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Cascade Models of Synaptically Stored Memories

Stefano Fusi,1 Patrick J. Drew,2 and L.F. Abbott2,* nent change that occurs within a set of synapses due to
the neuronal activity evoked by an experience. Memory1Institute of Physiology

University of Bern recall corresponds to detection of this change when
modified neural circuits are later reactivated. ThisBühlplatz 5

CH-3012, Bern essentially static view of memory is the basis of virtu-
ally all models of memory (see Amit, 1989; Hertz et al.,Switzerland

2Volen Center and 1991), and it pervades the experimental field as well.
But memory is clearly not a static phenomenon, andDepartment of Biology

Brandeis University studies of synaptic plasticity reveal a rich set of com-
plex, coupled, and highly dynamic phenomena, not aWaltham, Massachusetts 02454
simple switch-like structure (Bliss and Collingridge,
1993; Bredt and Nicoll, 2003). Furthermore, it can be

Summary shown mathematically that, for many types of memory,
permanently switching synaptic efficacy is an ineffi-

Storing memories of ongoing, everyday experiences cient mechanism that does not lead to permanent
requires a high degree of plasticity, but retaining memory storage (Amit and Fusi, 1992, 1994; Fusi, 2002;
these memories demands protection against changes see below).
induced by further activity and experience. Models in The main challenge in building models of long-lasting
which memories are stored through switch-like tran- memory, especially in cases where new experiences
sitions in synaptic efficacy are good at storing but are continually generating new memories, is protecting
bad at retaining memories if these transitions are the memory trace from the ravages of ongoing activity,
likely, and they are poor at storage but good at reten- not from the ravages of time. Evidence suggests that
tion if they are unlikely. We construct and study a forgetting is a consequence of ongoing activity and
model in which each synapse has a cascade of states acquisition of new experiences, not merely a passive
with different levels of plasticity, connected by meta- decay of the memory trace (Jenkins and Dallenbach,
plastic transitions. This cascade model combines 1924; Brown and Xiang, 1998; Wixted and Ebbesen,
high levels of memory storage with long retention 1991, 1997). Similarly, spontaneous activity can reverse
times and significantly outperforms alternative mod- LTP, a process known as “depotentiation,” both in vitro
els. As a result, we suggest that memory storage re- (Staubli and Lynch, 1990; Larson et al., 1993; O'Dell and
quires synapses with multiple states exhibiting dy- Kandel, 1994; Xiao et al., 1996; Zhou et al., 2003) and
namics over a wide range of timescales, and we in vivo (Barnes, 1979; Ahissar et al., 1992; Fu et al.,
suggest experimental tests of this hypothesis. 2002; Zhou et al., 2003, Xu et al., 1998; Manahan-

Vaughan and Braunewell, 1999; Abraham et al., 2002),
Introduction where depotentiation has been shown to be an activity-

and NMDA-dependent process (Villarreal et al., 2002).
The remarkable ability of humans and other animals to A mechanism such as LTP that produces persistent
retain memories of everyday occurrences imposes a changes in synaptic efficacy in a silent slice preparation
severe challenge for any model of memory. Whereas cannot maintain a permanent memory trace in vivo if
single-trial learning under stressful or exceptionally re- the synaptic enhancements that represent that trace
warding conditions can rely on special modulatory in- are obliterated by further plasticity (Grossberg, 1982).
fluences, memory for the commonplace must arise To protect memories from being corrupted by ongo-
from processes that continuously modify neural cir- ing activity and by the storage of new memories, which
cuits. The capacity of human memory in word and pic- is the primary challenge in constructing realistic models
ture recognition tasks is remarkably large and long last- of memory, we propose going beyond the switch anal-
ing (Nickerson, 1965; Shepard, 1967; Standing et al., ogy to construct models of memory based on the types
1970; Standing, 1973; Simons, 1996), but forgetting of dynamic biochemical cascades that are ubiquitous
does occur and appears to follow power-law rather in biological systems and, in particular, are associated
than exponential dynamics (Wixted and Ebbesen, 1991, with synaptic plasticity. Cascades provide a mecha-
1997). How can these features be explained within the nism for getting around the limited capacity of switch-
context of our understanding of mechanisms of activ- based models of memory. Furthermore, cascade
ity-dependent plasticity? models provide a framework for understanding and de-

The idea that synaptic plasticity is the basic mecha- scribing the enormous complexity of synaptic plasticity
nism of memory is as old as our knowledge of syn- and its molecular underpinnings (Bredt and Nicoll,
apses, and it has dominated neuroscience research for 2003; Sanes and Lichtman, 1999). Indeed, an important
decades. The standard metaphor for memory storage feature of the proposed model is that memory perfor-
in neuroscience is that of a synaptic switch; a perma- mance relies on the complexity of the cascade. Finally,

and perhaps most importantly, cascade models intro-
duce rich temporal dynamics, including power-law*Correspondence: abbott@brandeis.edu
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rather than exponential forgetting, into memory mod- the size of this noise by computing the standard devia-
tion of the fluctuations in the memory signal. Becauseeling.
the system comes to equilibrium fairly rapidly and be-
cause storage of the tracked memory causes only aResults
minor perturbation on the system as a whole, this noise
level can be treated as constant. The signal, on theGeneral Approach
other hand, changes with time due to ongoing plasticityIn this paper, we discuss how memories are stored
that degrades the stored memory by modifying thethrough synapse modification, and we evaluate how
strengths of the synapses representing it, thereby re-stored memory traces degrade over time due to ongo-
ducing the magnitude of the memory signal.ing plasticity. To do this, we take an “ideal observer”

Our approach to computing memory lifetimes is toapproach, which means that we imagine that we have
compare the signal corresponding to the stored mem-access to the values of the strengths of all the syn-
ory to the general level of noise caused by ongoingapses relevant to a particular memory trace. Of course,
fluctuations in the strengths of the synapses beingwe do not imagine that neural circuits detect memory
tracked. We define the memory lifetime, which is thetraces by directly monitoring the values of synaptic
maximum time over which a memory can be detected,strengths as we do. Instead, activity in these circuits is
as the time at which the ratio of signal to noise dimin-highly sensitive to synaptic strengths, allowing modifi-
ishes to 1. We are interested primarily in how the mem-cations in network activity arising from memory-
ory lifetime depends on various parameters, in particu-induced synaptic changes to be detected. By assuming
lar the number of synapses. For this purpose, it doesn’twe have access to the values of synaptic strengths and
matter if we set the critical signal-to-noise ratio at 1by using general signal-detection theory, we derive an
or 0.1 or any other fixed value—the same functionalupper limit on memory lifetimes. Given the remarkable
dependences are obtained.capacity of animal and human memory, it seems likely

In all the models we discuss, it is important to distin-that neural circuits perform quite close to this optimal
guish the rate at which candidate plasticity events oc-level.
cur from the rate at which actual synaptic modificationsThe memory phenomenon that we are exploring is
occur. A candidate plasticity event is the occurrence ofthe recognition that an unremarkable, everyday experi-
a pattern of activity that could potentially lead to syn-ence has occurred previously. Recognition is a useful
aptic modification; for example, in spike timing-depen-measure of memory retention because it only implies
dent plasticity, a pair of pre- and postsynaptic actionthat some trace of the memory, in virtually any form,
potentials occurring within the appropriate time win-remains in the neural circuit. Lifetimes and storage ca-
dow. We assume that such candidate events occur ran-pacities are longer for recognition than for full memory
domly at an average rate r. The probability that one ofrecall (Bogacz et al., 2001), so our results can be
these candidate events satisfied the conditions thatviewed as an upper bound for full recall of memories.
can lead to strengthening of a synapse is given by f+,To make our calculations tractable, we assume that the
and the probability that it is a candidate for synapticmemories being stored evoke synaptic plasticity in ap-
weakening is given by f− = 1 − f+. Within the modelsparently random patterns, which means that there are we study, a parameter q (or a set of such parameters)

no correlations between the activity-dependent modifi- determines the probability that a candidate plasticity
cations at different synapses. We also assume that the event actually generates a change of synaptic efficacy.
everyday memories we are discussing are not subject Thus, candidate events for synaptic strengthening oc-
to various protective (Grossberg, 1982) or re-storage cur at a rate f+ r, and these lead to actual strengthening
mechanisms (see, for example, Walker et al., 2003) that of the synapse at a rate qf+ r. Similarly, candidate events
might apply for memories of exceptional experiences. for synaptic weakening occur at a rate f− r, and these

We study a system that is continuously storing new lead to actual weakening of the synapse at a rate qf− r.
memories of everyday occurrences, and our approach Ongoing “background” plasticity, related to chance
is to select one of these at random and track it over plasticity events and storage of memories other than
time. By selecting a particular memory to track, we are the one being tracked, is characterized by random
also selecting a particular set of synapses; all the syn- modifications of individual synapses in the tracked set
apses that are modified when that particular memory is at the rates given at the end of the previous paragraph.
stored initially. It is important to note that the memory On the other hand, storage of the tracked memory cor-
we are tracking is not special or different in any way, so responds to modification of all the synapses being
that our results for this one particular memory apply tracked at the same time with probability q. During stor-
equally to all the memories being stored. age of the tracked memory, we assume that a fraction

The recognition “signal” corresponding to the mem- f+ of the synapses are strengthened with probability q
ory trace being tracked is contained in the changes in and the remaining fraction f− = 1 − f+ are weakened with
synaptic strengths induced by its initial storage. Fol- probability q. In the binary models we discuss below, q
lowing memory storage, we assume that the synapses takes a fixed value. In the cascade models we subse-
we are tracking are subject to further plasticity due to quently introduce, the value of q depends on the state
ongoing activity and to the storage of other memories. of the synapse, and thus it can change over time.
The resulting continual modification of memory-storing The rate of ongoing plasticity, denoted by r, is a criti-
synapses introduces fluctuations in the value of the cal parameter in our calculations. This corresponds to
memory signal that represent a “noise” above which the average rate of candidate plasticity events in the

relevant memory-storage circuits during normal experi-the memory signal must be detected. We characterize
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ence. The value of r is not known, so we leave it as 1 at a time tmax w ln(q√Nsyn) / (qr). This is an extremely
disconcerting result (Amit and Fusi, 1992, 1994; Fusi,a free parameter in our formulae and results. We can,
2002). One of the main attractions of using synapseshowever, provide a rough estimate of its value. Modifi-
as the repositories of memory is that there are so manycation of synapses due to spike timing-dependent
of them. The fact that memory lifetimes only grow loga-plasticity can occur whenever pre- and postsynaptic
rithmically as a function of the number of synapsesneurons fire within about 50 ms of each other (see, for
used to store the memory eliminates this advantage be-example, Bi and Poo, 1998). Taking background firing
cause the logarithm is such a slowly increasing func-rates of 2 Hz and assuming pre- and postsynaptic firing
tion. If the ongoing plasticity rate is 5 s and q = 1, mem-is random and uncorrelated, such coincidences would
ories stored using a million synapses will only lastoccur at a rate of about r = 0.2 Hz, or once every 5 s.
about 30 s, and memories stored using a billion syn-In summary, our general approach is to compute sig-
apses about a minute.nal-to-noise ratios of memory traces stored in synaptic

The short lifetime for memories stored by binary syn-modifications. We use two quantities to characterize
apses with q = 1 is due to the deleterious effects ofthe quality of memory performance. The first is the sig-
ongoing plasticity, not to any intrinsic decay mecha-nal-to-noise ratio immediately after memory storage
nism at the synapse. One remedy that has been pro-(called the initial signal-to-noise ratio and denoted by
posed is to reduce the rate at which synapses changeS0/N0), which is a measure of the flexibility of the sys-
their strength by reducing q (Amit and Fusi, 1992, 1994;tem for storing new memories. The second is the mem-
Fusi, 2002; Tsodyks, 1990). If q is severely reduced, theory lifetime (denoted by tmax), which is the time follow-
memory lifetime can be increased significantly until aing storage when the signal corresponding to a
maximum value of tmax w √Nsyn / (er) is reached whenparticular memory trace becomes equal to the noise
q = e / √Nsyn [where e = exp(1)]. Thus, allowing the tran-due to ongoing synaptic modification arising from
sition probability to vary as a function of the number ofspontaneous activity and the storage of other memo-
synapses being used to store the memory, rather thanries. We first provide calculations of these quantities
being fixed, would, at first sight, appear to solve thebased on general considerations. In this initial discus-
problem of the logarithmic dependence of memory life-sion, we will not be concerned with numerical coeffi-
time on synapse number. However, there are severalcients, rather we concentrate on how the initial signal-
problems associated with this solution. First, it requiresto-noise ratio and memory lifetime depend on critical
the probability of synaptic modification to be very low,factors such as the number of synapses being used to
and this causes the size of the memory signal (which isstore the memory. We then analyze a specific model in
proportional to q) to be extremely small even immedi-more detail on the basis of computer simulations.
ately after a memory is stored. Indeed, for the value
q = e / √Nsyn given above, which maximizes the memoryMemory Lifetimes
lifetime, the initial signal-to-noise ratio is only S0/N0 =We begin our analysis of memory lifetimes by assuming
e. This is not much larger than 1, which disagrees witha binary model in which synapses have only two levels
our experience that memories are quite vivid immedi-of efficacy: weak and strong. The probability that a syn-
ately after storage and then tend to fade away, and it isapse makes a transition between its two levels of effi- independent of the number of synapses being used.

cacy when a candidate plasticity event occurs is given Thus, in this scheme, allowing the memory lifetime to
by the transition probability q discussed above. There take advantage of the large number of synapses
is some experimental evidence for binary synapses through the square-root dependence in the maximal
(Petersen et al., 1998), but the problems we discuss value tmax w √Nsyn / (er) has the unfortunate side effect
and solutions we propose using binary models general- of keeping the initial signal-to-noise ratio from taking a
ize to the nonbinary case as well. similar advantage.

When a memory is stored through the systematic The blue curve in Figure 1 indicates the relationship
modification of a population of Nsyn binary synapses, between the initial signal-to-noise ratio of the memory
the initial memory trace that results, which we call the trace and the memory lifetime (in units of 1/r) for the
“signal,” is proportional to the number of synapses that binary model. The initial signal-to-noise ratio decreases
have been modified, Signal w qNsyn. Further plasticity roughly inversely in relation to the memory lifetime and
due to ongoing activity and the storage of additional is quite small near the point where the memory lifetime
memories will modify some of the synapses that are reaches its maximum. Thus, it is impossible to achieve
maintaining this trace, thereby degrading it. If the rate both long memory lifetimes and strong initial memory
of ongoing plasticity events is r and the probability that traces in this type of model. In addition, achieving long
these produce a change in the synapse is q, the prob- memory lifetimes requires that the transition probability
ability that a particular synapse is not modified over a be quite accurately adjusted as a function of the
time interval t is exp(−qrt). Thus, a memory trace estab- number of synapses used to store the memory, some-
lished at time zero will be represented by a degraded thing that may be difficult to achieve biophysically.
signal at time t, Signal w qNsyn exp(−qrt). A second The discussion above applies to binary models in
effect of ongoing plasticity is to introduce continuous which synaptic strengths take two values. It is possible
fluctuations in synaptic strength, producing “noise” to improve memory performance by introducing mul-
with an amplitude proportional to the square root of the tiple levels of synaptic strength if the processes of syn-
number of synapses, Noise w √Nsyn (assuming inde- aptic potentiation and depression are accurately bal-
pendent fluctuations). With this level of noise and Sig- anced against each other (Amit and Fusi, 1994; Fusi,

2002). However, as we will show in Figure 6, even smallnal w qNsyn exp(−qrt), the signal-to-noise ratio goes to
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new memories quickly and faithfully requires a high de-
gree of plasticity, but the best way to lock in those memo-
ries is to eliminate plasticity. In defining optimality for a
memory system, we face a related dilemma, deciding
how to balance the conflicting requirements of a large
initial signal-to-noise ratio for the memory trace and a
long memory lifetime. We see this clearly in the binary
model. The initial signal-to-noise ratio in the binary model
is maximized when the transition probability is set to 1.
This makes the initial signal-to-noise ratio proportional to
the square root of the number of synapses being used,
S0 / N0 ∝ √Nsyn, but at the expense of a memory lifetime
that only grows logarithmically with the number of syn-
apses, tmax ∝ ln(√Nsyn). An alternative strategy is to
maximize the memory lifetime by choosing a small tran-
sition probability. This makes the memory lifetime pro-Figure 1. Initial Signal-to-Noise Ratio as a Function of Memory

Lifetime portional to the square root of the number of synapses,
The initial signal-to-noise ratio of a memory trace for a memory tmax ∝ √Nsyn, but at the expense of an initial signal-
stored using 105 synapses plotted against the memory lifetime (in to-noise ratio that is independent of the number of syn-units of 1 over the rate of candidate plasticity events). The blue

apses. A natural question that arises from these resultscurve is for a binary model with synaptic modification occurring
is whether a model exists that combines the best ofwith a probability q that varies along the curve. The red line applies

to the cascade model described in this paper. The open circles both of these alternatives, that is, a memory lifetime
correspond to different numbers of elements in the cascade; the and initial signal-to-noise ratio that are both propor-
red line is drawn only to guide the eye. The two curves have been tional to √Nsyn. As we will see, the cascade model we
normalized so that the binary model with q = 1 gives the same propose comes very close (to within a logarithmicresult as the n = 1 cascade model to which it is identical.

factor) of achieving this goal.

Power-Law Forgettingimbalances between the effects of synaptic strengthen-
The solution we propose for improving memory perfor-ing and weakening spoil this result. Thus, the improve-
mance is to modify the logarithmic dependence of thement relies on fine-tuning. Furthermore, this solution in-
memory lifetime on the number of synapses. Recall fromcreases the numerical coefficient that relates tmax to
the derivation that this logarithm arose from the exponen-ln(√Nsyn), but it does not address the fundamental prob-
tial decay of the memory trace. The situation could belem that the memory lifetime only increases as a loga-
improved significantly if the memory trace had a power-rithmic function of the number of synapse.
law rather than exponential decay (as experiments sug-Depending on the value of q, memory lifetimes in the
gest it should, see Wixted and Ebbesen, 1991, 1997).binary model are, at best, proportional to the square
In this case, the signal would satisfy (for large times)root of the number of synapses and, at worse, almost
Signal w Nsynt−k for some value of k. With the noise stillindependent of the number of synapses. Memory life-
satisfying Noise w √Nsyn, we find that the signal-times in traditional neural network associative memory
to-noise ratio goes to 1 at a time tmax w (Nsyn)1/(2k). Thismodels (Amit, 1989; Hertz et al., 1991) applied to re-
represents a dramatic improvement over the logarith-cognition memory are proportional to the number of
mic dependence found above, especially if k is small.synapses (Bogacz et al., 2001). Unfortunately, this is
Forgetting curves are fit by k values less than 1 (Wixtedachieved at the expense of allowing synaptic strengths
and Ebbesen, 1991 & 1997), suggesting that memoryto increase or decrease without bound, even allowing
lifetimes can grow faster than the square root of thethem to become negative. (In some cases, bounds are
number of synapses, which is much faster than loga-imposed on synaptic strengths after all the memories
rithmically. Assume, for example, that k = 3/4 (the valueare loaded into the network, which is equivalent to im-
that we obtain in the model discussed below), so thatposing biophysical reality only at the end of an animal’s
1/(2k) = 2/3. Then, for an ongoing plasticity rate of 5 s,lifetime.) A consequence of this unphysical assumption
memories stored using a million synapses will last foris that there is no equilibrium distribution for the
about 14 hr, and memories stored using a billion syn-strengths of the synapses in these models. In any bio-
apses for almost 60 days. These are reasonable life-physically plausible model, an equilibrium distribution
times for the types of everyday, unremarkable memo-of synaptic strengths must exist, and the limits on
ries that we are studying. Thus, power-law forgettingmemory lifetime that we are discussing apply to such
provides a mechanism for solving the dilemma of mem-models (Amit and Fusi, 1992, 1994; Fusi, 2002). Other
ory lifetimes that do not take advantage of the largemechanisms for prolonging memory lifetimes, such as
number of available synapses. The rest of this paperhalting memory storage at a certain memory capacity
will describe how a model with power-law forgetting(Willshaw, 1969) or using knowledge of stored memo-
can be constructed and explore its consequences.ries to protect them (Grossberg, 1982) are not applica-

ble to the case of ongoing memory storage that we
are considering. The Cascade Model

It is well known that power-law dynamics can be gener-In summary, memory storage and memory retention im-
pose conflicting requirements on a neural system. Storing ated by the interactions of multiple exponential pro-
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1, 2, ..., n − 1. To compensate for the boundary effects
that occur for the last state in the cascade, we set qn =
xn − 1/(1 − x), although this adjustment is convenient
rather than essential (see Experimental Procedures).
The value of x is taken to be 1/2 for reasons explained
below.

The transitions described in the previous paragraph
correspond to synaptic plasticity that changes the
strength of a synapse from weak to strong (LTP-type
events) or strong to weak (LTD-type events). In addi-
tion, there are metaplastic transitions in the model be-
tween the states in a given cascade. These do not
change the strength of the synapse but, instead, push
it to lower cascade levels (higher i values). Specifically,
whenever the conditions for synaptic strengthening are
met, a synapse in state i of the strong cascade makes

Figure 2. Schematic of a Cascade Model of Synaptic Plasticity a transition to state i + 1 of the strong cascade with
There are two levels of synaptic strength, weak (brown) and strong probability pi

+ (green arrows pointing down in Figure 2).
(turquoise), denoted by + and −. Associated with each of these

Similarly, whenever the conditions for synaptic weaken-strengths is a cascade of n states (n = 5 in this example). Transi-
ing are met, a synapse in state i of the weak cascadetions between state i of the ± cascade and state 1 of the opposite
makes a transition to state i + 1 of the weak cascadecascade take place with probability qi (arrows pointing up and to

the left or right), corresponding to conventional synaptic plasticity. with probability pi
− (red arrows pointing down in Figure

Transitions with probabilities pi
± link the states within the ± cas- 2). For most of the examples shown below, the meta-

cades (downward arrows), corresponding to metaplasticity. plastic transition probabilities are the same and given
by pi

± = x i/(1 − x).
At this point, the structure of the cascade modelcesses characterized by widely ranging time scales

and the values of its parameters [setting x = 1/2 or(Anderson, 2001). This is the approach we follow in
pi
± = x i/(1 − x), for example] may appear arbitrary. Here,constructing a model with power-law forgetting. In syn-

we will provide a heuristic justification for the variousaptic terms, this requires combining conventional syn-
choices being made and then address this issue moreaptic plasticity with metaplasticity (Abraham and Bear,
rigorously in a later section on optimization. Cascades1996; Fischer et al., 1997), which corresponds to transi-
of states with progressively lower probabilities of tran-tions of a synapse between states characterized by dif-
sition provide a combination of labile states (those withferent degrees of plasticity rather than different synap-
small i values) to enhance the initial amplitude of thetic strengths.
memory signal and states resistant to plasticity (thoseThe structure of the cascade model of synaptic plas-
with large i values) to increase memory lifetimes. Theticity is shown in Figure 2. Throughout, we consider
cascade performs best if all of its states are equallymodels that have two levels of synaptic strength, weak
occupied so that the full range of transition probabili-and strong, denoted by + and − symbols. (Note that
ties is equally available. When potentiation and depres-weak does not imply a zero strength synapse, but
sion are balanced (f+ = f−), the choice of the metaplasticrather one that is weaker than what we call a strong
transition probabilities pi

± = x i/(1 − x) assures that, atsynapse.) The model could be extended to multiple
equilibrium, the different cascade states are equally oc-strength levels, but we consider the simplest form be-
cupied (see Experimental Procedures). We discusscause it corresponds to the binary case considered
what happens in the unbalanced state (f+ s f−) in a laterabove and because it represents a worst-case sce-
section. With equal occupancy, however, the amplitudenario. Each of the synaptic strengths is associated with
of the initial memory signal, which relies primarily on aa cascade of n states. The purpose of these cascades
few of the most labile states at the top of the cascade,is to introduce a range of probabilities for transitions
is proportional to 1/n, the inverse of the number ofbetween the weak and strong states. This is analogous
states in the cascade. This makes it important to keepto the factor q introduced previously, except that, in
the cascade as small as possible, and having plasticitythis case, a sequence of n different transition probabili-
transition probabilities qi that grow exponentially is aties, qi for i = 1, 2, ..., n, is included. Specifically, when-
way of obtaining a large range of transition rates with-ever the conditions for synaptic strengthening are met,
out introducing too many states. In a later section, wewhich occurs at a rate f+ r, a synapse in state i of the
will discuss the optimality of this choice. Furthermore,weak cascade makes a transition to state 1 of the
the value of 1/2 for x is the largest value consistent withstrong cascade with probability qi (green arrows point-
maintaining p1

±%1, so choosing this value gives theing up and to the right in Figure 2). Similarly, whenever
maximum range of transition probabilities with thethe conditions for synaptic weakening are met, which
smallest number of cascade states. Finally, it is impor-occurs at a rate f−r, a synapse in state i of the strong
tant to “reset” the cascade so that synapses do notcascade makes a transition to state 1 of the weak cas-
keep progressing to lower levels (large i values) andcade with the same probability qi (red arrows pointing
becoming highly resistant to further plasticity. This re-up and to the left in Figure 2). To achieve a wide range
set is provided by terminating all the plasticity transi-of transition rates, we arrange these different probabili-

ties in a geometric sequence, so that qi = xi − 1 for i = tions at the top (i = 1) level of the target cascade.
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Figure 3. Memory Signal as a Function of Time following Storage
of a Memory Trace Figure 4. Signal-to-Noise Ratio as a Function of Time
The black curve shows the memory signal obtained from simulating Decay of the signal-to-noise ratios of memory traces stored by cas-
10,000 synapses described by the cascade model of Figure 2, ex- cade models of different sizes (solid curves) and binary models
cept with ten states per cascade. The red curve is the value ob- with different transition probabilities (dashed curves). The solid
tained from a mean-field calculation, and the blue lines indicate curves for the cascade models initially decay as a power-law, but
one standard deviation away from this curve. this changes to an exponential decay at a time determined by the

smallest transition probability qn in the model. Increasing n, and
hence decreasing qn = 2−n + 1, expands the range over which the
power-law applies. The binary models shown have transition prob-The black line in Figure 3 shows a sample run involv-
abilities set to the minimum transition probability in the n = 5, 10,ing 10,000 synapses, each described by a cascade
and 15 cascade models (red, green, and blue curves, respectively).model with n = 10 states. The synapses were initialized
All these curves correspond to memory storage with 105 synapses.in a random configuration drawn from the equilibrium

distribution. This means that each synapse was ran-
domly assigned to be either strong or weak and then

numbers of synapses are being considered. Fortu-placed randomly (with equal probability) into one of the
nately, a statistical “mean-field” analysis of the dy-n = 10 states in the appropriate cascade. At time 0, half
namics of plasticity in the cascade model can repro-the synapses were subject to a candidate potentiation
duce the results of the multisynapse simulation quiteevent and half to a candidate depression. For the syn-
accurately in a fraction of the time. The equations ofapses subject to candidate potentiations, this means
the mean-field approach are given in the Experimentalthat synapses in weak state i made transitions to strong
Procedures section. The red line in Figure 3 shows thestate 1 with probability qi, and synapses in strong state
memory signal predicted by the mean-field equations,i made transitions to strong state i + 1 with probability
and the blue lines indicate plus and minus one standardpi

+. The corresponding transitions were also made for
deviation from this. The mean-field results describe thesynapses subject to candidate depression events. After
mean and standard deviation of the black curve forthat, the synapses were subject to random candidate
10,000 synapses quite well, and the accuracy increasespotentiation and depression events at rates f+ r and f−r
as more synapses are considered. For this reason, allwith f+ = f− = 1/2 (the rate r does not need to be speci-
the results we report below come from analysis andfied because it sets the unit of time in all our simula-
simulation of the mean-field equations.tions). The signal being plotted is determined by divid-

ing the synapses into two groups, those potentiated
by memory storage and those depressed by memory Model Results

As stated previously, a major point in constructing astorage. For the first group, we compute the number of
synapses that are in the strong state minus the number cascade model of synaptic plasticity is to obtain a

power-law decay of the memory trace over time. Tothat were in the strong state prior to memory storage.
For the second group, we compute the number of syn- track the memory trace, we plot its signal-to-noise ratio

over time in Figure 4. The initial segments of all threeapses that are in the weak state minus the number that
were in the weak state prior to memory storage. Be- curves in Figure 4 show a decay proportional to t−3/4.

Eventually, these curves make a transition to an expo-cause the difference in strength between the weak and
strong states in these simulations is defined to be 1 nential decay. This occurs when qnrt is of order 1. In

other words, the power-law decay is limited by the sizeand f+ = f−, the memory signal is simply the sum of
these two terms. The memory signal following a mem- of the smallest plasticity transition probability in the

cascade. As the number of elements in the cascadeory storage at time 0 is indicated by the black line in
Figure 3. The jagged wiggles in this curve arise from increases, the power-law behavior extends over a

larger time interval, as seen by comparing the differentthe random nature of the ongoing plasticity. The trend
of the curve is a decrease toward baseline that is of a solid curves in Figure 4. The extension of the range of

the power-law behavior is accompanied by a reductionpower-law rather than exponential form. In particular,
note that long tail at small values that are nevertheless in the initial signal-to-noise ratio. The initial signal-to-

noise ratio is proportional to 1/n, but note that a smallsignificantly different from zero.
Simulations like that used to generate the black increase in n results in a large increase in the range

over which a power-law decay applies. This is becausecurve in Figure 3 are time consuming, especially if large
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qn = 2−n + 1, so the minimum transition probability de-
creases exponentially with increasing n. Equivalently,
the cascade size n and the initial memory signal ampli-
tude, which is proportional to 1/n, both vary only loga-
rithmically as a function of qn or, equivalently, as a func-
tion of the maximum memory lifetime (see Figure 1).

The dashed curves in Figure 4 show a comparison of
the performance of the cascade model with the non-
cascade binary model discussed earlier (equivalent to
an n = 1 cascade model with q1 = q). To make the com-
parison as fair as possible, we show signal-to-noise ra-
tio curves for noncascade binary models with transition
probabilities that match the minimum transition prob-
ability in each of the cascade models shown in Figure
4. In other words, we set q = qn = 2−n + 1 for n = 5, 10,

Figure 5. Dependence of Memory Lifetime on Synapse Numberand 15. It is clear from Figure 4 that the cascade mod-
els vastly outperform their noncascade counterparts. Memory lifetime (in units of 1/r) for different size cascade models

versus the number of synapses used in storage. The optimalNote, in particular, that only the binary model with q =
number of cascade states depends on the number of synapsesq5 in Figure 4 has an initial signal-to-noise ratio larger
being used for memory storage.than 1.

We define the memory lifetime as the point on the
curves of Figure 4 when the signal-to-noise ratio of the The relationship between memory lifetime and the
memory trace goes to 1. The key to getting improved number of synapses used to store the memory is elabo-
memory lifetimes from the cascade model is to assure rated further in Figure 5. For 1000 synapses, the opti-
that the “break” in the curves where power-law beha- mal model has n = 5, while for 106 synapses the optimal
vior gives way to exponential decay occurs later in time model has n = 15. The key point, however, is that over
than the point at which the signal-to-noise ratio goes wide ranges in the number of synapses, these models
to 1. In the example of Figure 4, the n = 5 cascade does show a power-law relationship between the memory
not satisfy this condition, while the n = 10 and n = 15 lifetime and the number of synapses used in storage.
cascades do. This means that for memories stored As stated above, the relationship is tmax w Nsyn

2/3 (see
using 105 synapses, n = 5 is too small, n = 10 is optimal, Equation 2 above).
and n = 15 is too large because over the relevant range Up to now, we have considered a balanced situation,
where the signal-to-noise ratio is larger than 1, it has a in which the rates of synaptic potentiation and depres-
lower signal-to-noise value than the n = 10 model. sion are equal, f+ = f− = 1/2. We noted above that in this

We can determine the optimal size of the cascade for balanced situation, it is possible to increase memory
a particular memory application by using an analytic fit lifetimes quite dramatically (by a factor of m2 for m
to the signal-to-noise curves in Figure 3. Over the states) by increasing the number of allowed levels of
power-law portion, before the exponential fall-off oc- synaptic strength, even in a noncascade configuration.
curs, these curves are well fit by the formula The problem is that this improvement is greatly dimin-

ished if the effects of synaptic potentiation and depres-
sion are not balanced. This is shown in Figure 6A. InS

N
=

12√Nsyn

5n(1 + (rt)3/4)
. (1)

the remaining panels of Figure 6, we explore the effects
of unbalanced plasticity (when f+ s f−) on memory life-Assuming the number of synapses is large, this is equal
times in the cascade model. The percentages in Figureto 1 at the time
6 refer to the quantity f+ − f−. Thus, 0% corresponds to
the balanced case already discussed, 25% means that

tmax =(12
5n)

4/3 Nsyn
2/3

r
, (2) f+ = 0.625 and f− = 0.375, and 50% refers to f+ = 0.75

and f− = 0.25. The results are identical if the values of
f+ and f− are interchanged.but this is only the correct memory lifetime if the condi-

Figure 6B illustrates what happens if we change thetion qnrtmax = 2−n + 1rtmax < 1 is satisfied. Combining
balance between potentiation and depression events inthese results, we obtain a condition on the number of
the cascade model, which have been equal in all thestates in the cascade,
examples shown up to this point. Memory lifetimes
clearly diminish when potentiation and depression are

n +
4
3

log2(n) > 1 +
4
3

log2(12 / 5) +
2
3

log2(Nsyn). (3) unbalanced, but the effect for the n = 15 cascade model
shown is much less severe than that shown in Figure
6A for an m = 15 level noncascade model. Importantly,The smaller n is, within the constraints of this bound,

the larger will be the amplitude of the memory signal. the power-law increase of the memory lifetime as a
function of the number of synapses is not destroyed byAlthough the optimal value of n depends on the number

of synapses used to store the memory, this depen- an unbalanced situation. The cascade model is thus
robust, but not unaffected, by an imbalance in the rela-dence is weak (only logarithmic), so no precise tuning

of the cascade is required to achieve near-optimal per- tive amounts of potentiation and depression.
The model shown in Figure 6B has the metaplasticityformance.
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this the equation for the optimally adjusted metaplastic
transition probabilities, pi

± = f!xi/(f±(1 − x)), we find that
these rates are given by f!rxi/(1 − x). This is equivalent
to what we would obtain from noncompensated transi-
tion probabilities pi

± = xi/(1 − x) if metaplastic transitions
in the + and − cascades were triggered by candidate
depression and potentiation events, respectively, rather
than the other way around. In other words, in this alter-
native scheme candidate potentiation events drive
transitions down the weak cascade of states and can-
didate depression events drive transitions down the
strong cascade. As seen in Figure 6D, this scheme al-
lows memory lifetimes to be almost totally independent
of the state of balance between potentiation and de-
pression events without parameter tuning, but at the
expense of a somewhat smaller memory signal. The re-
duction in the size of the memory signal is due to the
fact that the “backward” metaplastic transitions in the
alternative model have a negative impact on the initial
storage of the tracked memory. In addition, this form
of metaplasticity does not allow the synapse to react
optimally to correlated sequences of plasticity events.
For these reasons, we do not favor this scheme, but we

Figure 6. The Effects on Memory Lifetime of Changing the Balance felt it worthwhile to point out its self-adjusting property.
between Potentiation and Depression of Synapses

The percentages in (A) and (B) refer to the difference between the Model Optimization
probabilities of potentiation and depression, f+ − f−. (A) Results for As mentioned previously, we made a number of choicesa noncascade model with 15 levels of synaptic strength. (B) Results

in constructing the cascade model that may seem fairlyfor a 15-state cascade model without any parameter adjustment.
arbitrary. For example, we set the plasticity transition(C) Results for a 15-state cascade model with optimal parameter
probability for state i equal to qi = 2−i + 1, and we settuning. (D) Results of a modified 15-state cascade model without

any parameter tuning (see text). the cascade transition probabilities so that the different
states would be equally occupied at equilibrium. In this
section, we make two statements about these choices.probabilities set to pi

± = xi / (1− x), which is the optimal
First, we show that they produce near-optimal perfor-relationship for the balanced case when f+ − f− = 0. The
mance. Second we show that similar performance canprimary reason that the unbalanced curves in Figure 6B
be obtained for a wide range of related models, indicat-show poorer performance is that the different cascade
ing that the cascade scheme is robust and does notstates are not equally occupied when this choice of require fine-tuning.

metaplasticity transition probabilities is used and f+ − We mentioned previously that a binary model can
f− s 0. For the unbalanced case, the formula for these either achieve an initial signal-to-noise ratio or a maxi-
probabilities that leads to uniform occupancies of the mum lifetime proportional to the square root of the
cascades states is pi

± = f∓xi / (f±(1− x)) (see Experimen- number of synapses (S0 / N0 ∝ √Nsyn or tmax ∝ √Nsyn),
tal Procedures). It is reasonable to assume that cas- but not both. We now show that the cascade model
cade transition probabilities would be optimized for the comes very close (to within a logarithmic factor) of
prevailing level of imbalance in the relative amounts of achieving the goal of making both quantities propor-
potentiation and depression. In Figure 6C, we show tional to the square root of the number of synapses.
what happens if this adjustment is made [in other The signal-to-noise ratio in the cascade model starts
words, for this panel, we set pi

± = f∓xi / (f±(1− x)) rather to fall off exponentially with time, rather than as a
than pi

± = xi / (1− x) as in panel B]. There is virtually no power, at a time proportional to 1/qn, the inverse of the
effect of unbalancing potentiation and depression if minimal transition probability in the model. Requiring
this adjustment is made. the signal-to-noise ratio to be greater than 1 at this

The fact that the optimal formula of the metaplastic point, introduces the requirement that qn ∝ 1 / √Nsyn.
transition probabilities is given by pi

± = f∓xi / (f±(1− x)) This means that the maximum memory lifetime in the
can be interpreted in an interesting way that would al- cascade model has the same dependence as in the bi-
low the synapse to make the adjustment to the pre- nary model with small q, that is, tmax ∝ √Nsyn. The sig-
vailing level of plasticity imbalance automatically. Up to nal-to-noise ratio, however, is almost as large in the
now, we have assumed that the metaplastic transitions cascade model as it is in the q = 1 version of the binary
that move a synapse down the “+” cascade from state model. The initial signal-to-noise ratio in the cascade
i, occurring with probability pi

+, are the result of candi- model satisfies S0 / N0 ∝ √Nsyn / ln(1 / qn), which means
date potentiation events, which take place at a rate f+ r. that S0 / N0 ∝ √Nsyn / ln(√Nsyn). Thus, the initial signal-
Similarly, transitions down the “−” cascade take place to-noise ratio is only a logarithmic factor smaller than
with probability pi

− and arise from candidate depres- it is in the q = 1 model, meaning that the cascade model
sion events occurring at the rate f−r. The rates for these comes close to matching the best features of both ex-

treme versions of the binary model.two types of transitions are thus pi
±f±r. Substituting into
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cedure. The Monte Carlo model performs slightly better
than the cascade model for large numbers of synapses
(at the expense of a smaller initial signal-to-noise ratio)
and slightly worse for small numbers of synapses. Al-
though the Monte Carlo procedure starts from com-
pletely random cascade transition probabilities, the fi-
nal transition probabilities are similar to those of the
cascade model for the more plastic states in the cas-
cade (small i), but are larger for less plastic states (Fig-
ure 7B). This indicates that similar memory perfor-
mance can be achieved with a variety of parameter
values. Strict adherence to the geometric series is not
essential.

Analysis of a large number of Monte Carlo runs re-
vealed the following general features. (1) No MonteFigure 7. The Monte Carlo Solution versus the Cascade Model
Carlo solution had a longer memory lifetime over the(A) Memory lifetime versus the number of synapses for an n = 8
entire range of Nsyn considered, which was 102 %cascade model (black dashed curve) compared with the average

of 100 Monte Carlo optimized models (red curve). Red dots denote Nsyn % 108. (2) When the Monte Carlo solution pro-
plus and minus one standard deviation across this sample. (B) duced a longer memory lifetime than the cascade
Transition probabilities for different cascade states for the cascade model over a limited range of Nsyn, as it sometimes did,
model (black dashed line) compared to the average parameters of

the maximal improvement was about 30%. (3) Some-the Monte Carlo optimized model. The red points represent the
times the memory lifetime of the Monte Carlo solutionweak-strong transition probabilities (qi), and the blue lines are the
exceeded that of the cascade model for Nsyn greaterwithin cascade transition probabilities (pi). The vertical axis has a

logarithmic scale to expose the exponential decay of the transi- than a certain value. This value was always in the range
tion probabilities. where the signal-to-noise ratio of the cascade model

was exponentially decaying before it reached the value
1, that is, in a range where the model is not intended toTo continue exploring the issue of optimality, we
operate. (4) The Monte Carlo procedure revealed manystudied a model in which initially random parameters
solutions with similar performance curves but differentwere varied by a Monte Carlo procedure to maximize
transition probabilities. In this regard, it is relevant tothe memory lifetime. Because we restricted this analy-
point out that Figure 7B shows averages over 100sis to the symmetric case f+ = f−, we set the downward
Monte Carlo runs. The individual solutions from thesetransition probabilities pi to the same values for both
runs showed considerably larger variations in theirthe weak and strong cascades. The Monte Carlo pro-
parameter values than these averages, including po-cedure randomly perturbs all the cascade transition
tential “inversion” in which the probabilities do not de-probabilities pi and qi by multiplying them by random
crease monotonically with state number. These fea-factors and accepts only those modifications that
tures indicate that the cascade model provides anincrease the memory lifetime. The optimal cascade
optimal range of performance but that its parametertransition probabilities depend, in general, on the
values are by no means unique as a means of achievingnumber of synapses and on the size of the cascade.
such performance.For a specific number of states, the memory lifetime is

maximal over a limited range in the number of syn-
apses. The upper bound of this range is determined by Discussion
the memory lifetime at which the power law breaks
down. For example, the model with n = 10 is optimal We propose that memories are retained through the

modification of synaptic strength in a more complexup to a memory lifetime of rtmax = 29 = 512 and up to
roughly 3 × 105 synapses. When the memory lifetime is manner than the simple switch-like picture that has

dominated thinking about the synaptic basis of mem-maximized for one particular number of synapses Nsyn

and a given size of the cascade, the memory lifetime of ory. Synapses that are modified by activity in a switch-
like manner are not capable of supporting ongoingthe Monte Carlo solution is slightly better than the

model solution, but only over a small interval around storage and retention of memory at anywhere near the
capacities seen in animals and humans. The demandsNsyn in the number of synapses and at the expense of

a smaller initial signal-to-noise ratio. Outside this re- of ongoing memory storage require synapses that show
a wide range of degrees of plasticity linked by meta-gion, the Monte Carlo solution performs poorly. We

next modified the Monte Carlo procedure so that it ac- plastic transitions. We have constructed one such
model and shown that it significantly out-performs thecepted only those changes that improve the memory

lifetime over a given range of Nsyn. As this range is ex- standard alternatives. In building the model, we made
some parameter choices that we have argued optimizetended, the performance of the Monte Carlo-optimized

model approaches that of the cascade model, as memory performance. As results from the Monte Carlo
procedure demonstrate (Figure 7), memory perfor-shown in Figure 7.

The performance curve in Figure 7A showing the mance is robust to changes in these parameters, and it
degrades gracefully as they are varied. Thus, the modelmemory lifetime versus the number of synapses of the

cascade model with n = 8 states is well approximated does not require fine-tuning to work well.
The key element in the cascade models we haveby the optimal solution found by the Monte Carlo pro-
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Part of the difference in performance seen in Figure
8 is due to the size of the initial signal-to-noise ratio in
the two models. As stated previously, the initial signal-
to-noise ratio in the cascade model is proportional to 1
over the number of cascade states or, equivalently, to
1 over the logarithm of the minimum transition prob-
ability, qn. For the heterogeneous binary model, the ini-
tial signal-to-noise ratio for the distribution we have
used is proportional to qn

1/4. This is better than the qn

dependence of the ordinary binary model, but not as
good as the weak logarithmic dependence of the cas-
cade model.

The cascade model makes some direct and testable
predictions about the nature of synaptic plasticity and
its relationship to memory storage. First, the model pre-
dicts that when a synapse is repeatedly subject to long-
term potentiation or depression, it should not keep
changing its strength, but rather should become moreFigure 8. Signal-to-Noise Ratios as a Function of Time
resistant to further plasticity. For example, a synapseA comparison of the time-evolution of the signal-to-noise ratio of
that is repeatedly potentiated to the point where it isthe memory signal for different size cascade models (solid curves)

with models in which noncascade binary synapses take a range of not becoming any stronger should become more resis-
q values (dashed curves). For each noncascade model, synapses tant to subsequent depotentiation protocols than a
take the same range of values across the population as in they do synapse that is potentiated to the same degree by a
for each individual synapses in the corresponding cascade model,

single tetanization. Furthermore, each repeated tetani-which is represented by the same colored curve.
zation should make the synapse more resistant to de-
potentiation. Finally, after depotentiation, the synapse
should return to a state exhibiting a more labile form ofstudied is the fact that synapses can exist in states that
plasticity. Similar statements apply to long-term de-are highly plastic or that are resistant to plasticity. In
pression. Some evidence exists that this is in fact thethis model, all the synapses have the same structure,
case (D.H. O’Connor et al., 2003, Soc. Neurosci., ab-with each synapse possessing the full range of plastici-
stract). At the behavior end of the spectrum, Pavlik andties. Another way of achieving a range of plasticities
Anderson (2005) have argued on the basis of psycho-would be to have a heterogeneous population of syn-
physical data that the memory lifetime changes as aapses, each with a different degree of plasticity. In other
function of training history in a manner similar to whatwords, a population of synapses could be described
we have proposed for synaptic efficacy.by a binary model with a range of different transition

Another prediction that arises from the model con-probabilities q across the population. Such a scheme
cerns sensory deprivation experiments, which are oftencan produce memory signals with power-law decay.
used to study the effects of activity on synaptic plastic-However, as shown in Figure 8, this distributed scheme
ity. The model predicts that sensory deprivation shoulddoes not perform nearly as well as the cascade model
enhance plasticity within a deprived region, whereaswe have been studying. The pairs of different colored
high levels of activity should reduce plasticity. Thiscurves in Figure 8 show the original cascade model,
could be tested, for example, by studying synapticwith states having transition probabilities ranging from
plasticity in slices from deprived and nondeprivedqn to 1 (for n = 5, 10, and 15), and a corresponding
areas. Modification of plasticity due to sensory depriva-heterogeneous binary model in which each synapse is
tion has been observed (Allen et al., 2003), but this maycharacterized by a single transition probability, but the
be due to saturation effects distinct from the mecha-transition probabilities for different synapses range
nism we propose.from the same qn (for n = 5, 10, and 15) to 1. The distri-

We have considered ongoing memory for everydaybution of q values over this range has been chosen so
occurrences rather than, for example, single-trial learn-that the performance of the heterogeneous binary
ing arising from a dramatic event. It is easy to see,model matches that of the corresponding cascade
however, how the cascade model could give rise tomodel as closely as possible (this comes about when
long-lasting memories arising from a single isolated ex-the distribution is proportional to q−5/4). Nevertheless,
perience. The key to switching the model from ongoingthe cascade model outperforms the heterogeneous bi-
to single-trial memory would be the presence of a neu-nary model in all cases. This is because the cascade
romodulator that increases the metaplastic transitionmodel allows correlations in the pattern of potentiation
probabilities pi

± in response to the stress or other im-and depression events at a single synapse to affect the
pact of an exceptional experience. If these probabilitiesdegree of plasticity, whereas the heterogeneous binary
are modulated to values near 1, the synapse will rapidlymodel does not. For example, in the cascade model,
move to states deep within the cascade (states withsynapses that are frequently potentiated become more
large i values) that are highly resistant to further plastic-resistant to further changes, in particular to depression.
ity. In this way, a long-lasting memory trace that wouldIn the heterogeneous binary model, each synapse is
normally be formed in a small number of synapses overstuck with a fixed transition probability that is unaf-

fected by its history of modification. an extended period of time due to rare metaplastic
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transition could be formed virtually instantaneously in structure. We feel that, for describing memory pro-
many synapses. cesses, it is more important to capture this range of

The cascade model could also provide interesting forms and timescales in a model than it is to capture
dynamics for reward-based learning. A problem with re- any single form in detail. We propose that the numerous
ward-based schemes of synaptic modification is that biochemical reactions and pathways underlying synap-
the reward often arrives a considerable time after the tic plasticity are there to support multiple-timescale,
activity that produced the rewarded behavior. Synaptic power-law plasticity. We suggest that this is a way for
changes induced by the initial activity must therefore a system that must retain memories in the face of ongo-
be retained temporarily and then either removed or ele- ing plasticity to take advantage of the large number of
vated to longer-lasting forms, depending on whether synapses in neural circuitry. This suggests that the
a punishment or a reward results. The cascade model abundance of molecular players underlying long-term
provides exactly such an arrangement because its plasticity is not merely a result of the vagaries of evolu-
more labile states provide temporal storage, and re- tion. Rather, there has been evolutionary pressure to
ward-based modulation could gate more permanent add additional elements to these biochemical cas-
storage for rewarded actions by increasing the transi- cades because their complexity is an essential feature
tion probability to less plastic states. required to make memory work.

Because of its rich dynamics, the cascade model
Experimental Proceduresopens up the possibility of accounting for a number of

temporal effects in learning and memory. A prominent
In the mean-field approach, a population of synapses is repre-one is the difference in memory performance and long-
sented by a set of occupancies Fi

± that indicate the average fractionterm synaptic potentiation between massed and spaced of synapses in state i of the “+” or “−” cascade, respectively. By
training paradigms (Mauelshagen et al., 1998; Hermitte definition,
et al., 1999; Menzel et al., 2001; Wu et al., 2001;

∑
i=1

n

(Fi
+ + Fi

−) = 1.Sutton et al., 2002; Scharf et al., 2002; Woo et al., 2003;
Zhou et al., 2003). It is relatively easy to incorporate this

The equations satisfied by the state occupancies can be derivedfeature into cascade models. The key to forming long-
using standard methods. They arelasting memories in the cascade model is to force syn-

apses into states deep within the cascade that are re-
dF1
±

dt
= r(f±∑

j=1

N

qjFj
∓− (f± p1

± + f∓q1)F1
±), (4)sistant to further plasticity. We treated the metaplastic

transitions within each cascade as instantaneous, but
dFi
±

dt
= r(f± pi−1

± Fi−1
± − (f± pi

± + f∓qi)Fi
± ), (5)it is likely, given that they are low-probability events,

that a considerable time may be required to complete for 1 < i < n, and
some of these transitions. If so, it would be important
to delay further attempts at inducing metaplastic transi- dFn

±

dt
= r(f± pn−1

± Fn−1
± − f∓qnFn

± ). (6)
tions until a previous transition is completed if the syn-
apse is to be driven through a number of such transi- These equations reflect the fact that the rate of change in the
tions sequentially. In this way, the advantage of spaced occupancy of a particular state is given by adding up the rates at
over massed training arises quite naturally in these which that state is entered from other states and subtracting the

rate at which transitions occur out of the state.models.
In addition, at the time of storage of the tracked memory, weCascade models could potentially exhibit an interest-

make the discrete transformationsing aging phenomenon. In the examples shown, the
population of synapses was loaded initially into cas-

F1
+ → F1

+ +∑
j=1

N

qjFj
−− p1

+F1
+ and Fi

− → Fi
−− qiFi

− (7)cade states in a random manner with an equal distribu-
tion across states. This is the equilibrium configuration
for a “mature” population of synapses. If, however,

as well asearly in development, synapses started in states at the
top of the cascade and then migrated to lower states Fi

+ → Fi
+ + pi−1

+ Fi−1
+ − pi

+Fi
+, (8)

during the aging process, we would expect to see a
high degree of plasticity with few long-lasting memory

for 1 < i < n, andtraces early on and then less labile plasticity and more
long-lasting traces later. The developmental trend is Fn

+ → Fn
+ + pn−1

+ Fn−1
+ (9)

logarithmic in time, meaning that changes occur at a
for synapses being potentiated, andrate inversely proportional to age.

Although the molecular pathways relevant to synap-
F1
− → F1

− +∑
j=1

N

qjFj
+i− p1

−F1
−Fi
+ → Fi

+ − qiFi
+ (10)tic plasticity have been studied intensely, little theoreti-

cal work has been done to illuminate our understanding
as well asof the collective role of these multiple pathways in

Fi
− → Fi

− + pi−1
− Fi−1

− − pi
−Fi
−, (11)memory storage. Genetic and pharmacological manip-

ulations have induced a variety of plasticity and mem- for 1 < i < n, and
ory deficits characterized by complex temporal dy-

Fn
− → Fn

− + pn−1
− Fn−1

− (12)namics over a wide range of timescales (Malenka, 1991;
Tully et al., 1994; Ghirardi et al., 1995; Sutton et al., for synapses being depressed. This is equivalent to generating the
2001; Sanna et al., 2002). This array of forms of plastic- transitions described by Equations 4–6 in one sudden jump.

The equilibrium occupancies from Equations 4–6 are obtainedity is precisely what we are modeling using a cascade
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by setting the right sides of these equations to 0, which gives After having perturbed the transition probabilities, the new configu-
ration is evaluated by computing the memory lifetime with a mean-
field approach: a set of different values of Nsyn is prepared by start-Fi−1

± =(f± pi
± + f∓qi

f± pi−1
± )Fi

±,
ing from a minimal value and by multiplying this value progressively
by a constant factor until it reaches a maximum value. For example,for 1 < i < n, and
the Monte Carlo procedure used in Figure 7 maximized the memory
lifetime at 20 points equally spaced on a logarithmic scale over theFn−1

± =( f∓qn

f± pn−1
± )Fn

±.
range 102 % Nsyn % 106. The final results of the Monte Carlo pro-
cedure are rather insensitive to the density of points. For each Nsyn,

The choices qi = xi−1, qn = xn−1/(1 − x), and pi
±= f!xi/(f±(1 − x)) the memory lifetime is evaluated and compared to the memory life-

then assure that all the occupancies Fi
± take equal values at equilib- time of the previous configuration. The new configuration is always

rium. For many of the cases, we considered, f+ = f− so the last accepted if all the memory lifetimes have been improved, and it is
formula reduces to pi

± = xi/(1 − x) immediately discarded if there is no improvement. In the inter-
The level of noise in the memory signal due to ongoing synaptic mediate cases, the new configuration is accepted with a probability

modifications is equal to the standard deviation of the fluctuations 1/(1 + exp(−2c)), where c is the average (across the different Nsyn
in the memory signal at equilibrium in the absence of an imposed values) percentage change of the memory lifetime. After 500 con-
memory. Therefore, to compute the noise for the signal-to-noise secutive iterations for which there is no acceptance, the run is ter-
computation, we allow the state occupancies to equilibrate in the minated. This usually happens after thousands of iterations. The
absence of the tracked memory and define whole procedure is repeated 100 times, and averages of the result-

ing solutions have been plotted in Figure 7.
p∞± =∑

i=1

n

Fi
±.
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