieval Study

(PEERS, Healey et al., 2014; Healey & Kahana, 2014, 2016; Lohnas & Kahana, 2013, 2014;

J. F. Miller, Kahana, & Weidemann, 2012), an ongoing project aiming to assemble a large

database on memory ability in older and younger adults. The full methods of the PEERS

study, which include some manipulations that we do not consider in this paper, are

described in the supplemental materials; here, we focus on the details relevant to our

analyses.

Participants–Original cross-sectional PEERS sample

The full PEERS older adult sample includes 39 individuals who completed an initial

cross-sectional study (Healey & Kahana, 2016). As described below, 18 of these

participants were recruited to return for longitudinal testing (12 were retested yearly, 6

were retested after 5 years). All participants were recruited from the Philadelphia area.

Potential participants were excluded if they suffered from any medical conditions or

regularly took medications that might affect their cognitive performance.

Yearly-testing Sample. Twelve older adults were recruited for annual testing.

The age of participants ranged from 62 to 73 years (M = 66.87) at the start of the

experiment, and the participants completed each yearly burst ranging from 1.6 to 19.0

weeks (M = 3.9). Four of these participants have been excluded from the current analyses

due to insufficient data (3 participants decided to leave the study, and 1 has passed away).

Of the 8 participants included in the present analyses, 2 have completed four annual waves

of testing and 6 have completed five waves.
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Practice-Control Sample. Six additional older adults from the original sample

were recruited to return 5 years after their first burst. Their ages ranged from 62 to 79

years (M = 66.83) at the start of the experiment, and they completed each yearly burst

ranging from 1.1 to 6.3 weeks (M = 3.7).

PEERS Experiment

Once recruited, participants completed 7 sessions of the free recall task each year. At

the beginning of each wave, the Recent Life Changes Questionnaire (M. A. Miller & Rahe,

1997) was administered to collect information about any potential changes in each

participant’s health or personal lives. No participants included in the current analyses

developed a medical condition that would have excluded them from initial participation.

Each session included 16 free recall lists. For each list, 16 words were presented one

at a time on a computer screen followed by an immediate free recall test. Each stimulus

was drawn from a pool of 1638 words. Lists were constructed such that varying degrees of

semantic relatedness occurred at both adjacent and distant serial positions.

For each list, there was a 1500 ms delay before the first word appeared on the screen.

Each item was on the screen for 3000 ms, followed by jittered (i.e., variable) inter-stimulus

interval of 800 − −1200 ms (uniform distribution). After the last item in the list, a tone

sounded, and a row of asterisks appeared. The participant was then given 75 seconds to

recall aloud any of the just-presented items.

Results

The solid gray lines in Figure 1A show changes in free recall performance (proportion

of words recalled) across sessions and years for the yearly-testing sample. The data show

little sign of declining memory performance across years. In fact, there is a modest increase

from year 1 to year 5. To quantify this trend, we began by conducting a linear regression

for each participant using the number of days that had elapsed since their first session

(defining session 1 as day 1) to predict their memory performance in individual sessions.
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This provided us with a slope (which we report as change in memory performance per

year) for each participant. Figure 1B shows that the average slope was 0.0058 (i.e., on a 0

to 1.0 scale, performance increased by 0.0058 per year), with 95% confidence intervals that

include zero. Thus there is a small, non-significant, increase across years.

Although performance increased slightly across years, examining performance within

each measurement burst (i.e., the seven sessions for a given year in Figure 1A) shows large

increases from the first to the last session, suggesting strong retest effects. To quantify

these retest effects, we simultaneously modeled age related change and the accumulation of

task experience. Several existing models have been applied to the accumulation of retest

effects in multi-session studies (e.g., Anderson, Fincham, & Douglass, 1999; Sliwinski et al.,

2010). We selected the Anderson et al. (1999) model because it includes a single term that

allows retest effects to accumulate when sessions are close together in time (i.e., within a

measurement burst) and then dissipate when there are long gaps between sessions (i.e., in

the months between measurement bursts).

In our adaptation of this model, memory performance on day i (i = 1 for the first

session), denoted by pi, is a function of both the linear effects of age-related episodic

memory change and the power-law effects of test experience:

pi = β0 + βage(Age) +
(
βretest − βretest∑i

j=1 t
−d
j

)
+ εi. (1)

In the model, β0 is an intercept which represents the participant’s performance in the

absence of any age-related change or test experience. βage is the amount by which

performance changes daily as a result of aging. Performance on day i improves as a result

of previous test experience up to a maximum retest benefit of βretest. However, benefit from

a session on any previous day, j, dissipates as the amount of time separating days j and i

increases, with the exact benefit given by t−d
j , where t = 1 + i− j (i.e., how far back in time
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day j is), and d modulates the rate at which retest effects dissipate with the passage of

time. t−d
j is calculated for the session on day i and all previous sessions and then

summed—the larger the sum, the closer the actual retest effect is to the maximum of

βretest. To summarize the determinants of the total retest effect, it increases as the number

of previous sessions increases, it decreases as the amount of time separating previous

sessions from day i increases, and it decreases as the value of the d parameter increases.

Finally, an error term, εi, captures the deviation of the model from the data.

We fit the model separately to the free recall performance of each individual

participant by minimizing the χ2 difference value between the model predictions and

observed data using the equation χ2 = Σn
i=1

(
pi−p̂i

SEp̄

)
, where n is the total number of sessions

completed by the participant, pi the actual performance on day i, and p̂i is the model’s

prediction for day i. To minimize χ2, for each participant we first ran a grid search by

selecting 120 values for each of the four model parameters (evenly spaced between 0–1 for

β0, -0.025– 0.025 change in percent recall per year for βage, -0.5–0.5 for βretest, and 0.1–1.0

for d). We then evaluated the parameter sets defined by the intersections of the grid, for a

total of 1204 parameter sets. Then for each of the 1000 best fitting sets from the grid

search, we used the Interior Point method to find the local minimum and took the best of

these local minima as the overall best fitting parameter set.

Each participant’s best fitting parameter values were used to derive model-predicted

performance across sessions. These predictions (averaged across participants) are shown by

the black lines in Figure 1A. The means of the best fitting parameter values are shown in

Table 1.

To determine the extent to which age and retest effects influence performance, we

directly compared the model predictions to the across-session slope observed in the raw

data (Figure 1B). To do so, we used the model fits to statistically isolate retesting effects

on the one hand and aging effects on the other hand by using one component of the model

at a time (the age component or the practice component) to predict performance. To
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isolate retest effects for each participant, we used their fitted values of the intercept, β0,

and the retest-related parameters βretest and d to compute the component of performance,

p̂retest
i , that can be predicted by test experience alone:

p̂retest
i = β0 +

(
βretest − βretest∑i

j=1 t
−d
j

)
. (2)

To provide a comparison with the raw slope across sessions (which reflects retest

effects and age effects), we computed a slope across sessions for the p̂retest
i values predicted

from retest effects alone. This slope, shown in Figure 1B is positive with 95% confidence

intervals far above zero, suggesting that practice effects contribute to the positive slope in

the raw data.

Similarly, to isolate the age effect for each participant, we used their fitted values of

the intercept β0 and the age parameter βage to compute the component of performance,

p̂age
i , that can be predicted by age alone:

p̂age
i = β0 + βage(Age). (3)

We then computed a slope across sessions for the p̂age
i values predicted from age

alone, which is shown in Figure 1B. This age effect slope is not different than zero (the 95%

confidence interval extends well below zero) and is significantly lower than the p̂retest
i slope,

(t(7) = −6.48, p < .01). These results confirm that positive retest effects were obscuring

age-related stability.

As a test of the model’s ability to discriminate practice and age effects (and to show

the replicability of the main findings), we collected a second sample of data—from

participants who received less test experience but had aged by the same amount. Whereas

the original sample received seven sessions a year for 5 years, the practice-control sample

completed seven sessions in year 1 but no further sessions until year 5. If the model is truly

able to remove retest effects, providing a purer measure of age effects, then model estimates
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from the two samples should reveal different practice effects but equal age effects.

Figure 2 shows the results from the practice-control group. As seen in Figure 2A,

little sign of decline between bursts is observed. Figure 2B shows that the slightly negative

raw slope across sessions disguises a marginally significant positive retest effect (the 95%

confidence interval is slightly above zero) and a non-significant age effect. Supporting the

ability of the model to distinguish practice from aging, the retest effect in this

practice-control sample was significantly smaller than the retest effect in the yearly-testing

sample, (t(12) = −3.59, p < .01), but the age effects in the two samples did not differ

(t(12) = −.01, p = .99).

Discussion

Precisely measuring within-individual age-related change requires a longitudinal

design. But the repeated testing inherent in traditional longitudinal designs tends to

increase performance such that the rate of age-related decline will be underestimated

unless retest effects are taken into account (Salthouse, 2015, 2016). This retest problem is

exacerbated if the construct of interest requires intensive testing to be reliably measured.

We attempted to overcome this problem in a study of episodic memory by using a

measurement burst longitudinal design and applying a joint model of retest and age effects,

as suggested by Sliwinski et al. (2010). The raw data showed a modest but non-significant

increase in memory performance over the five-years of the study. But applying our model

revealed significant and substantial retest effects. Indeed, once the retest effect was

statistically removed, we found a slight (but non-significant) age-related decline in memory

ability over five years, consistent with the results of traditional longitudinal studies

(Salthouse, 2015, 2016). This finding of substantial practice effects and small age-related

change was replicated in a second sample. Moreover, the model was also able to accurately
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detect that the second sample had received less test experience despite having aged by the

same amount.

This result demonstrates that longitudinal research need not be limited to projects

that follow hundreds of participants for decades. It is possible to conduct studies at a more

practical scale, both in terms of sample size and number of years, provided one combines an

intensive measurement burst design with a model of retest effects. The ability to conduct

smaller longitudinal studies allows for designs that efficiently target specific research

questions that have traditionally been the domain of cross-sectional work. Here, we applied

the method to memory ability, and Munoz et al. (2015) applied a similar method to

reaction time data. The method could easily be adapted to other research domains such as

age-related change in social or personality factors and even neural measurements.
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Table 1
Mean (standard deviation) of the fitted parameter values for each group

β0 .51 (.39) .38 (.36)
βage −0.0014 (0.0055) −0.0014 (0.0058)
βretest .14 (.05) .09 (.10)
d .35 (.22) .46 (.22)
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Figure 1 . Yearly-testing Sample. A) Mean observed performance by session (gray) along
with mean model fits (black) across the five years of the study. N = 8 for years 1 – 4.
N = 6 for year 5. B) Slopes reflecting change per year in observed free recall performance,
model-estimated practice effects, and model-estimated aging effects. All error bars are 95%
bootstrapped confidence intervals.
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Figure 2 . Practice-Control Sample. A) Mean observed performance by session (gray) along
with mean model fits (black) across the five years of the study. N = 6 for years 1 and 5. B)
Slopes reflecting change per year in observed free recall performance, model-estimated
practice effects, and model-estimated aging effects. All error bars are 95% bootstrapped
confidence intervals.


