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SUMMARY

During realistic, continuousperception, humansauto-
matically segment experiences into discrete events.
Using a novel model of cortical event dynamics, we
investigate how cortical structures generate event
representations during narrative perception and how
these events are stored to and retrieved from mem-
ory. Our data-driven approach allows us to detect
event boundaries as shifts between stable patterns
of brain activity without relying on stimulus anno-
tations and reveals a nested hierarchy from short
events in sensory regions to long events in high-
order areas (including angular gyrus and posterior
medial cortex), which represent abstract, multimodal
situation models. High-order event boundaries are
coupled to increases in hippocampal activity, which
predict pattern reinstatement during later free recall.
These areas also show evidence of anticipatory rein-
statement as subjects listen to a familiar narrative.
Based on these results, we propose that brain activity
is naturally structured into nested events, which form
the basis of long-term memory representations.

INTRODUCTION

Typically, perception and memory are studied in the context of

discrete pictures or words. Real-life experience, however, con-

sists of a continuous stream of perceptual stimuli. The brain

therefore needs to structure experience into units that can be un-

derstood and remembered: ‘‘the meaningful segments of one’s

life, the coherent units of one’s personal history’’ (Beal andWeiss,

2013). Although this question was first investigated decades ago

(Newtson et al., 1977), a general ‘‘event segmentation theory’’

was proposed only recently (Zacks et al., 2007). These and other

authors have argued that humans implicitly generate event

boundaries when consecutive stimuli have distinct temporal as-

sociations (Schapiro et al., 2013), when the causal structure of

the environment changes (Kurby and Zacks, 2008; Radvansky,

2012), or when our goals change (DuBrow and Davachi, 2016).

At what timescale are experiences segmented into events?

When reading a story, we could chunk it into discrete units of in-
dividual words, sentences, paragraphs, or chapters, andwemay

need to chunk information on different timescales depending on

our goals. Behavioral studies have shown that subjects can

segment events into a nested hierarchy from coarse to fine time-

scales (Kurby and Zacks, 2008; Zacks et al., 2001b) and flexibly

adjust their units of segmentation depending on their uncertainty

about ongoing events (Newtson, 1973). The neural basis of

this segmentation behavior is unclear; event perception could

rely on a single unified system, which segments the continuous

perceptual stream at different granularities depending on the

current task (Zacks et al., 2007), or may rely on multiple brain

areas that segment events at different timescales, as suggested

by the selective deficits for coarse segmentations exhibited by

some patient populations (Zalla et al., 2003, 2004).

A recent theory of cortical process-memory topography

argues that information is integrated at different timescales

throughout the cortex. Processing timescales increase from

tens of milliseconds in early sensory regions (e.g., for detecting

phonemes in early auditory areas), to a few seconds in mid-level

sensory areas (e.g., for integrating words into sentences), up to

hundreds of seconds in regions including the temporoparietal

junction, angular gyrus, and posterior and frontal medial cortex

(e.g., for integrating information from entire paragraphs) (Chen

et al., 2016; Hasson et al., 2015). The relationship between the

process-memory topography and event segmentation has not

yet been investigated. On the one hand, it is possible that cortical

representations are accumulated continuously, e.g., using a

sliding window approach, at each level of the processing hierar-

chy (Stephens et al., 2013). On the other hand, a strong link

between the timescale hierarchy and event segmentation

theory would predict that each area chunks experience at its

preferred timescale and integrates information within discretized

units (e.g., phonemes, words, sentences, paragraphs) before

providing its output to the next processing level (Nelson et al.,

2017). In this view, ‘‘events’’ in low-level sensory cortex (e.g., a

single phoneme; Giraud and Poeppel, 2012) are gradually inte-

grated into minutes-long situation-level events, using a multi-

stage nested temporal chunking. This chunking of continuous

experience at multiple timescales along the cortical processing

hierarchy has not been previously demonstrated in the dynamics

of whole-brain neural activity.

A second critical question for understanding event perception

is how real-life experiences are encoded into long-termmemory.

Behavioral experiments and mathematical models have argued

that long-term memory reflects event structure during encoding
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Figure 1. Theory of Event Segmentation and Memory

During perception, events are constructed at a hierarchy of timescales (1), with short events in primary sensory regions and long events in regions including the

angular gyrus and posterior medial cortex. These high-level regions have event boundaries that correspond most closely to putative boundaries identified by

human observers (2) and represent abstract narrative content that can be drawn from multiple input modalities (3). At the end of a high-level event, the situation

model is stored into long-term memory (4) (resulting in post-boundary encoding activity in the hippocampus), and can be reinstated during recall back into these

cortical regions (5). Prior event memories can also influence ongoing processing (6), facilitating prediction of upcoming events in related narratives. We test

each of these hypotheses using a data-driven event segmentation model, which can automatically identify transitions in brain activity patterns and detect

correspondences in activity patterns across datasets.
(Ezzyat and Davachi, 2011; Gershman et al., 2014; Sargent et al.,

2013; Zacks et al., 2001b), suggesting that the event segments

generated during perception may serve as the ‘‘episodes’’ of

episodic memory. The hippocampus is thought to bind cortical

representations into a memory trace (McClelland et al., 1995;

Moscovitch et al., 2005; Norman and O’Reilly, 2003), a process

that is typically studied using discrete memoranda (Danker

et al., 2016). However, given a continuous stream of information

in a real-life context, it is not clear at what timescale memories

should be encoded and whether these memory traces should

be continuously updated or encoded only after an event has

completed. The hippocampus is connected to long-timescale

regions, including the angular gyrus and posterior medial cortex

(Kravitz et al., 2011; Ranganath and Ritchey, 2012; Rugg and Vil-

berg, 2013), suggesting that the main inputs to long-term mem-

ory come from these areas, which are thought to represent multi-

modal, abstract representations of the features of the current

event (‘‘situation models,’’ Johnson-Laird, 1983; Van Dijk and

Kintsch, 1983; Zwaan et al., 1995; Zwaan and Radvansky,

1998; or more generally, ‘‘event models,’’ Radvansky and Zacks,

2011). Recent work has shown that hippocampal activity peaks

at the offset of video clips (Ben-Yakov and Dudai, 2011; Ben-Ya-

kov et al., 2013), suggesting that the end of a long-timescale

event triggers memory encoding processes that occur after the

event has ended.

Based on our experiments (described below), we propose

that the full life cycle of an event can be described in a unified

theory, illustrated in Figure 1. During perception, each brain

region along the processing hierarchy segments information
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at its preferred timescale, beginning with short events in pri-

mary visual and auditory cortex and building to multimodal

situation models in long-timescale areas, including the angular

gyrus and posterior medial cortex. This model of processing re-

quires that (1) all regions driven by audio-visual stimuli should

exhibit event-structured activity, with segmentation into short

events in early sensory areas and longer events in high-order

areas; (2) events throughout the hierarchy should have a nested

structure, with coarse event boundaries annotated by human

observers most strongly related to long events at the top of

the hierarchy; and (3) event representations in long-timescale

regions, which build a coarse model of the situation, should

be invariant across different descriptions of the same situation

(e.g., when the same situation is described visually in a movie

or a verbally in a story). We also argue that event structure

is reflected in how experiences are stored into episodic mem-

ory. At event boundaries in long-timescale areas, the situation

model is transmitted to the hippocampus, which can later

reinstate the situation model in long-timescale regions during

recall. This implies that (4) the end of an event in long-timescale

cortical regions should trigger the hippocampus to encode

information about the just-concluded event into episodic

memory, and (5) stored event memories can be reinstated in

long-timescale cortical regions during recall, with stronger

reinstatement for more strongly encoded events. Finally, this

process can come full circle, with prior event memories

influencing ongoing processing, such that (6) prior memory

for a narrative should lead to anticipatory reinstatement in

long-timescale regions.



Figure 2. Event Segmentation Model

(A) Given a set of (unlabeled) time courses from a region of interest, the goal of the event segmentation model is to temporally divide the data into ‘‘events’’ with

stable activity patterns, punctuated by ‘‘event boundaries’’ at which activity patterns rapidly transition to a new stable pattern. The number and locations of these

event boundaries can then be compared across brain regions or to stimulus annotations.

(B) The model can identify event correspondences between datasets (e.g., responses to movie and audio versions of the same narrative) that share the same

sequence of event activity patterns, even if the duration of the events is different.

(C) Themodel-identified boundaries can also be used to study processing evoked by event transitions, such as changes in hippocampal activity coupled to event

transitions in the cortex.

(D) The event segmentationmodel is implemented as amodified HiddenMarkovModel (HMM) in which the latent state st for each time point denotes the event to

which that time point belongs, starting in event 1 and ending in event K. All datapoints during event K are assumed to be exhibit high similarity with an event-

specific pattern mk. See also Figures S1, S2, and S3.
To test these hypotheses, we need the ability to identify how

different brain areas segment events (at different timescales),

align events across different datasets with different timings

(e.g., to see whether the same situation model is being elicited

by a movie versus a verbal narrative, or a movie versus recall),

and track differences in event segmentations in different ob-

servers of the same stimulus (e.g., depending on prior experi-

ence). Thus, to search for the neural correlates of event segmen-

tation, we have developed a new data-driven method that allows

us to identify events directly from fMRI activity patterns across

multiple timescales and datasets (Figure 2).

Our analysis approach (described in detail in STAR Methods)

starts with two simple assumptions: that while processing a

narrative stimulus, observers progress through a sequence of

discrete event representations (hidden states), and that each

event has a distinct (observable) signature (a multi-voxel fMRI

pattern) that is present throughout the event. We implement

these assumptions using a data-driven event segmentation

model, based on a Hidden Markov Model (HMM). Fitting the

model to fMRI data (e.g., evoked by viewing amovie) entails esti-

mating the optimal number of events, the mean activity pattern

for each event, and when event transitions occur. When applying
the model to multiple datasets evoked by the same narrative

(e.g., during movie viewing and during later verbal recall), the

model is constrained to find the same sequence of patterns

(because the events are the same), but the timing of the transi-

tions between the patterns can vary (e.g., since the spoken

description of the events might not take as long as the original

events).

In prior studies, using human-based segmentation of coarse

event structure, we demonstrated that event-related representa-

tions generalize across modalities and between encoding and

recall (thereby supporting hypotheses 3 and 5, Chen et al.,

2017; Zadbood et al., 2016). In the current study, we extend

these findings by testing whether we can use the data-driven

HMM to detect stable and abstract event boundaries in high-

order areas without relying on human annotations. This new

analysis approach also allows us to test for the first time whether

the brain segments information, hierarchically, at multiple time-

scales (hypotheses 1 and 2); how segmentation of information

interacts with the storage and retrieval of this information by

the hippocampus (hypothesis 4); and how prior exposure to a

sequence of events can later lead to anticipatory reinstatement

of those events (hypothesis 6). Taken together, our results
Neuron 95, 709–721, August 2, 2017 711



Figure 3. Event Segmentation Model for Movie-Watching Data Reveals Event Timescales

The event segmentationmodel identifies temporally clustered structure in movie-watching data throughout all regions of cortex with high intersubject correlation.

The optimal number of events varied by anorder ofmagnitude across different regions, with a large number of short events in sensory cortex and a small number of

long events in high-level cortex. For example, the time point correlationmatrix for a region in the precuneus exhibited coarse blocks of correlated patterns, leading

to model fits with a small number of events (white squares), while a region in visual cortex was best modeled with a larger number of short events (note that only

�3min of the 50-min stimulus are shown and that the highlighted searchlights were selected post hoc for illustration). The searchlight wasmasked to include only

regions with intersubject correlation > 0.25 and voxelwise thresholded for greater within-than across-event similarity, q < 0.001. See also Figures S3, S4, and S8.
provide the first direct evidence that realistic experiences are

discretely and hierarchically chunked at multiple timescales in

the brain, with chunks at the top of the processing hierarchy

playing a special role in cross-modal situation representation

and episodic memory.

RESULTS

All of our analyses are carried out using our new HMM-based

event segmentation model (summarized above, and described

in detail in the Event Segmentation Model subsection in STAR

Methods), which can automatically discover the fMRI signatures

of each event and its temporal boundaries in a particular dataset.

We validated this model using both synthetic data (Figure S1)

and narrative data with clear event breaks between stories (Fig-

ure S2), confirming that we could accurately recover the number

of event boundaries and their locations (see STARMethods). We

then applied the model to test six predictions of our theory of

event perception and memory.

Timescales of Cortical Event Segmentation
We first tested the hypothesis that all regions driven by audio-

visual stimuli should exhibit event-structured activity, with seg-

mentation into short events in early sensory areas and longer

events in high-order areas. We measured the extent to which

continuous stimuli evoked the event structure hypothesized by
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our model (periods with stable event patterns punctuated by

shifts between events) and whether the timescales of these

events varied along the cortical hierarchy. We tested the model

by fitting it to fMRI data collected while subjects watched a

50-min movie (Chen et al., 2017) and then assessing how well

the learned event structure explained the activity patterns of a

held-out subject. Note that previous analyses of this dataset

have shown that the evoked activity is similar across subjects,

justifying an across-subjects design (Chen et al., 2017).We found

that essentially all brain regions that responded consistently to

the movie (across subjects) showed evidence for event-like

structure, and that the optimal number of events varied across

the cortex (Figure 3). Sensory regions like visual and auditory cor-

tex showed faster transitions between stable activity patterns,

while higher-level regions like the posterior medial cortex,

angular gyrus, and intraparietal sulcus had activity patterns that

often remained constant for over a minute before transitioning

to a new stable pattern (see Figure 3 insets and Figure S3). This

topography of event timescales is broadly consistent with that

found in previouswork (Hasson et al., 2015)measuring sensitivity

to temporal scrambling of a movie stimulus (see Figure S8).

Comparison of Event Boundaries across Regions and to
Human Annotations
The second implication of our theory is that events throughout

the hierarchy should have a nested structure, with coarse event



Figure 4. Cortical Event Boundaries Are Hierarchically Structured and Are Related to Human-Labeled Event Boundaries, Especially in

Posterior Medial Cortex

(A) An example of boundaries evoked by the movie over a 4-min period shows how the number of boundaries decreases as we proceed up the hierarchy, with

boundaries in posterior medial cortex most closely related to human annotations of event transitions.

(B) Event boundaries in higher regions are present in lower regions at above-chance levels (especially pairs of regions that are close in the hierarchy), suggesting

that event segmentation is in part hierarchical, with lower regions subdividing events in higher regions.

(C) All four levels of the hierarchy show an above-chance match to human annotations (the null distribution is shown in gray), but the match increases significantly

from lower to higher levels (yp = 0.058, *p < 0.05, **p < 0.01).
boundaries annotated by human observersmost strongly related

to long events at the top of the hierarchy. To examine how

event boundaries changed throughout the cortical hierarchy,

we created four regions of interest, each with 300 voxels,

centered on ROIs from prior work (see STAR Methods): early

visual cortex, late visual cortex, angular gyrus, and posterior

medial cortex. We identified the optimal timescale for each re-

gion as in the previous analysis and then fit the event segmenta-

tion model at this optimal timescale, as illustrated in Figure 4A.

We found that a significant portion of the boundaries in a given

layer were also present in lower layers (Figure 4B), especially

for adjacent layers in the hierarchy. This suggests that event

segmentation is at least partially hierarchical, with finer event

boundaries nested within coarser boundaries.

We asked four independent raters to divide the movie into

‘‘scenes’’ based on major shifts in the narrative (such as in loca-

tion, topic, or time). The number of event boundaries identified by

the observers varied between 36 and 64, but the boundaries had
a significant amount of overlap, with an average pairwise Dice’s

coefficient of 0.63 and 20 event boundaries that were labeled

by all four raters.We constructed a ‘‘consensus’’ annotation con-

taining boundaries marked by at least two raters, which split the

narrative into 54 events, similar to themean timescale for individ-

ual annotators (49.5).We then measured, for each region, what

fraction of its fMRI-defined boundarieswere close to (within three

time points of) a consensus event boundary. As shown in Fig-

ure 4C, all regions showed an above-chancematch to human an-

notations (early visual, p = 0.0135; late visual, p = 0.0065; angular

gyrus, p = 0.0011; posterior medial, p < 0.001), but this match

increased across the layers of the hierarchy and was largest in

angular gyrus and posterior medial cortex (angular gyrus > early

visual, p = 0.0580; posterior medial > early visual, p = 0.033).

Shared Event Structure across Modalities
The third requirement of our theory is that activity patterns

in long-timescale regions should be invariant across different
Neuron 95, 709–721, August 2, 2017 713



Figure 5. Movie-Watching Model General-

izes to Audio Narration in High-Level Cortex

After identifying a series of event patterns in a

group of subjects who watched a movie, we tested

whether this same series of events occurred in a

separate group of subjects who heard an audio

narration of the same story. The movie and audio

stimuli were not synchronized and differed in their

duration. We restricted our searchlight to voxels

that responded to both the movie and audio stimuli

(having high intersubject correlation within each

group). Movie-watching event patterns in early

auditory cortex (dotted line) did not generalize to

the activity evoked by audio narration, while re-

gions including the angular gyrus, temporoparietal

junction, posterior medial cortex, and inferior

frontal cortex exhibited shared event structure

across the two stimulus modalities. This analysis,

conducted using our data-driven model, replicates

and extends the previous analysis of this dataset

(Zadbood et al., 2016) in which the event corre-

spondence between the movie and audio narration

was specified by hand. The searchlight is masked

to include only regions with intersubject correla-

tion > 0.1 in all conditions and voxelwise thresh-

olded for above-chance movie-audio fit, q < 10�5.

See also Figure S8.
descriptions of the same situation. This hypothesis is based on a

prior study (Zadbood et al., 2016) in which one group of subjects

watched a 24-min movie while the other group listened to an

18-min audio narration describing the events that occurred in

themovie. The prior study used a hand-labeled event correspon-

dence between these two stimuli to show that activity patterns

evoked by corresponding events in the movie and narration

were correlated in a network of regions including angular gyrus,

precuneus, retrosplenial cortex, posterior cingulate cortex, and

mPFC (Zadbood et al., 2016). Here, we use this dataset to ask

whether our event segmentation model can replicate these

results in a purely unsupervised manner, without using any prior

event labeling.

For each cortical searchlight, we first segmented the movie

data into events and then tested whether this same sequence

of events from the movie-watching subjects was present in the

audio-narration subjects. Regions including the angular gyrus,

temporoparietal junction, posterior medial cortex, and inferior

frontal cortex showed a strongly significant correspondence

between the two modalities (Figure 5), indicating that a similar

sequence of event patterns was evoked by the movie and audio

narration irrespective of the modality used to describe the

events. In contrast, though low-level auditory cortex was reliably

activated by both of these stimuli, there was no above-chance

similarity between the series of activity patterns evoked by the

two stimuli (movie versus verbal description), presumably

because the low-level auditory features of the two stimuli were

markedly different.

Relationship between Cortical Event Boundaries and
Hippocampal Encoding
We tested a fourth hypothesis from our theory, that the end of an

event in long-timescale cortical regions should trigger the hippo-
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campus to encode information about the just-concluded event

into episodic memory. Prior work has shown that the end of a

video clip is associated with increased hippocampal activity,

and the magnitude of the activity predicts later memory (Ben-

Yakov and Dudai, 2011; Ben-Yakov et al., 2013). These experi-

ments, however, have used only isolated short video clips with

clear transitions between events. Do neurally defined event

boundaries in a continuous movie, evoked by subtler transitions

between related scenes, generate the same kind of hippocampal

signature? Using a searchlight procedure, we identified event

boundaries with the HMM segmentation model for each cortical

area across the timescale hierarchy, using the 50-min movie

dataset (Chen et al., 2017). We then computed the average

hippocampal activity around the event boundaries of each

cortical area to determine whether a cortical boundary tended

to trigger a hippocampal response. We found that event bound-

aries in a distributed set of regions including angular gyrus, pos-

terior medial cortex, and parahippocampal cortex all showed

a strong relationship to hippocampal activity, with the hippocam-

pal response typically peaking within several time points after the

event boundary (Figure 6). This network of regions closely over-

laps with the posterior medial memory system (Ranganath and

Ritchey, 2012). Note that both the event boundaries and the

hippocampal response are hemodynamic signals, so there is

no hemodynamic offset between these two measures. The hip-

pocampal response does start slightly before the event bound-

ary, which could be due to uncertainty in the model estimation

of the exact boundary time point and/or anticipation that the

event is about to end.

Reinstatement of Event Patterns during Free Recall
Our theory further implies that stored event memories can be

reinstated in long-timescale cortical regions during recall, with



Figure 6. Hippocampal Activity Increases at Cortically Defined Event Boundaries

To determine whether event boundaries may be related to long-term memory encoding, we identify event boundaries based on a cortical region and then

measure hippocampal activity around those boundaries. In a set of regions including angular gyrus, posteriormedial cortex, and parahippocampal cortex, we find

that event boundaries robustly predict increases in hippocampal activity, which tends to peak just after the event boundary (shaded region indicates 95%

confidence interval). The searchlight is masked to include only regions with intersubject correlation > 0.25 and voxelwise thresholded for post-boundary hip-

pocampal activity greater than pre-boundary activity, q < 0.001. See also Figures S5 and S8.
stronger reinstatement for more strongly encoded events. After

watching the movie, all subjects in this dataset were asked to

retell the story they had just watched, without any cues or stim-

ulus (see Chen et al., 2017 for full details). We focused our ana-

lyses on the high-level regions that showed a strong relationship

with hippocampal activity in the previous analysis (posterior

cingulate and angular gyrus), as well as early auditory cortex

for comparison.

Using the event segmentation model, we first estimated the

(group-average) series of event-specific activity patterns evoked

by the movie and then attempted to segment each subject’s

recall data into corresponding events. When fitting the model

to the recall data, we assumed that the same event-specific ac-

tivity patterns seen during the movie-viewing will be reinstated

during the spoken recall. Analyzing the spoken recall transcrip-

tions revealed that subjects generally recalled the events in the

same order as they appeared in the movie (see Table S1 in

Chen et al., 2017). Therefore, the model was constrained to

use the same order of multi-voxel event patterns for recall that

it had learned from the movie-watching data. However, crucially,

the model was allowed to learn different event timings for the

recall data compared to the movie data—this allowed us to

accommodate the fact that event durations differed for free

recall versus movie-watching.

For each subject, the model attempted to find a sequence

of latent event patterns that was shared between the movie

and recall, as shown in the example with 25 events in Figure 7A

(see Figure S6 for examples from all subjects). Green shading

indicates the probability that a movie and a recall time point

belong to the same latent event (with darker shading indicating

higher probability), and boxes indicate segments of the movie

and recall that were labeled as corresponding to the same event

by human annotators. Compared to the null hypothesis that

there was no shared event order between the movie and recall,

we found significant model fits in both the posterior cingulate
(p = 0.015) and the angular gyrus (p = 0.002), but not in low-level

auditory cortex (p = 0.277) (Figure 7B). This result demonstrates

that we can identify shared temporal structure between percep-

tion and recall without any human annotations. A similar pattern

of results can be found regardless of the number of latent events

used (see Figure S6). The identified correspondences for each

subject (using both posterior cingulate and angular gyrus) were

also significantly similar to the human-labeled correspondences

(probability mass inside annotations = 17.8%, significantly

greater than null model [11.9%], p < 0.001) (see Figure S6).

We then assessedwhether the hippocampal response evoked

by the end of an event during the encoding of the movie to

memory was predictive of the length of time for which the event

was strongly reactivated during recall. As shown in Figures 7C

and 7D, we found that encoding activity and event reactivation

were positively correlated in both angular gyrus (r = 0.362,

p = 0.002) and the posterior cingulate (r = 0.312, p = 0.042),

but not early auditory cortex (r = 0.080, p = 0.333). Note that there

was no relationship between the hippocampal activity at the

starting boundary of an event and that event’s later reinstate-

ment in the angular gyrus (r = �0.119, p = 0.867; difference

from ending boundary correlation p = 0.004) and only a weak,

nonsignificant relationship in posterior cingulate (r = 0.189,

p = 0.113; difference from ending boundary correlation

p = 0.274). The relationship between the average hippocampal

activity throughout an event and later cortical reinstatement

was actually negative (angular gyrus, r =�0.247, p = 0.017; pos-

terior cingulate, r =�0.092, p = 0.175), suggesting that encoding

is strongest when hippocampal activity is relatively low during an

event and high at its offset.

Anticipatory Reinstatement for a Familiar Narrative
Finally, we tested a sixth hypothesis, that prior memory for

a narrative should lead to anticipatory reinstatement in long-

timescale regions. Our ongoing interpretation of events can be
Neuron 95, 709–721, August 2, 2017 715



Figure 7. Movie-Watching Events Are Reactivated during Individual Free Recall, and Reactivation Is Related to Hippocampal Activation at

Encoding Event Boundaries

(A) We can obtain an estimated correspondence between movie-watching data and free-recall data in individual subjects by identifying a shared sequence of

event patterns, shown here for an example subject using data from posterior cingulate cortex.

(B) For each region of interest, we tested whether themovie and recall data shared an ordered sequence of latent events (relative to a null model in which the order

of events was shuffled betweenmovie and recall). We found that both angular gyrus (blue) and posterior cingulate cortex (green) showed significant reactivation of

event patterns, while early auditory cortex (red) did not.

(C and D) Events whose offset drove a strong hippocampal response during encoding (movie-watching) were strongly reactivated for longer fractions of the recall

period, both in the angular gyrus and the posterior cingulate. Error bars for event points denote SEM across subjects, and error bars on the best-fit line indicate

95% confidence intervals from bootstrapped best-fit lines. See also Figure S6.
influenced by prior knowledge; specifically, if subjects listening

to the audio version of a narrative had already seen the movie

version, they may anticipate upcoming events compared to sub-

jects experiencing the narrative for the first time. Detecting this

kind of anticipation has not been possible with previous ap-

proaches that rely on stimulus annotations, since the difference

between the two groups is not in the stimulus (which is identical)

but rather in the temporal dynamics of their cognitive processes.

Using data from Zadbood et al. (2016), we simultaneously fit

our event segmentation model to three conditions—watching

the movie, listening to the narration after watching the movie

(‘‘memory’’), and listening to the narration without having previ-

ously seen the movie (‘‘no memory’’)—looking for a shared
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sequence of event patterns across conditions. By analyzing

which time points were assigned to the same event, we can

generate a time point correspondence indicating—for each

time point during the audio narration datasets—which time

points of the movie are most strongly evoked (on average) in

the mind of the listeners.

We searched for cortical regions along the hierarchy of time-

scale showing anticipation, in which this correspondence for

the memory group was consistently ahead of the correspon-

dence for the no-memory group (relative to chance). As shown

in Figure 8, we found anticipatory event reinstatement in the

angular gyrus, posterior medial cortex, andmedial frontal cortex.

Examining the movie-audio correspondences in these regions,



Figure 8. Prior Memory Shifts Movie-Audio Correspondence

The event segmentation model was fit simultaneously to data from a group watching the movie, the same group listening to the audio narration after having seen

themovie (‘‘memory’’), and a separate group listening to the audio narration for the first time (‘‘nomemory’’). By examining which time points were estimated to fall

within the same latent event, we obtained a correspondence between time points in the audio data (for both groups) and time points in the movie data. We found

regions in which the correspondence in both groups was close to the human-labeled correspondence between themovie and audio stimuli (black boxes), but the

memory correspondence (orange) significantly led the non-memory correspondence (blue) (indicated by an upward shift on the correspondence plots; note that

the highlighted searchlights were selected post hoc for illustration). This suggests that cortical regions of the memory group were anticipating events in the

narration based on knowledge of the movie. The searchlight is masked to include only regions with intersubject correlation > 0.1 in all conditions and voxelwise

thresholded for above-chance differences between memory and no memory groups, q < 0.05. See also Figures S7 and S8.
the memory group was consistently ahead of the no-memory

group, indicating that for a given time point of the audio narration

the memory group had event representations that corresponded

to later time points in the movie. A similar result can be obtained

by directly aligning the two listening conditions without reference

to the movie-watching condition (see Figure S7).

DISCUSSION

We found that narrative stimuli evoke event-structured activity

throughout the cortex, with pattern dynamics consisting of

relatively stable periods punctuated by rapid event transitions.

Furthermore, the angular gyrus and posterior medial cortex

exhibit a set of overlapping properties associated with high-level

situation model representations: long event timescales, event

boundaries closely related to human annotations, generalization

across modalities, hippocampal response at event boundaries,

reactivation during free recall, and anticipatory coding for

familiar narratives. Identifying all of these properties was made

possible by using naturalistic stimuli with extended temporal

structure, paired with a data-driven model for identifying activity

patterns shared across time points and across datasets.

Event Segmentation Theory
Our results are the first to validate a number of key predictions

of event segmentation theory (Zacks et al., 2007) directly from
fMRI data of naturalistic narratives, without using specially con-

structed stimuli or subjective labeling of where events should

start and end. Previous work has shown that hand-labeled event

boundaries are associated with univariate activity increases in a

network of regions overlapping our high-level areas (Ezzyat and

Davachi, 2011; Speer et al., 2007; Swallow et al., 2011; Whitney

et al., 2009; Zacks et al., 2001a, 2010), but by modeling fine-

scale spatial activity patterns we were able to detect these event

changes without an external reference. This allowed us to iden-

tify regions with temporal event structure at many different time-

scales, only some of whichmatched human-labeled boundaries.

Other analyses of these datasets also found reactivation during

recall (Chen et al., 2017) and shared event structure across

modalities (Zadbood et al., 2016); however, because these

other analyses defined events based on the narrative rather

than brain activity, they were unable to identify differences in

event segmentation across brain areas or across groups with

different prior knowledge.

Processing Timescales and Event Segmentation
The topography of event timescales revealed by our analysis

provides converging evidence for an emerging view of how

information is processed during real-life experience (Hasson

et al., 2015). The ‘‘process memory framework’’ argues that

perceptual stimuli are integrated across longer and longer time-

scales along a hierarchy from early sensory regions to regions in
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the default-mode network. Using a variety of experimental ap-

proaches, including fMRI, electrocorticography (ECoG), and sin-

gle-unit recording, this topography has previously been mapped

either by temporally scrambling the stimulus at different time-

scales to see which regions’ responses are disrupted (Hasson

et al., 2008; Honey et al., 2012; Lerner et al., 2011) or by exam-

ining the power spectrum of intrinsic dynamics within each re-

gion (Honey et al., 2012; Murray et al., 2014; Stephens et al.,

2013). Our model and results yield a new perspective on these

findings, suggesting that all processing regions can exhibit rapid

activity shifts, but that these fast changes aremuch less frequent

in long-timescale regions. The power spectrum is therefore an

incomplete description of voxel dynamics, since the correlation

timescale changes dynamically, with faster changes at event

boundaries and slower changes within boundaries (see also Fig-

ure S4B). We also found evidence for nested hierarchical struc-

ture, suggesting that chunks of information are transmitted from

lower to higher levels primarily at event boundaries, as in recent

multiscale recurrent neural network models (Chung et al., 2017).

The specific features encoded in the event representations

of long-timescale regions like the angular gyrus and posterior

cingulate cortex during naturalistic perception are still an

open question. These areas are involved in high-level, multi-

modal scene processing tasks including memory and naviga-

tion (Baldassano et al., 2016; Kumar et al., 2017), are part of

the ‘‘general recollection network’’ with strong anatomical and

functional connectivity to the hippocampus (Rugg and Vilberg,

2013), and are the core components of the posterior medial

memory system (Ranganath and Ritchey, 2012), which is

thought to represent and update a high-level situation model

(Johnson-Laird, 1983; Van Dijk and Kintsch, 1983; Zwaan

et al., 1995; Zwaan and Radvansky, 1998). Since event repre-

sentations in these regions generalized across modalities and

between perception and recall, our results provide further evi-

dence that they encode high-level situation descriptions. We

also found that event patterns could be partially predicted by

key characters and locations from the narrative (see Figure S4D,

and Figure S6 in Chen et al., 2017), but future work (with richer

descriptions of narrative events, Vodrahalli et al., 2017) will be

required to understand how event patterns are evoked by se-

mantic content.

Events in Episodic Memory
Behavioral experiments have shown that long-term memory

reflects event structure during encoding (Ezzyat and Davachi,

2011; Sargent et al., 2013; Zacks et al., 2001b). Here, we were

able to identify the reinstatement of events that were automati-

cally discovered during perception, extending previous work

demonstrating reinstatement of individual items or scenes in

angular gyrus and posterior medial cortex (Chen et al., 2017;

Johnson et al., 2009; Kuhl and Chun, 2014; Ritchey et al.,

2013; Wing et al., 2015) to continuous perception without any

stimulus annotations.

We demonstrated that the hippocampal encoding activity pre-

viously shown to be present at the end ofmovie clips (Ben-Yakov

and Dudai, 2011; Ben-Yakov et al., 2013) and at abrupt switches

between stimulus category and task (DuBrow and Davachi,

2016) also occurs at the much more subtle transitions between
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events (defined by pattern shifts in high-level regions), providing

evidence that event boundaries trigger the storage of the current

situation representation into long-term memory. We have also

shown that this post-event hippocampal activity is related to

pattern reinstatement during recall, as has been recently demon-

strated for the encoding of discrete items (Danker et al., 2016),

thereby supporting the view that events are the natural units of

episodic memory during everyday life. Changes in cortical activ-

ity patterns may drive encoding through a comparator operation

in the hippocampus (Lisman and Grace, 2005; Vinogradova,

2001), or the prediction error associated with event boundaries

may potentiate the dopamine pathway (Zacks et al., 2011),

thereby leading to improved hippocampal encoding (Kempadoo

et al., 2016; Takeuchi et al., 2016). Notably, the positive relation-

ship between hippocampal activity and subsequent cortical rein-

statement was specific to hippocampal activity at the end of an

event; there was no significant relationship between hippocam-

pal activity at the start of an event and subsequent reinstate-

ment, and higher hippocampal activity during an event was

associated with worse reinstatement (a similar relationship was

observed in parietal cortex by Lee et al., 2017). In this respect,

our results differ from other results showing that the hippocam-

pal response to novel events drives memory for the novel events

themselves (for a review, see Ranganath and Rainer, 2003)—

here, we show that the hippocampal response to a new event

is linked to subsequent memory for the previous event.

Most extant models of memory consolidation (McClelland

et al., 1995) and recall (Polyn et al., 2009) have been formulated

under the assumption that the input to the memory system is

a series of discrete items to be remembered. Although this

is true for experimental paradigms that use lists of words or

pictures, it was not clear how these models could function for

realistic autobiographical memory. Our model connects natural-

istic perception with theories about discrete memory traces, by

proposing that cortex chunks continuous experiences into

discrete events; these events are integrated along the process-

ing hierarchy into meaningful, temporally extended, episodic

structures, to be later encoded into memory via interaction

with the hippocampus. The fact that the hippocampus is coupled

to both angular gyrus and posterior medial cortex, which have

slightly different timescales, raises the interesting possibility

that these event memories could be stored at multiple temporal

resolutions.

Our Event Segmentation Model
Temporal latent variable models have been largely absent from

the field of human neuroscience, since the vastmajority of exper-

iments have a temporal structure that is defined ahead of time by

the experimenter. One notable exception is the recent work of

Anderson and colleagues, which has used HMM-based models

to discover temporal structure in brain activity responses during

mathematical problem solving (Anderson and Fincham, 2014;

Anderson et al., 2014, 2016). These models are used to segment

problem-solving operations (performed in less than 30 s) into a

small number of cognitively distinct stages such as encoding,

planning, solving, and responding. Our work is the first to show

that (using a modified HMM and an annealed fitting procedure)

this latent-state approach can be extended to much longer



experimental paradigms with a much larger number of latent

states.

For finding correspondences between continuous datasets,

as in our analyses of shared structure between perception and

recall or perception under different modalities, several other

types of approaches (not based on HMMs) have been proposed

in psychology and machine learning. Dynamic time warping

(Kang and Wheatley, 2015; Silbert et al., 2014) locally stretches

or compresses two time series to find the best match, and

more complex methods such as conditional random fields (Zhu

et al., 2015) allow for parts of the match to be out of order. How-

ever, these methods do not explicitly model event boundaries.

Future work will be required to investigate what types of neural

correspondences are well modeled by continuous warping

versus event-structuredmodels. Logically, a strictly event-struc-

tured model (with static event patterns) cannot be a complete

description of brain activity during narrative perception, since

subjects are actively accumulating information during each

event, and extensions of our model could additionally model

these within-event dynamics (see Figure S4B).

Perception and Memory in the Wild
Our results provide a bridge between the large literature on long-

term encoding of individual items (such as words or pictures) and

studies of memory for real-life experience (Nielson et al., 2015;

Rissman et al., 2016). Since our approach does not require an

experimental design with rigid timing, it opens the possibility of

having subjects be more actively and realistically engaged in a

task, allowing for the study of events generated during virtual re-

ality navigation (such as spatial boundaries, Horner et al., 2016)

or while holding dialogs with a simultaneously scanned subject

(Hassonetal., 2012).Themodel also isnot fMRI specificandcould

be applied to other types of neuroimaging time series such as

ECoG, electroencephalography (EEG), or functional near-infrared

spectroscopy (fNIRS), includingportablesystems that couldallow

experiments to be run outside the lab (McKendrick et al., 2016).

Conclusion
Using a novel event segmentation model that can be fit directly

to neuroimaging data, we showed that cortical responses to

naturalistic stimuli are temporally organized into discrete events

at varying timescales. In a network of high-level association

regions, we found that these events were related to subjective

event annotations by human observers, predicted hippocampal

encoding, generalized across modalities and between percep-

tion and recall, and showed anticipatory coding of familiar narra-

tives. Our results provide a new framework for understanding

howcontinuousexperience is accumulated, stored, and recalled.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Interleaved Stories dataset
Twenty-two subjects (all native English speakers) were recruited from the Princeton community (9 male, 13 female, ages 18-26). All

subjects provided informed written consent prior to the start of the study in accordance with experimental procedures approved by

the Princeton University Institutional Review Board. The study was approximately 2 hr long and subjects received $20 per hour as

compensation for their time. Data from 3 subjects were discarded due to falling asleep during the scan, and 1 due to problems

with audio delivery.

METHOD DETAILS

Interleaved Stories dataset
To test our model in a dataset with clear, unambiguous event boundaries, we used data from subjects who listened to two unrelated

audio narratives (Chen et al, 2015a).We used data from 18 subjects who listened to the two audio narratives in an interleaved fashion,

with the audio stimulus switching between the two narratives approximately every 60 s at natural paragraph breaks. The total stim-

ulus length was approximately 29 min, during which there were 32 story switches. The audio was delivered via in-ear headphones.

Imaging data were acquired on a 3T full-body scanner (Siemens Skyra) with a 20-channel head coil using a T2*-weighted echo

planar imaging (EPI) pulse sequence (TR 1500ms, TE 28ms, flip angle 64, whole-brain coverage 27 slices of 4mm thickness, in-plane

resolution 33 3 mm, FOV 1923 192 mm). Preprocessing was performed in FSL, including slice time correction, motion correction,

linear detrending, high-pass filtering (140 s cutoff), and coregistration and affine transformation of the functional volumes to a tem-

plate brain (MNI). Functional images were resampled to 3 mm isotropic voxels for all analyses.

The analyses in this paper were carried out using data from a posterior cingulate region of interest, the posterior medial cluster in

the ‘‘dorsal default mode network’’ defined by whole-brain resting state connectivity clustering (Shirer et al., 2012).

Sherlock Recall dataset
Our primary dataset consisted of 17 subjects who watched the first 50 min of the first episode of BBC’s Sherlock, and were then

asked to freely recall the episode in the scanner without cues (Chen et al., 2017). Subjects varied in the length and richness of their

recall, with total recall times ranging from 11 min to 46 min (and a mean of 22 min). Imaging data was acquired using a T2*-weighted

echo planar imaging (EPI) pulse sequence (TR 1500ms, TE 28ms, flip angle 64, whole-brain coverage 27 slices of 4mm thickness, in-

plane resolution 3 3 3 mm, FOV 192 3 192 mm). A standard preprocessing pipeline was performed using FSL, including motion

correction. Since acoustic output was not correlated across subjects (Chen et al., 2017), shared activity patterns at recall are unlikely

to be driven by correlatedmotion artifacts. All subjects were aligned to a commonMNI template, and analyses were carried out in this

common volume space.We also conducted an alternate version of the segmentation analysis that does not rely on preciseMNI align-

ment (Chen et al., 2015b) and obtained similar results (see Figure S4C).

We restricted our searchlight analyses to voxels that were reliably driven by the stimuli, measured using intersubject correlation

(Hasson et al., 2004). Voxels with a correlation less than r = 0.25 during movie-watching were removed before running the searchlight

analysis.

We defined five regions of interest based on prior work. In addition to the posterior cingulate region defined above, we defined the

angular gyrus as area PG (both PGa and PGp) using the maximum probability maps from a cytoarchitectonic atlas (Eickhoff et al.,
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2005), early auditory cortex as voxels within the Heschl’s gyrus region (Harvard-Oxford cortical atlas) with high intersubject correla-

tion during an audio narrative (‘‘Pieman,’’ Simony et al., 2016), early visual cortex as voxels near the calcarine sulcus with high

intersubject correlation during an audio-visual movie (‘‘The Twilight Zone,’’ Chen et al., 2016), and hV4 based on a group

maximum-probability atlas (Wang et al., 2015).

Sherlock Narrative dataset
To investigate cross-modal event representations and the impact of prior memory, we used a separate dataset in which subjects

experienced multiple versions of a narrative. One group of 17 subjects watched the first 24 min of the first episode of Sherlock

(a portion of the same episode used in the Sherlock Recall dataset), while another group of 17 subjects (who had never seen the

episode before) listened to an 18 min audio description of the events during this part of the episode (taken from the audio recording

of one subject’s recall in the Sherlock Recall dataset). The subjects who watched the episode then listened to the same 18 min audio

description. This yielded three sets of data, all based on the same story: watching amovie of the events, listening to an audio narration

of the events without prior memory, and listening to an audio narration of the events with prior memory. Imaging data was acquired

using the same sequence as in Sherlock Recall dataset; see Zadbood et al. (2016) for full acquisition and preprocessing details.

As in the Sherlock Recall experiment, we removed all voxels that were not reliably driven by the stimuli. Only voxels with an inter-

subject correlation of at least r = 0.1 across all three conditions were included in searchlight analyses.

Event annotations by human observers
Four human observers were given the video file for the 50 min Sherlock stimulus, and given the following directions: ‘‘Write down the

times at which you feel like a new scene is starting; these are points in the movie when there is a major change in topic, location, time,

etc. Each ‘scene’ should be between 10 seconds and 3 minutes long. Also, give each scene a short title.’’ The similarity among ob-

servers wasmeasured using Dice’s coefficient (number of matching boundaries divided bymean number of boundaries, considering

boundaries within three time points of one another to match).

Event Segmentation Model
Ourmodel is built on two hypotheses: (1) while processing narrative stimuli, observers experience a sequence of discrete events, and

(2) each event has a distinct neural signature. Mathematically, themodel assumes that a given subject (or averaged group of subjects)

starts in event s1 = 1 and ends in event sT = K, where T is the total number of time points and K is the total number of events. In each

time point the subject either remains in the same state or advances to the next state, i.e., st+1 ˛ {st, st+1} for all time points t. Each

event has a signature mean activity pattern mk across all V voxels in a region of interest, and the observed brain activity bt at any time

point t is assumed to be highly correlated with mk, as illustrated in Figure 2.

Given the sequence of observed brain activities bt, our goal is to infer both the event signatures mk and the event structure st.

To accomplish this, we cast our model as a variant of a Hidden Markov Model (HMM). The latent states are the events st that evolve

according to a simple transition matrix, in which all elements are zero except for the diagonal (corresponding to st+1 = st)

and the adjacent off-diagonal (corresponding to st+1 = st+1), and the observation model is an isotropic Gaussian

pðbtjst = kÞ= ð1=
ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p
Þe�ð1=2s2ÞkzðbtÞ�zðmk Þ k 2

2 , where zðxÞ denotes z-scoring an input vector x to have zero mean and unit variance.

Note that, due to this z-scoring, the log probability of observing brain state bt in an event with signature mk is simply proportional

to the Pearson correlation between bt and mk plus a constant offset.

The HMM is fit to the fMRI data by using an annealed version of the Baum-Welch algorithm, which iterates between estimating the

fMRI signaturesmk and the latent event structure st. Given the signature estimatesmk, the distributions over latent events p(st = k) can

be computed using the forward-backward algorithm. Given the distributions p(st = k), the updated estimates for the signatures

mk can be computed as the weighted averagemk =
P

tpðst = kÞbt=
P

tpðst = kÞ. To encourage convergence to a high-likelihood solu-

tion, we anneal the observation variance s2 as 4,0:98i where i is the number of loops of Baum-Welch completed so far. We stop the

fitting procedure when the log-likelihood begins to decrease, indicating that the observation variance has begun to drop below the

actual event activity variance. We can also fit the model simultaneously to multiple datasets; on each round of Baum-Welch, we run

the forward-backward algorithm on each dataset separately, and then average across all datasets to compute a single set of shared

signatures mk.

The end state requirement of our model – that all states should be visited, and the end state should be symmetrical to all other

states – requires extending the traditional HMM by modifying the observation probabilities pðbt j st = kÞ. First, we enforce sT =K by

requiring that, on the final timestep, only the final state K could have generated the data, by setting pðbT j sT = kÞ= 0 for all ksK.

Equivalently, we can view this as a modification of the backward pass, by initializing the backward message bðsT = kÞ to 1 for

k =K and 0 otherwise. Second,wemustmodify the transitionmatrix to ensure that all valid event segmentations (which start at event 1

and end at event K, and proceed monotonically through all events) have the same prior probability. Formally, we introduce a dummy

absorbing state K+1 to which state K can transition, ensuring that the transition probabilities for state K are identical to those for pre-

vious states, and then set pðbt j st =K + 1Þ= 0 to ensure that this state is never actually used.

Since we do not want to assume that events will have the same relative lengths across different datasets (such as a movie and

audio-narration version of the same narrative), we fix all states to have the same probability of staying in the same state (st+1 = st)

versus jumping to the next state (st+1 = st+1). Note that the shared probability of jumping to the next state can take any value between
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0 and 1 with no effect on the results (up to a normalization constant in the log-likelihood), since every valid event segmentation will

contain exactly the same number of jumps (K-1).

Our model induces a prior over the locations of the event boundaries. There are a total of

�
T

K � 1

�
equally likely placements of the

K-1 event boundaries, and the number of ways to have event boundary k fall on time point t is the number of ways that k-1 boundaries

can be placed in t-1 time points times the number of ways that (K-1)-(k-1)-1 boundaries can be placed in T-t time points. Therefore

pðst = k & st+ 1 = k+ 1Þ=
�

t� 1
k� 1

��
T� t

K� k� 1

���
T

K� 1

�
. An example of this distribution is shown in Figure S1. During the anneal-

ing process, the distribution over boundary locations starts at this prior, and slowly adjusts to match the event structure of the data.

After fitting themodel on one set of data, we can then look for the same sequence of events in another dataset. Using the signatures

mk learned from the first dataset, we simply perform a single round of the forward-backward algorithm to obtain event estimates

p(st = k) on the second dataset. If we expect the datasets to have similar noise properties (e.g., both datasets are group-averaged

data from the same number of subjects), we set the observation variance to the final s2 obtained while fitting the first dataset. When

transferring events learned on group-averaged data to individual subjects, we estimate the variance for each event across the indi-

vidual subjects of the first dataset.

Themodel implementation was first verified using simulated data. An event-structured dataset was constructed with V = 10 voxels,

K = 10 events, and T = 500 time points. The event structure was chosen to be either uniform (with 50 time points per event), or the

length of each event was sampled (from first to last) from N(1,0.25)*(time points remaining)/(events remaining). A mean pattern was

drawn for each event from a standard normal distribution, and the simulated data for each time point was the sumof the event pattern

for that time point plus randomly distributed noise with zero mean and varying standard deviation. The noisy data were then input to

the event segmentation model, and we measured the fraction of the event boundaries that were exactly recovered from the true un-

derlying event structure. As shown in Figure S1, were able to recover amajority of the event boundaries evenwhen the noise level was

as large as the signature patterns themselves.

Finding event structure in narratives
To validate our event segmentation model on real fMRI data, we first fit the model to group-averaged PCC data from the Interleaved

Stories experiment. In this experiment, we expect that an event boundary should be generated every time the stimulus switches

stories, giving a ground truth against which to compare the model’s segmentations. As shown in Figure S2, our method was highly

effective at identifying events, with the majority of the identified boundaries falling close to a story switch.

The following subsections describe how the model was used to obtain each of the experimental results, with subsection titles cor-

responding to subsections of the Results.

Timescales of cortical event segmentation
We applied the model in a searchlight to the whole-brain movie-watching data from the Sherlock Recall study. Cubical searchlights

were scanned throughout the volume at a step size of 3 voxels and with a side length of 7 voxels. For each searchlight, the event

segmentation model was applied to group-averaged data from all but one subject. We measured the robustness of the identified

boundaries by testing whether these boundaries explained the data in the held-out subject. We measured the spatial correlation be-

tween all pairs of time points that were separated by four time points, and then binned these correlations according to whether the

pair of time points fell within the same event or crossed over an event boundary. The average difference between the within- versus

across-event correlations was used as an index of how well the learned boundaries captured the temporal structure of the held-out

subject. The analysis was repeated for every possible held-out subject, and with a varying number of events from K = 10 to K = 120.

After averaging the results across subjects, the number of events with the best within- versus across-event correlations was chosen

as the optimal number of events for this searchlight.

Since the topography of the results was similar to previous work on temporal receptive windows, we compared the map of the

optimal number of events with the short and medium/long timescale maps derived by measuring intersubject correlation for intact

versus scrambled movies (Chen et al., 2016). The histogram of the optimal number of events for voxels was computed within

each of the timescale maps.

Comparison of event boundaries across regions and to human annotations
We defined four equally-sized regions along the cortical hierarchy by taking the centers of mass of the early visual cortex, hV4,

angular gyrus and PCC ROIs in each hemisphere, and finding the nearest 150 voxels to these centers (yielding 300 bilateral voxels

for each region). For each region, we calculated its optimal number of events using the same within- versus across-event correlation

procedure described in the previous section, and then fit a final event segmentation model with the optimal number of events (using

the Sherlock Recall data). We measured the match between levels of the hierarchy by computing the fraction of boundaries in the

‘‘upper’’ (slower) level that were close to a boundary in the ‘‘lower’’ (faster) level. We defined ‘‘close to’’ as ‘‘within three time points,’’

since the typical uncertainty in the model about exactly where an event switch occurred was approximately three time points.
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Tomeasure similarity to the human annotations, we first constructed a ‘‘consensus’’ annotation from the four observers, consisting

of boundary locations that were within three time points of boundaries marked by at least two observers. We then measured the

match between the consensus boundaries and the boundaries from each region, treating the consensus boundaries as the ‘‘upper’’

level. To ensure that differences between regions were not driven by timescale differences, for this comparison we refit the event

segmentation model to each cortical region using the same number of events as in the consensus annotation (rather than using

each region’s optimal timescale).

Shared event structure across modalities
After fitting the event segmentation model to a searchlight of movie-watching data from the Sherlock Narration experiment, we took

the learned event signatures mk and used them to run the forward-backward algorithm on the audio narration data, to test whether

audio narration of a story elicited the same sequence of events as a movie of that story. Since both the movie and audio data were

averaged at the group level, they should have similar levels of noise, and therefore we simply used the fit movie variance s2 for the

observation variance.

Relationship between cortical event boundaries and hippocampal encoding
After applying the event segmentation model throughout the cortex to the Sherlock Recall study as described above, we measured

whether the data-driven event boundaries were related to activity in the hippocampus. For a given cortical searchlight, we extracted a

windowofmean hippocampal activity around each of the searchlight’s event boundaries.We then averaged thesewindows together,

yielding a profile of boundary-triggered hippocampal response according to this region’s boundaries. To assess whether the hippo-

campus showed a significant increase in activity related to these event boundaries, we measured the mean hippocampal activity for

the 10 time points following the event boundary minus the mean activity for the 10 time points preceding the event boundary.

Reinstatement of event patterns during free recall
For each region of interest, we fit the event segmentation model as described above (on the group-averaged Sherlock Recall data).

We then took the learned sequence of event signatures mk and ran the forward-backward algorithm on each individual subject’s

recall data. We set the variance of each event’s observation model by computing the variance within each event in the movie-watch-

ing data of individual subjects, pooling across both time points and subjects. The analysis was run for 10 events to 60 events in

steps of 5.

We operationalized the overall reinstatement of an event k, as
P

tpðst = kÞ; that is, the sum across all recall time points of the prob-

ability that the subject was recalling perceptual event k at that time point. We measured whether this per-event re-activation during

recall could be predicted during movie-watching, based on the hippocampal response at the end of the event. For each subject, we

computed the difference between hippocampal activity after versus before the event boundary as above. We then averaged the

event re-activation and hippocampal offset response across subjects, and measured their correlation. For comparison purposes,

we also performed the same analysis but with hippocampal differences at the beginning of each event, rather than the end, and

with the mean hippocampal activity throughout the event.

Anticipatory reinstatement for a familiar narrative
To determine whether memory changed the event correspondence between the movie and narration, we then fit the segmentation

model simultaneously to group-averaged data from the movie-watching condition, audio narration no-memory condition, and audio

narration with memory condition, yielding a sequence of events in each condition with the same activity signatures. We computed

the correspondence between the movie states sm,t and the audio no-memory states sanm,t as as pðsm;t1 = sanm;t2Þ=P
kpðsm;t1 = kÞ,pðsanm;t2 = kÞ, and similarly for the audio memory states sam,t. We computed the differences between the group

correspondences as
P

t1

P
t2ðpðsm;t1 = sanm;t2Þ � pðsm;t1 = sam;t2ÞÞ2. For visualization, we also computed how far the memory corre-

spondence was ahead of the no-memory correspondence as the mean over t2 of the difference in the expected valuesP
t1
t1pðsm;t1 = sanm;t2Þ �

P
t1
t1pðsm;t1 = sam;t2Þ. We also performed the same analysis but with only the two narration conditions,

computing the correspondence between the audio memory and audio no-memory states as pðsam;t1 = sanm;t2Þ=P
kpðsam;t1 = kÞ,pðsanm;t2 = kÞ. Since deviation from a diagonal correspondence would indicate anticipation in the memory group,

we measured the expected deviation from the diagonal as
P

t1

P
t2
ðjt1 � t2 j =

ffiffiffi
2

p Þpðsam;t1 = sanm;t2Þ, and for visualization calculated

the amount of anticipation as
P

ttpðsam;t1 = sanm;t2Þ � T=2.

QUANTIFICATION AND STATISTICAL ANALYSIS

Permutation or resampling analyses were used to statistically evaluate all of the results. As above, the analyses for each subsection

are presented under a corresponding heading.

Timescales of cortical event segmentation
To generate a null distribution, the same analysis was performed except that the event boundaries were scrambled before computing

the within- versus across-event correlation. This scrambling was performed by reordering the events with their durations held
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constant, to ensure that the null events had the same distribution of event lengths as the real events. The within versus across

difference for the real events compared to 1000 null events was used to compute a z value, which was converted to a p value using

the normal distribution. The p values were Bonferroni corrected for the 12 choices of the number of events, and then the false

discovery rate q was computed using the same calculation as in AFNI (Cox, 1996).

Comparison of event boundaries across regions and to human annotations
For each pairwise comparison between regions or between a region and the human annotations, we scrambled the event boundaries

using the same duration-preserving procedure described above to produce 1000 null match values. The true match value was

compared to this distribution to compute a z value, which was converted to a p value. To assess whether two cortical regions

had significantly different matches to human annotations, we scrambled the boundaries from the regions (keeping the human

annotations intact), and computed the fraction of scrambles for which the difference in the match to human annotations was larger

in the null data than the original data.

Shared event structure across modalities
We compared the log-likelihood of the fit to the narration data against a null model in which the movie event signatures mk were

randomly re-ordered, and computed the z value of the true log-likelihood compared to 100 null shuffles, then converted to a p value.

This null hypothesis test therefore assessed whether the narration exhibited ordered reactivation of the events identified during

movie-watching.

Relationship between cortical event boundaries and hippocampal encoding
For each searchlight, we compared the difference in hippocampal activity for the 10 time points after an event boundary compared to

10 time points before an event boundary, both on the true boundaries and on shuffled event boundaries (using the duration-preser-

ving procedure described above). The z value for this differencewas computed to a p value, and then transformed to a false discovery

rate q.

Reinstatement of event patterns during free recall
As in the movie-to-narration analysis, we compared the log-likelihood of the movie-recall fit to a null model in which the order of the

event signatures was shuffled before fitting to the recall data, which yielded a z value that was converted to a p value. When

measuring the match to human annotations, we compared to the same shuffled-event null models.

To assess the robustness of the encoding activity versus reinstatement correlations, we performed a bootstrap test, in which we

resampled subjects (with replacement, yielding 17 subjects as in the original dataset) before taking the average and computing the

correlation. The p value was defined as the fraction of 1000 resamples that yielded correlations with a different sign from the true

correlation.

Anticipatory reinstatement for a familiar narrative
To determine if the correspondence with the movie was significantly different between the memory and no-memory conditions, we

created null groups by averaging together a random half of the no-memory subjects with a random half of memory subjects, and then

averaging together the remaining subjects from each group, yielding two group-averaged time courses whose correspondences

should differ only by chance. We calculated a z value based on the correspondence difference for real versus null groups, which

was converted to a p value and then corrected to a false discovery rate q. The analysis using only the narration conditions was per-

formed similarly, computing a z value based on the expected deviation from the diagonal in the real versus null groups.

DATA AND SOFTWARE AVAILABILITY

All of the primary data used in this study are drawn from other papers (Chen et al., 2017; Zadbood et al., 2016), and the ‘‘Interleaved

Stories’’ posterior cingulate cortex data are available on request. Implementations of our event segmentationmodel, alongwith simu-

lated data examples, are available onGitHub at https://github.com/intelpni/brainiak (python) and at https://github.com/cbaldassano/

Event-Segmentation (MATLAB).
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