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a b s t r a c t

‘Learning to learn’ phenomena have been widely investigated in cognition, perception and more recently
also in action. During concept learning tasks, for example, it has been suggested that characteristic
features are abstracted from a set of examples with the consequence that learning of similar tasks is
facilitated—a process termed ‘learning to learn’. From a computational point of view such an extraction
eywords:
tructure learning
daptive motor control
earning-to-learn
isuomotor learning

of invariants can be regarded as learning of an underlying structure. Here we review the evidence for
structure learning as a ‘learning to learn’ mechanism, especially in sensorimotor control where the motor
system has to adapt to variable environments. We review studies demonstrating that common features of
variable environments are extracted during sensorimotor learning and exploited for efficient adaptation
in novel tasks. We conclude that structure learning plays a fundamental role in skill learning and may

.

imensionality reduction
ariability

underlie the unsurpassed flexibility and adaptability of the motor system.
© 2009 Elsevier B.V. All rights reserved
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. . . .
. . . .

ous system faces during learning, except there are not 100 dials
ut often several hundreds (e.g. muscles) or millions (e.g. synaptic
trengths). One solution is to use optimization techniques to adjust
ach parameter, thereby exploring the entire 100-dimensional
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space. However, through experience you might find that for a
set of related tasks the final settings of the dials have a certain
fixed (or probabilistic) and possibly non-linear relation (thick black
line). This would allow us to build a new meta-dial (with setting
�) that controls and restricts all the other dials to move along a
lower dimensional structure in parameter space (Fig. 1B). There-
fore, when presented with a new task on the same structure, the
search is restricted to a subspace of the full parameter space, and
all you need to do is adjust a single meta-dial thereby speeding up
learning. This is the essence of structural learning (which we use
synonymous with structure learning).

In a biological organism, controlling the dials corresponds to
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. The structural learning hypothesis

Consider operating a machine with a hundred dials that you
can turn, each of which controls a single parameter (Fig. 1A shows
just two of the 100 parameters). The machine is performing well
at a particular task (red setting) and you want to adjust it for
a new task. How could you adjust the hundred dials to find the
setting for the new task (blue setting)? This is the problem the ner-
controlling internal parameters that determine the way in which
sensory inputs are transformed into motor outputs. Changing
these internal parameters leads to changes in the input–output
mapping—that is learning [1]. From a theoretical point of view,

http://www.sciencedirect.com/science/journal/01664328
http://www.elsevier.com/locate/bbr
mailto:dab54@cam.ac.uk
dx.doi.org/10.1016/j.bbr.2009.08.031
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ig. 1. Schematic diagram of structural learning. (A) The task space is defined by t
ine). This relationship is indicated by the curved structure which can be paramet
gnorant of the structure has to explore the full two-dimensional space when re-ad
etween the parameters into account. By adjusting only the meta-parameter � the

he problems of how to construct the meta-dial and how to adjust
t correspond to ‘structural learning’ and ‘parametric learning’
espectively. In structural learning, what is learned is the general
orm of the rules that govern a set of tasks, whereas parametric
earning involves selecting the particular mapping that governs the
urrent task.

Structural learning [2–8] essentially reduces the dimensional-
ty of the space that the learning organism has to search to adapt
o novel tasks. Such dimensionality reduction can be regarded as
n extraction of invariants between different input–output map-
ings. Extracting such invariants and reducing the dimensionality
f the search space will improve the efficiency of any learning algo-
ithm [9] leading to faster learning for problems sharing a similar
tructure. Thus, structural learning could provide a mechanism for
learning to learn’ and transfer between tasks with the same task
tructure. While structural learning is expected to speed-up learn-
ng, not all ‘learning to learn’ effects require structural learning. For
xample, non-specifically increasing the rate at which all param-
ters change could speed-up learning but would not be specific
o a particular set of tasks [10]. In the following we will focus on
learning to learn’ phenomena induced by structure learning.

. Structure learning in animal cognition

Some of the earliest accounts of facilitated transfer between
asks with a similar structure were in the cognitive domain where

onkeys had to choose one of two stimulus-objects (e.g. a cube or
cylinder), only one of which would lead to a reward. The same
air of stimulus-objects was repeatedly presented presented in
andomized locations (i.e. left or right) for a block of trials. At the
tart of a new block two new stimulus-objects were used. Initially,
he monkeys took many trials to learn the correct response, but
n later blocks Harlow observed a greater than 95% success rate
n the second trial of each block [11]. This suggests that the ani-
als had learned the structure of the task that is the abstract rule

hat one stimulus receives a reward and the other does not. In
his task ‘parametric learning’ within each block corresponds to
dentifying which stimulus is rewarded. The speed-up in learning
ver the blocks arises through the learning of the structure and the
apid increase in success rate within the first few trials of a block
rises through parametric adaptation. Such a speed-up in learn-
ng was termed ‘learning to learn’ and now has a long tradition in

xperimental psychology.

Harlow noted that most animal experiments had studied learn-
ng as an isolated episode on a single task and, therefore, did not
eflect learning in everyday life which involves experience over
any tasks [12]. According to Harlow’s hypothesis, animals learn
rameters, but for the given task only certain parameter combinations occur (black
by a one-dimensional meta-parameter �. However, a parametric learner that is
the parameter settings. (B) A structural learner, in contrast, takes the relationship

ing problem is effectively one-dimensional. Reprinted with permission from [66].

slowly by trial and error when they are faced with a novel task but
once they have had experience with a set of related tasks they can
generalize to solve novel tasks within this class, leading to appar-
ently insightful behaviour. Harlow defined this ‘learning to learn’
or ‘meta-learning’ as the formation of a ‘learning set’. Thus, the
‘learning set’ hypothesis of ‘learning to learn’ “describes the abil-
ity of animals to slowly learn a general rule which can then be applied
in order to rapidly solve new problem sets” [13]. Historically, Har-
low used the term ‘learning sets’ as a concept to bridge the gap
between the behaviourists’ theory of learning by trial and error
and the more insightful and discontinuous forms of learning sug-
gested by Gestalt psychologists [13,14]. The concept of ‘learning
sets’ is still employed in contemporary studies on animal learning,
e.g. [15,16].

Further investigations showed how the features of the train-
ing sets determined learning rates. Substantial facilitation was
reported for intra-dimensional shifts compared to extra-dimensional
shifts in learning problems [17–20]. For example, pigeons exposed
to coloured shapes, in which the colour was predictive of the
reward, rapidly adjusted to novel colours (intra-dimensional shift)
but not when the shape became predictive of the reward (extra-
dimensional shift) [17,21]. The ability to solve intra-dimensional
problems more quickly has been interpreted as learning of abstract
dimensions such as colour or shape rather than particular physical
instantiations like red or triangular.

Animals have also been shown to learn more complex rules by
mastering conditional discriminations that depend on the pres-
ence of contextual stimuli [21–25]. For example, chimpanzees can
be trained to discriminate between stimuli based on shape if the
stimuli are presented on white background and by colour if the
stimuli are presented on a black background [13]. In categorisa-
tion tasks animals have learnt discrimination rules that depend on
abstract concepts like ‘same’ or ‘different’ [26–28], ‘triangularity’
[29], ‘symmetry’ [30] or ‘people’ versus ‘no-people’ [31] and ‘food’
versus ‘non-food’ [32–34]. Apes have even been reported to exploit
abstract concepts for analogical reasoning [35].

3. Structure learning in cognitive neuroscience

‘Learning to learn’ has also been reported in both children and
adults [36–39]. However, only very few studies have related ‘learn-
ing to learn’ effects to the structure of the tasks. For example, in one

study, participants were exposed to pairs of symbols one of which
represented an initial state and the other an operator on that state
which determined a third symbol (the final state). Subjects were
then required to predict end-states given the initial-state and oper-
ator [39]. The participants showed transfer to problems with the
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Fig. 2. Example of a causal Bayesian network. (A) Four possible structures. The arrows represent the causal structure of the three variables pressure, barometer and storm that
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re represented by nodes. Structural learning is determining which of the possible s
robability of a storm occurring are correlated but independent when conditioned o
he probability distribution that quantifies the strength of the causal connections g
roken and giving a false reading.

ame structure thereby demonstrating that structural coherence
ad a powerful effect on learning. Similarly, structural learning
as been used to explain how humans generalize based on lim-

ted information, for example, when judging similarity between
nimals or numbers [40–42]. In addition, there have been inves-
igations of structural learning in perceptual tasks [43]. However,
he majority of studies of structural learning in cognitive science
ave not focussed on the issue of speeding up learning for novel
asks, but on the inference of causal structures between different
bserved variables [44–48]. For example, if we observe the three
ariables of pressure, barometer reading and the occurrence of
torms, there is a strong correlation between the readings of the
arometer and the probability of a storm occurring. However, this
tatistical co-variation does not imply a causal relationship (i.e.
he barometer causing a storm). Mathematically, causal relation-
hips are typically represented by graphical models [2,49] such as
directed graph consisting of nodes that represent the variables of

nterest (e.g. pressure, barometer and storm in Fig. 2A) and arrows
hat represent which variables have a causal influence on other
ariables and which variables are causally independent (e.g. both
arometer and storm are independent conditional on pressure).
hus, there are two things that need to be learned in causal induc-
ion: (1) the causal structure (i.e. which variables are connected by
rrows—Fig. 2A shows 4 possible structures) and (2) the strength
f causal relations (e.g. what is the probability of a storm occurring
iven that the pressure is high? Fig. 2B shows a possible param-
terisation given a particular structure). The first problem is the
roblem of structure learning, the second problem is the problem
f learning the parameters of the structural model. In a number of
xperiments it has been found that humans have great difficulty
nferring the causal structure of a set of variables from correla-
ional data alone [47,50,51]. Conditional independence relations
re hard to find because even very simple cases require subjects

o track concurrent changes in several variables—e.g. three vari-
bles in the example above. The number of possible dependencies
xpands rapidly with the number of variables involved. This leads to
substantial computational load and even the most sophisticated

tatistical methods do not guarantee that a unique causal structure
res is the best model of the data. In this case the readings of the barometer and the
ariable pressure suggesting structure 2. (B) Parametric learning involves specifying
particular structure. In this case there is a 0.01 probability of the barometer being

can be found. This is because when making inferences from cor-
relational data, there will usually be several ‘Markov equivalent’
structures that explain the co-variations in the data equally well
[49]. It is therefore not surprising that humans have been shown
to use additional cues to identify causal dependencies like tempo-
ral order [52] and active interventions [47,50,51]—for example, by
manipulating the barometer and testing whether this has an influ-
ence on the probability of a storm occurring. Structural learning
and uncertainty over different structures have even been reported
to explain human decision making in more complex sequential
decision tasks that have previously been interpreted as exposing
suboptimal behaviour on the part of the human decision makers
[53].

4. Structural learning in motor control

In sensorimotor control it is natural to think of regularities
between motor output and sensory inputs. These are imposed by
both the physical properties of the body and the regularities in the
environment or set of task to be performed. Structural learning
could exploit these regularities to facilitate learning.

4.1. Adaptive control theory

Adaptive control is a branch of control theory aimed at prob-
lems in which some of the properties of the system that we wish
to control are unknown. This approach uses two levels of analy-
sis: ‘structural adaptive control’ and ‘parametric adaptive control’
[4,54]. In parametric adaptive control, knowledge of the structure
of the control task is presupposed (e.g. the form of the equations
of motion governing the dynamics of the arm) and only unknown
parameters of the structure that are currently in play have to be
estimated (e.g. the mass of a hand-held object). Parametric adap-

tive control, therefore, consists of estimating the parameters of
the system (using one of a number of optimization procedures)
and then using these parameter estimates in the control process.
However, when the structural form itself is unknown, adaptive con-
trol relies on structural learning to develop a representation of the
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ontrol process. Such structural learning, in its most general form,
eeds to determine the relevant inputs and outputs of the system,
he dimensionality and form of the control problem, the relation
etween the control variables, their range of potential values and
he noise properties associated with them. The theoretical litera-
ure has primarily investigated parametric adaptive control as this
llows, by design, the adaptive control problem to be turned into
parametric optimization problem for which established system

dentification techniques can be employed to determine the param-
ters of the fixed model structure—see, for example [4,54]. The
tructural learning problem, while potentially the more powerful
ramework, is more difficult to handle. The difficultly arises because
he relevant structure of the controller has to be determined, for
hich there are no standard techniques in adaptive control, before
arametric identification can take place.

One control theoretic framework to study adaptive control is
ptimal feedback control theory in which the command, u, is driven
s a function of sensory input, x, and the parameters of the system,

such that u = f(x,�) [65]. Here f() represents the structure of the
ask and � the relevant parameters which vary across tasks. Criti-
ally, the representation of �, and hence f(), depends on the task. For
xample, if across tasks the mass of a hand-held object varies then
might represent the mass, whereas if the task involved wielding

ticks of different lengths � might represent the length of the stick.
n adaptive control theory u = f(x,�) is called a parametric adap-
ive control law, because it encapsulates the knowledge of how the
nknown parameters � are structurally related to the other con-
rol variables. Such parametric control laws can be used to study

ovement generation within the framework of optimal feedback
ontrol, and have been successful in explaining a wide range of
uman motor behaviour [55–61].

.2. Evidence for structural learning in motor control

‘Learning to learn’ phenomena have also been observed in motor
ontrol tasks [10,62–72]. In [67], for example, human participants
dapted and readapted to a sequence of repeating visuomotor
isplacements; that is they experienced blocks of trials with oppos-

ng (leftward and rightward) prismatic rotations. Not only did
hese participants show faster adaptation rates over the course
f the blocks for both prisms (termed ‘dual adaptation’), but also
hen faced with a new larger prismatic displacement, participants

howed facilitation of learning (‘adaptive generalization’ or ‘learn-
ng to learn’). Such ‘adaptive generalization’ has also been observed
n a study which manipulated both the type of visual distortion and
he type of task [72]. Subjects either walked on a treadmill or per-
ormed a balancing task. Within each of these tasks, subjects either
ore a variety of distorting lenses or a single distorting lens. After

raining they were tested on a walking task that required obstacle
voidance. The authors found facilitation for this new task for sub-
ects who had experienced the variety of lenses while walking on
he treadmill, but no facilitation for those who had done the balanc-
ng task. This work adds to earlier studies by showing that task sim-
larity (locomotion in this study) is critical for transfer [71] and that
ariability during practice facilitates retention and transfer [73].

The importance of variability during training is also empha-
ized in another visuomotor displacement study [70] showing that
ariable practice with different lenses (magnifying, minifying and
p/down reversal) over the course of three weeks increased sub-

ects’ adaptability to a novel visuomotor displacement compared
o subjects who underwent training with only one set of magnify-

ng lenses or sham lenses. Such non-specific speed-up of learning

as found, for example, in [10], where subjects were trained on
ne motor learning task and transfer to another task assessed.
his study demonstrated enhancements of learning and plasticity
hrough facilitated transfer between motor tasks that share little
Research 206 (2010) 157–165

structural similarity, such as from visuomotor rotations to sequence
learning. Such non-specific enhancement of learning relies on dif-
ferent mechanisms from structural learning. Structural learning
predicts facilitation effects that are specific for the sensorimotor
structure that has been learned.

While the motor studies described above have investigated
‘learning to learn’ effects, they have not directly tested structural
learning as a basis for facilitation of learning. Recently, we have
conducted a series of studies to directly test the idea of structural
learning in motor control. In our tasks subjects had to learn visuo-
motor transformations between their actual and perceived hand
movement in virtual reality reaching tasks—for example, a visuo-
motor rotation would induce the perceived hand movement to be
a rotated version of the actual hand movement. Such visuomotor
transformations can be chosen to have a particular structure (e.g.
rotations, shearings or scalings) that requires the setting of spe-
cific parameters to be fully determined (e.g. rotation angle, shearing
parameter or scaling factor). By randomizing these parameter set-
tings in our experiment we could test how random experience of
a particular structure affects learning of a new visuomotor trans-
formation. In [66], for example, subjects experienced extended
training either with random visuomotor rotations or with highly
variable random linear transforms composed of rotations, shear-
ings and scalings (Fig. 3). After extensive experience with these
transformations we exposed both groups to a new fixed visuomotor
rotation. The structural learning hypothesis predicts that subjects
who had experienced random visuomotor rotations should exhibit
strong facilitation when faced with a particular instance of this class
of visuomotor transformation as was observed in our experiment.
In contrast, the random transformation group performed no better
than a naïve group, although they had extensive experience with
rotations. The reason for this lack of transfer is that the random
transformation group experienced rotations as part of a much less
constrained structure of random linear transformations which did
not allow the detection of a lower dimensional structure. Transfer
between two blocks of visuomotor rotations with different rotation
angles has been previously reported [74]—e.g. learning a 45◦ rota-
tion facilitates learning a 90◦ rotation. However, previous studies
did not provide any direct evidence for the importance of variable
experience of a particular task structure (e.g. rotations) as opposed
to experience with another task structure (e.g. linear transforms).

The structural learning hypothesis also predicts that, when
learning a new transformation, the motor controller should, at least
initially, explore preferentially along the structure (thick black line
in Fig. 1A) and reduce deviations from the structure. To test this
prediction, while subjects made reaching movements in three-
dimensional space we exposed them to randomly varying rotations
either around the vertical or the horizontal axis. Therefore each
group of subjects experienced either a vertical or horizontal rota-
tion structure, parameterized with a single rotation parameter [66].
Later in the experiment, vertical and horizontal rotation probe trials
were introduced for both groups. Interestingly, both groups reacted
very differently to the same probe trials. They showed structure-
specific facilitation, variability patterns and exploration strategies
(Fig. 4). Their endpoint variance was markedly reduced in the
direction orthogonal to their learned structure. This suggests that
exploration occurred preferentially along the previously learned
structure and deviation from the structure was reduced. Reduc-
tion of variance has long been recognized as an important feature
of learning [75]. Previously, it has been proposed that motor vari-
ance is reduced in the degrees of freedom that interfere with task

goals, whereas variability in task-irrelevant dimensions is tolerated
as a redundancy [55,76–80]. Structure learning is entirely compati-
ble with this concept of redundancy in task-irrelevant dimensions,
since the subspace found after learning might still comprise many
redundant dimensions.
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Fig. 3. Structural learning of visuomotor rotations. (A) Learning curves for a block of +60◦ rotation trials performed by a group that had experienced random rotations
before (R-learner, red), a control group that had only experienced movements with veridical feedback (blue) and a group that experienced random linear transforms and
±60◦ rotations (green). The rotation group shows strong facilitation. (B) Learning curves for a subsequent block of −60◦ rotation trials performed by the same groups. The
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nterference effect that can be seen in the control group is strongly reduced in the ro
y the same groups. Again the random rotation group shows a performance advan

nterquartile confidence interval. Reprinted with permission from [66] (For interpr
ersion of the article.).

Previously, it has also been suggested that co-variation between
ifferent control variables can be exploited to reduce task variance
81–86], for example, when deviations of two variables compensate
or each other, as has been observed for variations in body and pistol
ngles compensating for each other to achieve a steady pointing
osition [81,82]. The exploitation of such co-variations is consistent
ith structural learning and its effect on the structure of movement

ariability. Similar correlations between control variables have also
een previously reported in the context of motor synergies [87–89]
nd generalized motor programmes [90,91]. Both concepts can be
onsidered as structures that are scaled by “activation levels” and
re therefore also compatible with the notion of structure learning.

Once the structure of a control task has been learned, one

an employ adaptive control methods to model adaptive motor
esponses. Consider, for example, picking up an empty milk car-
on that you believe to be full. Not only do you need to adapt your
stimate of the carton’s weight, but simultaneously you must exert

ig. 4. Structural learning of 3D rotations. (A) Angular error in probe blocks of horizonta
andom horizontal rotations before. There is a clear facilitation for learning the horizo
washout) trials preceding the probe block. (B) Performance error in the same probe blo
attern is reversed. (C and D) Movement variance shortly before trial end for both kinds
he displacement direction — is significantly reduced for isostructural probe blocks (ellip
tructure they had learned during the random rotation blocks. (E and F) Circular histogra
rial. Subjects responded to probe blocks from the same structure in a consistent way corr
tructure, subjects also showed components of learning in the direction of the previously
eferences to colour in this figure legend, the reader is referred to the web version of the
group. (C) Learning curves for a subsequent block of +60◦ rotation trials performed
n the first 10 trials. The median error over all subjects is shown and the pertinent
n of the references to colour in this figure legend, the reader is referred to the web

control to move the carton to a desired location. We have shown
that training on such unpredictable tasks leads to the formation
of structure-specific adaptation strategies that can be understood
within the framework of parametric adaptive optimal feedback
control [65]. In such an adaptive optimal feedback controller the
structure of the control task is represented by an adaptive internal
model of the dynamics of the environment [92–94] and the param-
eter of that structure identifies all the environments belonging to
the class that the internal model is suited for—e.g. an internal model
for the manipulation of the milk carton that can be scaled according
to its weight. In our experiments [65], we tested directly whether
the behaviour can be modelled by adaptive optimal control princi-
ples. Subjects were exposed to unexpected visuomotor rotations to

which they had to adapt while reaching. Importantly, the visuomo-
tor rotations could not be predicted in any single trial and required
‘online adaptation’, since the mapping from hand to cursor changed
all the time. We found clear signs of improvements in subjects’

l (red) and vertical (blue) 45◦-rotations experienced by a group that experienced
ntal rotation. The black line indicates performance in the block of null-rotation
cks for a group that experienced random vertical rotations before. The facilitation
of probe blocks. The variance in the task-irrelevant direction — perpendicular to

ses show standard deviation). This suggests that subjects explored less outside the
ms of initial movement adaptation from the 1st trial of the probe block to the 2nd
ecting towards the required target. In contrast, in case of probe trials for a different
learned structure. Reprinted with permission from [66] (For interpretation of the

article.).
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Fig. 5. Evolution of within-trial adaptive behaviour for random rotation trials. (A) Mean hand trajectories for ±90◦ rotation trials in the first 10 batches averaged over trials
and subjects (each batch consisted of 200 trials, approximately 5% of which were ±90◦ rotation trials). The −90◦ rotation trials have been mirrored about the y axis to allow
averaging. Dark blue colours indicate early batches, green colours intermediate batches, red colours indicate later batches. (B) The minimum distance to the target averaged
for the same trials as A (error bars indicate standard deviation over all trajectories and all subjects). This shows that subjects’ performance improves over batches. (C) Mean
speed profiles for ±90◦ rotations of the same batches. In early batches, movements are comparatively slow and online adaptation is reflected in a second peak of the speed
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structure. Therefore, ‘structural learning’ refers to learning the
topology of such a network, whereas ‘parametric learning’ involves
determining quantitatively the causal connections given by the
structure. In particular, the problem of structural learning is exac-
erbated in the presence of hidden variables, because the hidden

Fig. 6. Structural learning in Bayesian networks. (A) The nodes of the Bayesian Net-
work represent random variables such as sensory inputs Rj and motor outputs Uk .
The arrows indicate causal dependencies that are usually expressed via param-
eterized probability density functions. Learning the parameters of the full joint
probability distribution in this network will require substantial computations. (B) In
rofile which is initially noisy and unstructured. (D) The magnitude of the second
otation trajectories computed for each trial batch. (F) Standard deviation of the las
art of the movement. Reprinted with permission from [65] (For interpretation of t
he article.).

daptive behaviour over the course of many trials (Fig. 5). The adap-
ive control model could reproduce the stereotyped adaptive arm

ovements generated by subjects at the end of this ‘learning how
o adapt’ process by assuming an internal model that knows about
he visuomotor rotation structure and tries to adapt the particu-
ar rotation angle parameter in each trial. Interestingly, this model
redicts that there should be no adaptation process for visuomotor
erturbations that do not change the mapping between inputs and
utputs, for example when the target jumps. In accord with these
redictions we found that another group of subjects who expe-
ienced random target jumps showed no learning-to-learn over
he course of trials [65]. This suggests that subjects who experi-
nced random rotations had learned an adaptation strategy that
as specific for the structure of the environmental variability they

ncountered during training.

. A Bayesian perspective

Structural learning can also be considered from a Bayesian point
f view, in which the learner maintains a probability distribution
ver possible structures that could explain the data. Such struc-
ural learning is typically studied in the framework of Bayesian
etworks (Fig. 6). Ultimately, a Bayesian network is a graphical
ethod to efficiently represent the joint distribution of a set of ran-

om variables [2,6,8]. In cognitive science, for example, Bayesian
raphical networks are widely used to study structure learning
n causal induction [95,96]. In the case of sensorimotor learning,

e can consider a Bayesian network in which N random variables
epresent the receptor input R1, R2, ..., RN (e.g. retinal input, propri-

ceptive input, or later stages of neural processing) and M variables
he motor output U1, U2, ..., UM (e.g. muscle activations or earlier
tages of neural processing) (Fig. 6A). The dependencies between
hese variables are expressed by arrows in the network indicat-
ng the relation between any variable Xi (such as Rj or Uk) and its
ncreases over batches (same format as B). (E) Standard deviation profiles for ±90
ms of movement. Over consecutive batches the variability is reduced in the second
erences to colour in this figure legend, the reader is referred to the web version of

direct causal antecedents denoted as parents (Xi). Thus, depend-
ing on a particular network structure S with model parameters
�S the joint probability distribution P(�X) = P(X1, X2, ..., XN+M) can
be split up into a product of conditional probabilities: P(�X|S, �S) =∏N+M

i=1 P(Xi|parents(Xi), S, �S). The structure S of the network deter-
mines the dependencies between the variables — that is the
presence or absence of arrows — while the probabilities that spec-
ify the actual dependencies quantitatively are parameters of that
this network there is a hidden variable � that corresponds to what we have called a
‘meta-parameter’. The joint probability distribution over all variables splits up into
a product of conditional distributions with regard to �. This substantially reduces
the dimensionality of the parameter space. In our experiments � corresponds for
instance to internal variables specific for rotations. Reprinted with permission from
[66].
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ariables and the structure between them and the observables have
o be inferred. This is the standard case in sensorimotor learn-
ng. For instance, in the rotation experiments described above
he hidden variable is the rotation angle. If the nervous system
an extract this hidden variable, the joint probability distribu-
ion over the sensorimotor space can be efficiently computed as
(�R, �U) = P( �U|�S)P(�S |�R), where � represents a rotation-specific
idden variable (Fig. 6B). Formally, the inference process during
tructural learning is split up into two steps: (a) computing the
osterior probability P(S|X) of a certain structural model S given
he data X, and (b) computing the posterior probability P(�S|S, X)
f the parameter �S given the structural model S and the data X. By
sing this formalism the concept of structural learning can be eas-

ly incorporated within the framework of Bayesian sensorimotor
ntegration [97,98]. What is not shown explicitly in Fig. 6A and B is
he time-dependence of the random variables �R and �U. However,
ime can be included by extending the graph to a Bayesian Network
hat represents sequences of these random variables. This is called
Dynamic Bayesian Network or DBN [99]. It is also straightforward

o use structure learning in Bayesian nets as a modelling tool to
nderstand transfer between different tasks [100].

. Conclusions

The hypothesis of structural learning as a ‘learning to learn’
echanism can be applied to a large body of existing research. In

xperimental psychology ‘learning to learn’ phenomena have been
eported when animals are exposed to different environments that
elong to a particular class or type. Instead of talking about ‘class’
r ‘type’ we might equally say that these environments share a
ommon structure. Harlow pioneered the hypothesis that animals
orm ‘learning sets’ of abstract solution strategies applicable to all
nvironments that share the same class or structure. In addition,
tudies in cognitive science have investigated structure learning
ainly in the context of inferring causal dependencies. So far these

tudies have rarely asked the question how such structure learning
ransfers to new learning problems, although some have reported
learning to learn’ effects [39]. Thus, these lines of research pro-
ide evidence for structural learning in both animal and human
ognitive learning tasks. The applicability of the concept, however,
tretches much farther and includes, for example, even ‘learning to
earn’ on an evolutionary scale where our ontogenetic learning is

erely an adaptation to a particular instantiation of a living envi-
onment for which we have been selected [101]. Here, we have
ainly focused on structure learning in motor control tasks. These

ndings are particularly interesting because previously it has often
een thought that learning in highly variable environments can-
ot be achieved or that only average responses could be learned
102–107]. Recent data indicates, however, that this is not always
he case and that structure learning can extract more abstract
nvariants. Structural learning in the motor system would then
mply the learning of abstract motor strategies that are applicable in
wide range of environments that share common structures. Such
n ability for primitive, non-cognitive abstraction or motor concept
ormation might also provide an interesting link between motor
ontrol and cognitive science [108]. In summary, structural learning
ight not only play a fundamental role in skill learning and under-

ie the unsurpassed flexibility and adaptability of the motor system,
ut also govern important cognitive learning processes observed in
nimal psychology and cognitive science.
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