
Annolid: Annotate, Segment, and Track Anything You Need

Chen Yang1 Thomas A. Cleland1

1Dept. of Psychology, Cornell University, Ithaca, NY 14853
{cy384,tac29}@cornell.edu

Figure 1. Examples of multiple markerless animal tracking results in Annolid [1]. Annolid now utilizes the Grounding-DINO [2] and

Segment Anything [3, 4, 5] models to automatically segment and label all instances of a named class in an initial frame, and then leverages

the Cutie [6] open-world video object segmentation (VOS) model to track multiple animals throughout video recordings based on that

single labeled frame (zero-shot learning). Top: Based on the end user entering the text “ant” in the search field at the upper right, Annolid

automatically segments all instances matching that label (i.e., ants) in the initial frame (left panel), and then tracks the labeled animals

across frames throughout the video (middle and right panels). Middle: As in the top panel, except that seven zebrafish are tracked based

on a single frame of autolabeled instances (text prompt “fish”). Bottom: As in the top panel, except that four mice are tracked based on a

single frame of autolabeled instances (text prompt “mouse”). Annolid successfully tracked the mice and ants throughout each ten-minute

video using only the polygons automatically generated in the first frame; zebrafish also were successfully tracked after incorporating

human-in-the-loop corrections. Images are derived from videos in the idTracker.ai dataset [7].

Abstract

Annolid is a deep learning-based software package de-
signed for the segmentation, labeling, and tracking of re-
search targets within video files, focusing primarily on ani-
mal behavior analysis. Based on state-of-the-art instance
segmentation methods, Annolid now harnesses the Cutie
video object segmentation model to achieve resilient, mark-
erless tracking of multiple animals from single annotated
frames, even in environments in which they may be par-
tially or entirely concealed by environmental features or

by one another. Our integration of Segment Anything and
Grounding-DINO strategies additionally enables the auto-
matic masking and segmentation of recognizable animals
and objects by text command, removing the need for manual
annotation. Annolid’s comprehensive approach to object
segmentation flexibly accommodates a broad spectrum of
behavior analysis applications, enabling the classification
of diverse behavioral states such as freezing, digging, pup
huddling, and social interactions in addition to the tracking
of animals and their body parts.

1

ar
X

iv
:2

40
3.

18
69

0v
1

 [c
s.C

V
]

27
 M

ar
 2

02
4

1. Introduction
The field of animal behavior analysis is hugely diverse,

requiring a broad panoply of strategies for identifying and

scoring specific aspects of complex behavior exhibited by

individual animals and groups. While software-assisted

methods for scoring behavior are in widespread use, some

types of behavior analysis are much better served than oth-

ers by existing tools and strategies. We initially devel-

oped Annolid [1] to better address this great diversity of

challenges. Uniquely among deep learning-based behavior

analysis packages, Annolid employs a strategy of instance

segmentation, treating each instance as a distinct class. For

example, in multi-animal tracking applications, individual

animals correspond to separate instances, and hence can be

distinguished and tracked despite periods of occlusion or

close interactions with other animals. Instances also can

correspond to particular behavioral states, such as groom-

ing, digging, or huddling in groups. In the original An-

nolid pipeline [1], end users identify instances by draw-

ing polygons (instance masks) on some number of video

frames within the Annolid GUI, based on LabelMe [8].

These labeled polygons then are converted into a COCO

format dataset for transfer learning purposes, and used to

train an instance segmentation network, typically a Mask

R-CNN [9] network implemented in Detectron2 [10]. The

trained model subsequently is used for inference on all

frames within a video, thereby tracking animals (or spe-

cific body parts), identifying epochs of particular behav-

ior states or interactions, and/or measuring motion between

frames [1]. Annolid requires relatively few training frames

for high performance, and supports an iterative human-in-

the-loop strategy to help focus end users’ labeling efforts

on the more difficult generalizations in a given video. How-

ever, the time and effort required to score frames remain the

limiting factors in most behavior analysis pipelines, and be-

come increasingly burdensome as the number of instances

(e.g., animal group size) increases.

In response to this challenge, we here introduce a fun-

damentally new strategy for object segmentation and track-

ing based on the integration into Annolid of three transfor-

mative machine learning tools. First, the incorporation of

Cutie [6], a cutting-edge video object segmentation (VOS)

model, enables Annolid to accurately predict and segment

up to 100 separate instances across the full duration of a

video recording based on a single labeled frame. Briefly,

Cutie’s VOS strategy propagates the instance masks and

identities defined by the first labeled ”ground truth” frame

by maintaining a multi-frame memory buffer that integrates

and utilizes both pixel- and object-level memory to pre-

dict instances across frames. Among other benefits, this

tracking-centric method effectively eliminates ”teleporta-

tion” arising from identity switches.

Second, we incorporate Meta AI’s Segment Anything

Model (SAM) [3, 4], which enables the automatic mask-

ing of visually discrete objects via zero-shot generalization

– i.e., without any need to manually specify objects (out-

line with polygons) or to train an Annolid model. Third,

to inform Annolid which objects in a video frame should

be automatically segmented and labeled, we incorporate

Grounding-DINO [2], an open-set object detector that can

identify arbitrary objects in a visual scene based upon text-

based descriptors such as category names. The combination

of these latter two models enables end users to, for exam-

ple, enter the category label ”mouse” in the provided text

field, after which Annolid will automatically segment and

label all mice in the designated video frame as separate in-

stances (Figure 1). This initial labeled frame then can be

utilized by Annolid’s Cutie model to predict and segment

those instances (i.e., track those mice) across all frames in

the video. Importantly, the distinct capabilities of the three

new models also can be separately applied; for example, es-

oteric objects that are not recognized by name still can be

manually annotated and labeled in a single frame, and then

predicted and segmented throughout the video file without

the need to train multiple frames. Similarly, complex, user-

defined instances that do not follow natural visual segmen-

tation boundaries [11] still can be specified and segmented

through the traditional annotation of frames followed by

model training.

In summary, Annolid now enables end users to specify

animals and objects of interest in an initial video frame

by name, and then will automatically identify and label

all specified instances and propagate the resulting masks

from the initial frame throughout the extent of the video file

without the need to manually annotate any frames or train

an Annolid model. Annolid additionally provides meth-

ods by which any errors in this process can be easily iden-

tified and edited by end users via an iterative human-in-

the-loop correction procedure. This consolidated strategy

effectively transfers knowledge from large-scale and open-

world datasets into the process of animal behavior analysis,

greatly reducing end user effort while achieving state-of-

the-art results on animal behavior datasets including Anno-

lid’s Multiple Animal Tracking & Behavior (MATB) col-

lection [1] and the video repository assembled by the id-
tracker.ai project [7].

2. Methods

2.1. Computational Environment

Experiments were conducted on an Intel Core i9

workstation with an NVIDIA RTX3090 GPU. On this

workstation, Annolid achieved near-real-time inference

and playback speeds during the process of prediction

at peak accuracy settings. Additional testing was con-

ducted on a MacBook Air lacking a discrete GPU,

2

which proved adequate for annotations using the GUI

and for optimizing parameters such as mem every
and Tmax with short video samples. The pretrained

Cutie model cutie-base-mega.pth (release

v1.0) was obtained from the Cutie GitHub repository

(https://github.com/hkchengrex/Cutie) [6].

Throughout the study, default Cutie hyperparameters

were utilized, with the exception of our exploration into

optimizing tracking performance by varying the mem every
parameter. Pretrained SAM weights were downloaded

from official GitHub releases (SAM [3], SAM-HQ [4],

and EdgeSAM [12]); the analyses herein use the SAM-

HQ model (https://huggingface.co/lkeab/
hq-sam/blob/main/sam_hq_vit_l.pth). The

Grounding DINO ONNX weights file (release 1.0.0)

was downloaded from X-AnyLabeling (https:
//github.com/CVHub520/X-AnyLabeling/
releases/download/v1.0.0/groundingdino_
swinb_cogcoor_quant.onnx) [13].

2.2. Data Sources and Validation

We selected videos for analysis from Annolid’s Mul-

tiple Animal Tracking & Behavior (MATB) collection

[1], assembled at https://cplab.science/matb,

and from the idtracker.ai dataset [7], available from a

Google Drive-based data repository linked from https:
//idtracker.ai and identified below by their file-

names in that repository. The videos in the MATB repos-

itory comprise an array of tracking challenges, focusing on

natural complexities (such as object occlusion during inter-

actions, unusually complex motion, and instances that van-

ish and reappear) and technical difficulties (such as cam-

era motion, low contrast, visually noisy backgrounds, and

events or reflections that impair the view of moving ani-

mals). These data also are used to test the automatic clas-

sification of specified behavioral states. The videos in the

idtracker.ai dataset present an array of laboratory animal

behavior scenarios featuring groups of animals (mice, ants,

Drosophila fruit flies, zebrafish) moving freely and interact-

ing within various enclosures.

We conducted tests on several video recordings, with du-

rations of up to 10 minutes, on which the original Cutie

model was not evaluated. To validate the accuracy of au-

tomatic tracking, we manually inspected the overlay of the

generated masks on the animals using the Annolid viewer,

reviewing each video frame by frame in its entirety.

2.3. Operational Principles of Grounding DINO
and SAM

Grounding DINO [2] is an open-set object detector

that combines the Transformer-based detector DINO with

grounded pre-training, enabling the detection of arbitrary

objects based on human-provided text descriptors such as

category names or descriptive expressions. The Segment

Anything Model (SAM) [3] enables the automatic segmen-

tation of images (i.e., the identification and masking of vi-

sual objects within scenes) based on an enormously rich

pretrained model in which over 1 billion masks were cre-

ated on 11 million images. SAM also is designed to be

promptable with boxes and points; for example, Annolid’s

AI-Polygon menu item uses SAM to specifically segment

(draw a polygon around) individual visual objects that the

user specifies with a single point (mouse click) in the An-

nolid GUI, a technique termed point prompting. This gen-

erative capacity greatly facilitates zero-shot transfer to new

image distributions and tasks. Annolid now combines the

capabilities of these two models to enable the automatic

segmentation of multiple animals in videos – outlining each

with an editable Annolid polygon – based on a text prompt.

2.4. Automatic Object Detection and Segmentation
in Annolid

Users generally will first downsample and compress the

video file to improve computational efficiency. An appro-

priate category label (e.g., ”mouse”) then is entered into the

Annolid text prompt (upper right corner of the GUI; Fig-

ure 2), after which Annolid automatically segments and la-

bels instances in the initial video frame that are described by

that category label, outlining each individual mouse with a

polygon and assigning a unique class name based on the

category label (e.g., ”mouse 1”). In cases where automatic

segmentation misses some animals, or fails more broadly

(as can be the case with unusual categories), users have

the option to directly correct and/or create polygons using

the Annolid GUI tools (e.g., via point prompting, described

above, or by explicitly outlining instances). Once all de-

sired instances are correctly annotated and labeled in the

initial frame, one proceeds to video object segmentation to

propagate these instances across all frames of the video file.

2.5. Operational Principles of Cutie Video Object
Segmentation

The Cutie VOS model operates in a fully online manner,

sequentially segmenting subsequent frames in a video file

based on the segmentation and labeling of target objects in

a single annotated frame. To do this, the Cutie architecture

leverages end-to-end object-level information and bidirec-

tional communication between pixel-level and object-level

features. For example, Cutie enriches pixel features with

object-level semantics to produce final object readouts for

decoding into output masks. Key components in this pro-

cess include pixel memory F , object memory S, object

queries X , and an object transformer comprising L trans-

former blocks (Figure 3). The Cutie object transformer, in

particular, facilitates global communication between pixel-

level features and object-level features without the use of

3

Figure 2. Illustration of the Annolid GUI, and elements of its labeling, prediction, and validation workflow. The top row features a set of

GUI tools including an open video button and a spin box for setting the mem every parameter before initiating the prediction process with

the Pred button. The text prompt box accepts words or phrases that define the automatic generation of polygons in the currently selected

frame. Predicted polygons can be corrected manually, and labeling is saved in the LabelMe JSON file format.

computationally expensive attentional mechanisms such as

cross-attention or self-attention. Instead, it integrates initial

readouts, object queries, and object memory through trans-

former blocks, enabling bidirectional communication and

enriching pixel features with object semantics to facilitate

robust tracking across diverse scenarios.

During the Cutie inference process, objects in each frame

are segmented and labeled based on information drawn

from a dynamically updated buffer of memory frames.

Specifically, Cutie generates memory frames every r-th

frame (where r = the mem every parameter, described be-

low and in section 2.7). The memory buffer comprises

the initial, directly annotated frame (ground truth perma-
nent memory) plus the Tmax most recently generated mem-

ory frames (managed via a First-In-First-Out (FIFO) strat-

egy). Consequently, inference operations maintain consis-

tent computational loads per frame and memory, indepen-

dent of sequence length. Increasing Tmax increases the

size of the memory buffer and its computational cost while

broadening the resources available for inference. Increasing

mem every increases the speed of inference because fewer

memory frames are generated, and also extends the distri-

bution of the Tmax memory frames maintained in the FIFO

buffer further back and more sparsely in time. The optimal

value of mem every from the perspective of accuracy alone

is largely heuristic, and depends on factors such as the mag-

nitude of movement per frame and the distribution of ani-

mal poses over time. For simple tracking at standard frame

rates, mem every = 1 usually provides the greatest accuracy.

2.6. Mask to Polygon Conversion

In order to convert Cutie predictions back into editable

Annolid polygons, we developed a mask-to-polygon con-

version feature. A crucial parameter for this process is the

optimization of polygon precision: specifying too few ver-

tices generates crude and inaccurate masks, whereas excess

vertices waste computational power and render polygons

difficult to edit manually. We specify a single parameter,

ε, to weight polygon precision; higher values of ε gener-

ate fewer points per polygon to depict each instance (Figure

4). After optimization testing using the cv2.approxPolyDP

function of OpenCV [14], we determined that a value of

ε = 2.0 effectively balances smoothness and efficiency in

shape representation, minimizing the number of vertices

while preserving essential contour details. This default

value can be altered via the Advanced Parameters dialog

accessible from the File menu of the Annolid GUI.

4

Figure 3. Overview of the Cutie architecture [6] as integrated into Annolid. Labeled polygons are converted into masks from the currently

selected frame and then stored in the FIFO memory buffer: specifically, pixel memory F and object memory S, representing past segmented

frames. Pixel memory is retrieved for the query frame as pixel readout R0, which bidirectionally interacts with object queries X and object

memory S in the object transformer. The object transformer comprises L blocks that enrich the pixel features with object-level semantics

and generate the final RL object readout for decoding into the output mask. Subsequently, the output mask is converted back to polygons

for easy editing and visualization in the Annolid GUI.

2.7. Integrating Cutie into Annolid for Enhanced
Tracking

Annolid’s method for multiple animal tracking uses a

pretrained Cutie VOS model as the basis for the temporal

propagation of segmentation predictions across sequential

video frames. As described above, the VOS process be-

gins with a single, fully annotated video frame identifying

all relevant instances with polygon masks and correspond-

ing labels. The VOS model then predicts and segments ob-

jects in all subsequent video frames (end-to-end learning),

eliminating the need to train a task-specific instance seg-

mentation model. Frames that exhibit prediction errors can

be identified during playback and corrected manually, after

which the prediction process is re-engaged iteratively from

the corrected frames.

In Annolid, we have implemented several modifications

and enhancements to the Cutie method to facilitate typical

workflows in animal behavior analysis. First, we updated

the prediction method to recognize and log objective poten-

tial errors during inference, such as the loss of a tracked in-

stance, and (optionally) to pause prediction automatically in

response. Specifically, if an existing instance is not detected

in the current frame during Cutie prediction, as a fallback

Annolid utilizes the most recent available bounding box for

the missed instance and prompts SAM [3] to predict the in-

stance in that frame (this feature can be disabled in the Ad-
vanced Parameters dialog, as it can be computationally ex-

pensive). If Annolid cannot predict or recover the instance

with confidence, then the prediction will be automatically

paused and the user prompted to correct the segmentation

before continuing Cutie inference. However, Annolid ex-

plicitly supports the case in which animals may disappear

entirely from view and then later reappear (in which case

they are automatically recognized and regain their previous

labels). Because genuinely hidden animals cannot in prin-

ciple be distinguished from missed instances, this default

auto-pause behavior may be undesirable. In such cases,

users may elect to disable automatic pauses on error detec-

tion (in the Advanced Parameters dialog). Tracking errors

in that case still will be logged, but will not pause predic-

tion; any genuine errors then can be corrected after the fact,

or via direct intervention during prediction as described be-

low.

Second, a live stop/restart prediction feature was added

to facilitate real-time human interaction with the automatic

5

prediction and segmentation process. Once the user clicks

the green Pred (predict) button in the GUI to initiate Cutie

prediction, the button transforms into a red Stop button

while prediction is ongoing. By default, predictions for

each frame are displayed as they are generated. (If the

associated numeric spin box is updated during prediction,

the step size for this video playback is altered but the

mem every parameter is not). If the user clicks Stop, pre-

diction halts and the system navigates to the last predicted

frame. Users then can navigate to any frame, correct or alter

any annotations, and restart the prediction process from that

point.

Third, we have provided GUI access to an internal pa-

rameter termed mem every (via a text spin box adjacent to

the Open Video button; Figure 2). This parameter deter-

mines how often working memory is updated during pro-

cessing (see Section 2.5); higher values yield accelerated

processing times whereas lower values yield more accurate

predictions in typical datasets. That said, higher values of

mem every also can yield increased accuracy under certain

circumstances.

Finally, we have replaced the DEVA decoupled video

segmentation approach proposed by the Cutie developers

[15], in which a separate image segmentation model is em-

ployed to detect and incorporate new instances entering the

scene, with a method that intentionally does not segment

any apparent new objects. Instead, our approach assumes

that all of the relevant ground truth instances are present and

labeled in the initial designated frame, thereby eliminating

the possibility of spurious false positive objects being iden-

tified in later frames. Existing objects that disappear and

reappear are segmented and identified normally.

2.8. The Annolid Annotation Framework

The automatic segmentation, labeling, and predictive in-

ference capacities offered by these new models supplement

and enhance, but do not replace, the flexible, user-defined

specification of arbitrary instances that provide Annolid

with much of its versatility [1]. Automatic object segmen-

tation and tracking as described herein coexist readily with

trained Annolid instance segmentation models, and the re-

spective outcomes can be measured and analyzed in com-

bination. Here, we focus on how the new models utilize

Annolid’s existing annotation mechanics, enabling human-

in-the-loop use of Annolid annotation tools to manually cor-

rect or otherwise adjust segmentation masks in coordination

with the new automated methods.

The automatic object detection and segmentation pro-

cess described above constructs detailed, editable polygons

around each defined object from a specified class, each of

which is assigned a unique label. By default, the label

nomenclature is to combine the class name with a sequential

identification number (e.g., ”fly 13”) to identify individual

animals in the designated frame. The polygons delimiting

each of these segmented objects are represented as speci-

fied points within a JSON file, making them accessible for

manual editing using Annolid GUI tools. This foundational

annotation of a designated frame sets the stage for track-

ing and analyzing multiple animals across the full video se-

quence.

2.8.1 Segmentation and Prediction

Following annotation, these polygons are transformed into

binary instance masks for integration with the Cutie seg-

mentation model. The Cutie model operates by reintroduc-

ing objects from its iteratively updated memory buffer into

subsequent frames, thereby facilitating tracking. By merg-

ing Cutie’s segmentation capabilities with precisely spec-

ified instance annotations, Annolid is able to deliver ro-

bust tracking performance across multiple animals within

the video sequence.

2.8.2 Manual Intervention and Correction

After every epoch of automatic prediction, Cutie’s predicted

instance masks are converted back into polygons using An-

nolid’s mask-to-polygon conversion feature. This conver-

sion enables researchers to visualize, assess, and manually

edit tracked animal instances within Annolid’s user inter-

face. Specifically, users can visually observe the anno-

tations arising from model predictions in each frame, ei-

ther during the prediction process (”live”) or after its com-

pletion. If errors are observed, users navigate to the first

inaccurate frame, edit or replace the polygons as desired

to correct the annotation, and restart the automatic predic-

tion process from this new designated frame. If desired,

users can also choose to have objective errors, such as miss-

ing instances, pause the prediction process prematurely. If

tracked animals are not expected to routinely vanish from

view, this setting can save computational effort by directing

users to fix such errors immediately after they occur.

2.8.3 Finalizing Predictions to Track Anything

Manual corrections followed by automatic prediction based

on the corrected frame can be iterated as often as necessary,

and can be altered at any time. Users can adjust parameters

such as mem every before restarting automatic prediction in

order to optimize accuracy and/or performance. Once the

analyses of a given model are complete, Annolid can ex-

port tracking results in a human-readable CSV file format

containing data fields such as instance name, frame num-

ber, centroid location (cx,cy), motion index in mask, bound-

ing box, and segmentation mask encoded using COCO [16]

RLE format (Tables S1, S2).

6

Mask for Epsilon Value 1.0 Polygon for Epsilon Value 1.0

Mask for Epsilon Value 2.0 Polygon for Epsilon Value 2.0

Mask for Epsilon Value 4.0 Polygon for Epsilon Value 4.0

Mask for Epsilon Value 8.0 Polygon for Epsilon Value 8.0

Figure 4. Effects of different values of the epsilon parameter on the Annold mask-to-polygon converter. As epsilon is increased from 1 to

8, the polygons depicting each instance are generated with fewer points. An epsilon value of 2.0 typically preserves essential detail while

limiting the number of vertices.

3. Results

We present our primary findings using a multiple animal

tracking & behavior (MATB) dataset previously assembled

to test Annolid models [1] and a dataset of laboratory ani-

mal behavior videos assembled by the idTracker.ai project

[7]. The MATB dataset encompasses a wide array of track-

ing challenges, focusing on challenges such as partial occlu-

sion during interactions, instances that vanish and reappear,

camera motion, and reflections, as well as the identifica-

tion of various behavioral states under these conditions. It

includes both laboratory-generated videos and videos cap-

tured in the wild. The idTracker.ai dataset includes lab-

oratory animal scenarios featuring crowded environments

with many animal interactions and brief moments of oc-

clusion. In each example, we utilized Annolid’s Ground-

ing DINO [2] and Segment Anything [3] implementations

to automatically annotate the first frame based on a (text)

category label, and its Cutie VOS [6] implementation to

predict segmentation and labeling across all of the remain-

ing frames of the video. Frames were not manually an-

notated (except for purposes of correcting model errors, as

7

described below), and no traditional Annolid instance seg-

mentation models [1] were trained in the process.

3.1. Evaluation with the MATB Dataset

In this section, we demonstrate Annolid’s multiple ani-

mal tracking performance using video data available from

the Multiple Animal Tracking & Behavior video compi-

lation at https://cplab.science/matb. Individ-

ual video files are identified by their URLs. We evaluate

the performance of Annolid’s zero-shot learning, automatic

segmentation, and tracking algorithms, including the num-

ber of human corrective interventions required, to assess

their effectiveness and robustness under different scenarios.

Unless specified otherwise, the Annolid every mem param-

eter was set to 1, Tmax = 5, and ε = 2.0.

3.1.1 Two mice

In a video from the SLEAP project featuring paired male

and female Swiss Webster mice [17], given the text prompt

”mouse”, Annolid automatically segmented and labeled

both mice in the initial frame. This single annotated frame

sufficed to successfully predict all instances across all 2559

frames of the video. To validate the tracking, we manu-

ally inspected the polygons overlaid on the video frames

and found no instances of identity switches or tracking er-

rors. The complete annotated video is available at https:
//youtu.be/32vHPxiZpew.

3.1.2 Five goldfish

In this original video of five goldfish in a tank, the fish re-

peatedly visually occluded one another and one fish fully

exited and reentered the field of view. Given the text prompt

”fish”, Annolid automatically segmented and labeled all

five fish in the initial frame. This annotated frame enabled

automatic tracking of all fish through the video save for

three errors requiring human correction. First, the fish 0

instance was lost in frame 316. We backtracked to frame

277 to address a partial masking issue caused by occlu-

sion and then resumed prediction from that point. Anno-

lid paused again at frame 465 owing to the complete oc-

clusion of fish 4. Prediction was resumed after correc-

tion, and then paused again at frame 509 after fish 4 had

reappeared but subsequently was lost again due to reflec-

tions. After correction and resumption of the inference pro-

cess, the fish were successfully tracked until the end of

the video at frame 655. The annotated video is available

at https://youtu.be/CDtZ3efVlJU. For compar-

ison, we previously had labeled 50 frames in this video to

train a traditional Annolid instance segmentation model [1].

3.2. Evaluation with the idTracker.ai Dataset

In this section, we demonstrate Annolid’s multiple ani-

mal tracking performance using video data available from

the idTracker.ai project (a Google Drive-based data reposi-

tory linked from https://idtracker.ai). Individual

video files are identified below by their filenames in that

repository. We evaluate the performance of Annolid’s zero-

shot learning, automatic segmentation, and tracking algo-

rithms, including the number of human corrective interven-

tions required, to assess their effectiveness and robustness

under different scenarios.

The videos within the idTracker.ai dataset are presented

and validated at frame rates from 30 to 100 frames per sec-

ond (fps), and encoded at a variety of resolutions; many ex-

ceed 10 minutes in length (i.e., 18,000 frames for a 30 fps

video). We resized the test videos to lower resolutions for

computational efficiency, as detailed in each section below,

but maintained the original frame rates and video durations.

Unless specified otherwise, the Annolid every mem param-

eter was set to 1, Tmax = 5, and ε = 2.0.

3.2.1 Two Mice

We employed ffmpeg to compress the ’mice 2 2.avi’ video

file using the command ’ffmpeg -i mice 2 2.avi -vcodec

libx264 -vf scale=984:557’. This compression reduced the

file size from 12 gigabytes to approximately 100 megabytes

in MP4 format. Next, we entered the text prompt ’mouse’

in the Annolid GUI, invoking the Grounding DINO and

SAM-HQ models to generate initial frame polygons for

both the ’mouse 1’ and ’mouse 2’ instances. These poly-

gons then were applied via the Cutie method to track all

23,520 frames of the video, generating a tracking accuracy

of 100% without any missing instances or identity switch-

ing. The complete annotated video is available for viewing

at https://youtu.be/lIPk92bOMxw.

3.2.2 Four mice

We next used Annolid to track four mice in the video

mice 4 1.avi, first compressing the 17 GB file to 173 MB

using the libx264 codec as above with scale=1272:909.

Given the text prompt ”mouse,” Annolid successfully gen-

erated polygons for each of the 4 mice in the first frame

(mouse 0 through mouse 3; Figure 1). Again, this single

annotated frame sufficed to process the entire ten-minute

video, comprising 15,769 frames. To validate the tracking,

we manually inspected the polygons overlaid on the video

frames and found no instances of identity switches or track-

ing errors. The complete annotated video is available for

viewing at https://youtu.be/PNbPA649r78.

8

3.2.3 Fourteen ants

We then used Annolid to track 14 ants in the video

ants 14.MOV, first compressing the 3.1 GB file to 105 MB

using the libx264 codec with scale=1280:720. Given the

text prompt ”ant”, Annolid successfully labeled all 14 in-

stances of ants in the first frame (ant 0 through ant 13;

Figure 1). Again, this sufficed to predict instances suc-

cessfully throughout the entire video, comprising 35,964

frames. To validate the tracking, we manually inspected

the polygons overlaid on the video frames and found no in-

stances of identity switches or tracking errors. The com-

plete annotated video is available for viewing at https:
//youtu.be/iqhz1R79EZg.

3.2.4 Six Drosophila fruit flies

We then used Annolid to track six Drosophila fruit

flies in the video drosophila 6.avi, first compressing the

15.5 GB file to 48.9 MB using the libx264 codec with

scale=804:808. Given the text prompt ”drosophila”, Anno-

lid successfully labeled all six instances of flies in the first

frame. However, unlike the examples above, Annolid made

three errors during Cutie inference that required human-in-

the-loop editing. Specifically, predictions were automati-

cally paused for corrections at the following three points in

the video:

• Prediction halted at frame 10043 due to a polygon is-

sue concerning drosophila 0. The polygon was

manually edited using Annolid GUI tools and predic-

tion was restarted.

• Similarly, at frame 10188, prediction halted owing to

another minor polygon issue with drosophila 0.

The polygon was edited and prediction was restarted.

• At frame 16045, drosophila 0 was reported miss-

ing, prompting a backtrack to frame 15975 to rectify a

polygon problem. The polygon was edited and predic-

tion was restarted. Prediction subsequently was suc-

cessful through the end of the video (frame 25579).

Instances where polygons briefly enlarged and then re-

turned to an appropriate size did not prompt intervention.

To validate the final tracking, we manually inspected the

polygons overlaid on the video frames and found no in-

stances of ID switches or missed tracking. An example

frame in the Annolid GUI is depicted in Figure 5; the com-

plete annotated video is available for viewing at https:
//youtu.be/uTs6CKgmdSw.

3.2.5 Seven zebrafish

We then used Annolid to track the seven zebrafish in the

video zebrafish 7.avi, first compressing the 17.6 GB file

to 59.2 MB using the libx264 codec with scale=992:998.

Given the text prompt ”fish”, Annolid successfully labeled

all seven instances of zebrafish in the first frame (Figure 1).

However, predictions of subsequent frames proved more

challenging in this video file. Even with the mem every pa-

rameter set to 1 (which offered maximum accuracy in this

context), automatic prediction from the start of the file only

tracked all fish accurately for 447 frames (Table 1).

To track all seven fish throughout the full 10-minute

(19,079 frames) video, we applied Annolid’s (default) op-

tion to pause prediction once tracking failed for at least one

instance. At each of these pauses, we manually corrected

and identified the missing instance using point prompting

and initiated the prediction process again. This process

was repeated until the entire video was fully tracked. Ulti-

mately, 24 iterations were required, yielding an error rate of

0.1256%, or less than 1.3 errors per thousand video frames.

The complete annotated video is available for viewing at

https://youtu.be/adeHXZEaYXQ.

We attribute the relative difficulty of automatic frame

prediction in this 31.36 fps video file to the fast motion

and sudden turns made by the fish, which led to increased

frame-by-frame differences in the features of each instance.

We expect that recording at higher frame rates would im-

prove the performance of automatic prediction by reducing

the magnitude of these effects.

mem every Frames Tracked

1 447

2 447

3 325

5 6

Table 1. Tracking performance as a function of mem every on the

video described in Section 3.2.5, Seven zebrafish. Performance

here is operationalized as the number of frames tracked without er-

ror starting at the beginning of the video file. Mem every values of

1 cause every frame to be encoded as a memory frame and pushed

into the Tmax-element FIFO memory buffer for use in Cutie pre-

diction. Values of 2 cause every second frame to be encoded as a

memory frame, values of 3 every third frame, etcetera. See Sec-

tion 2.5 for details.

3.2.6 Ten Drosophila fruit flies

We then used Annolid to track ten Drosophila fruit flies in

the ten-minute, 60 fps video drosophila 10.avi, first com-

pressing the 355 MB file to 8.6 MB using the libx264

codec with scale=640:480. Given the text prompt ”fly”,

Annolid successfully labeled all ten instances of flies in

the first frame. During subsequent Cutie inference, An-

nolid processed without error up to frame 18388. After

we backtracked to frame 18386, restored the missing poly-

9

Im
ag

es
P

o
ly

g
o

n
s

y
g

Figure 5. Annolid performance on an idTracker.ai video [7] featuring markerless tracking of six Drosophila fruit flies in an arena. From

left to right: frames #1, #2000, and #4000 are shown. The complete video is available at https://youtu.be/uTs6CKgmdSw.

gon for fly 2, and restarted inference, Annolid successfully

predicted through to the end of the video (frame 36769).

To validate the final tracking, we manually inspected the

polygons overlaid on the video frames and found no in-

stances of identity switches or tracking errors. The com-

plete annotated video is available for viewing at https:
//youtu.be/23Qtm9esxF8.

3.2.7 Eighty Drosophila fruit flies

We then used Annolid to track eighty Drosophila fruit

flies in the video drosophila 80.avi, first compressing the

19.7 GB file to 15.9 MB using the libx264 codec with

scale=928:900. Text prompting did not successfully seg-

ment flies in the first frame. This fully automatic segmenta-

tion might have succeeded at the original video resolution,

but the computational costs and memory load required for

processing at that resolution would increase considerably.

Instead, it proved more efficient to use Annolid’s SAM-

based point prompting method to annotate the initial frame;

we clicked on each fly in turn and Annolid outlined and seg-

mented the instance automatically.

During subsequent Cutie inference, over the 20,494

frames of the video, Annolid encountered 292 total errors

(error rate of 1.42%), which were iteratively corrected as

described above. (The errors included missing fly instances

and polygon imperfections, exacerbated by the tendency

of flies to suddenly take flight and move large distances

between frames, and are detailed in Table S3). To vali-

date the final tracking result, we manually inspected the

polygons overlaid on the video frames and found no in-

stances of identity switches or missing instances. The com-

plete annotated video is available for viewing at https:
//youtu.be/D50RYbBR8Ho.

The Cutie model’s error rate was higher than for the other

examples presented herein, presumably owing to the large

number of instances together with their visual similarity

(exacerbated by the limited resolution of the compressed

video) and repeated close proximity to one another. Cor-

recting these errors and verifying the tracking accuracy with

this sample of 80 fruit flies proved highly time-consuming,

in contrast to the other examples discussed herein, but may

10

still compare favorably to other methods if the accurate

tracking of all 80 flies is an end-user goal. This scenario

presents a challenge for future improvements in model effi-

ciency.

4. Discussion

Several existing approaches in multiple animal track-

ing utilize pose estimation networks trained on annotated

video datasets; notable examples include DeepLabCut [18]

and SLEAP [17]. Alternatively, idTracker [19] and id-

Tracker.ai [7] employ threshold-based segmentation to di-

vide animals into distinct blobs for tracking purposes. In

the case of idTracker.ai, the occlusion problem is addressed

by utilizing neural networks to classify segmented blobs

as either crossing or non-crossing, with a separate net-

work dedicated to identifying individual animal identities.

Other researchers have extensively explored the concept

of ’tracking-by-detection’ [20, 21, 22]. While these ap-

proaches differ from one another, each of them typically

treat image-level detections as fixed entities, with the tem-

poral model focusing solely on associating these detected

objects. This formulation relies heavily on the accuracy

of per-image detections and is susceptible to errors at the

image level. Accordingly, the scalability of these pack-

ages to handle large-vocabulary or open-world video data

is unclear. As the number of instances and scenarios in a

dataset multiply, the task of training and developing end-to-

end models to jointly tackle pose estimation, segmentation,

and association becomes increasingly daunting, particularly

when annotations are sparse.

To the best of our knowledge, recent advancements in

video segmentation methods [23, 6], particularly those tai-

lored for open-world settings such as BURST [24], have

primarily been trained end-to-end. Our reliance on the

Cutie pretrained model, which demonstrates adaptability

across various tasks, underscores the efficacy of the present

approach. Recent strides in universal promptable im-

age segmentation models, including the SAM model used

herein [3] along with several others [25, 26, 4, 5, 27, 28, 29],

offer promising alternatives to image-level models, en-

abling the labeling of all instances in a frame with text or

point-based prompts.

5. Conclusion

In this study, we introduce a coordinated set of new ma-

chine learning methods into Annolid and leverage these

tools to greatly improve the efficiency and accuracy of

multi-animal tracking analysis. Specifically, we introduce a

Cutie-based prediction strategy for multiple instance track-

ing in video sequences based on single-frame annotations,

a SAM-based strategy for automatic segmentation and la-

beling of instances in this initial frame, and a Grounding

DINO-based strategy for specifying the objects to segment

and label by name, via text prompt. Multiple animals there-

fore can be tracked throughout entire research videos with-

out manually designating or annotating a single one. Ad-

ditionally, we update the Annolid toolset and GUI to fa-

cilitate the easy validation and manual correction of auto-

matic tracking results. This combination of updates offers

a streamlined approach that can replace traditional meth-

ods reliant on manually labeled datasets for fine-tuning neu-

ral network training. Configuration options enable users to

strike a balance between tracking accuracy and computa-

tional efficiency, thereby laying the groundwork for real-

world deployment in animal behavior analysis and biomed-

ical research applications.

Multi-animal tracking is an important and widespread re-

quirement for many applications in animal behavior analy-

sis, but there are many other applications and research goals

to which the advances described herein do not directly ap-

ply. For such applications, Annolid retains its core instance

segmentation strategy [1], in which users annotate some

number of frames with behaviors or other features of in-

terest and train Annolid models on this training set. Some

of the present advances, such as the use of point prompting

to automatically segment selected instances with SAM, can

be applied toward these ends – e.g., to more easily identify

animal body configurations signifying a particular behav-

ioral state or pose. Other applications may require manual

polygon annotation. Overall, Annolid enables users to com-

bine these diverse analytical approaches in order to design

the most appropriate and efficient strategy with which to

address their own particular research questions.

Acknowledgments. This work was supported by NIH/NIDCD

grants R01 DC019124 and R01 DC014701.

References
[1] C. Yang, J. Forest, M. Einhorn, and T. A. Cleland, “Au-

tomated behavioral analysis using instance segmentation,”

arXiv:2312.07723, 2023. 1, 2, 3, 6, 7, 8, 11, 13

[2] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li,

J. Yang, H. Su, J. Zhu et al., “Grounding DINO: Marrying

DINO with grounded pre-training for open-set object detec-

tion,” arXiv:2303.05499, 2023. 1, 2, 3, 7

[3] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland,

L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg, W.-

Y. Lo, P. Dollár, and R. Girshick, “Segment Anything,”

arXiv:2304.02643, 2023. 1, 2, 3, 5, 7, 11

[4] L. Ke, M. Ye, M. Danelljan, Y. Liu, Y.-W. Tai, C.-K.

Tang, and F. Yu, “Segment Anything in high quality,”

arXiv:2306.01567, 2023. 1, 2, 3, 11

11

[5] C. Zhang, D. Han, Y. Qiao, J. U. Kim, S.-H. Bae, S. Lee, and

C. S. Hong, “Faster Segment Anything: Towards lightweight

SAM for mobile applications,” arXiv:2306.14289, 2023. 1,

11

[6] H. K. Cheng, S. W. Oh, B. Price, J.-Y. Lee, and A. Schwing,

“Putting the object back into video object segmentation,”

arXiv:2310.12982, 2023. 1, 2, 3, 5, 7, 11

[7] F. Romero-Ferrero, M. G. Bergomi, R. C. Hinz, F. J. Heras,

and G. G. De Polavieja, “IdTracker.ai: tracking all individu-

als in small or large collectives of unmarked animals,” Nature
Methods, vol. 16, no. 2, pp. 179–182, 2019. 1, 2, 3, 7, 10, 11

[8] K. Wada, “Labelme: Image polygonal annotation with

Python.” [Online]. Available: https://github.com/wkentaro/

labelme 2

[9] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-

CNN,” in CVPR, 2017. 2

[10] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick,

“Detectron2,” 2019. [Online]. Available: https://github.com/

facebookresearch/detectron2 2

[11] J. Fang, C. Yang, and T. A. Cleland, “Scoring rodent digging

behavior with Annolid,” Soc. Neurosci. Abstr. 512.01, 2023.

2

[12] C. Zhou, X. Li, C. C. Loy, and B. Dai, “Edgesam: Prompt-

in-the-loop distillation for on-device deployment of SAM,”

arXiv:2312.06660, 2023. 3

[13] W. Wang, “Advanced auto labeling solution with added

features,” CVHub, 2023. [Online]. Available: https:

//github.com/CVHub520/X-AnyLabeling 3

[14] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of
Software Tools, 2000. 4

[15] H. K. Cheng, S. W. Oh, B. Price, A. Schwing, and J.-Y. Lee,

“Tracking anything with decoupled video segmentation,” in

ICCV, 2023. 6

[16] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick, “Microsoft COCO:

Common objects in context,” in ECCV, 2014. 6

[17] T. D. Pereira, N. Tabris, A. Matsliah, D. M. Turner, J. Li,

S. Ravindranath, E. S. Papadoyannis, E. Normand, D. S.

Deutsch, Z. Y. Wang, G. C. McKenzie-Smith, C. C. Mite-

lut, M. D. Castro, J. D’Uva, M. Kislin, D. H. Sanes,

S. D. Kocher, S. S-H, A. L. Falkner, J. W. Shaevitz, and

M. Murthy, “SLEAP: A deep learning system for multi-

animal pose tracking,” Nature Methods, vol. 19, no. 4, 2022.

8, 11

[18] J. Lauer, M. Zhou, S. Ye, W. Menegas, S. Schneider, T. Nath,

M. M. Rahman, V. D. Santo, D. Soberanes, G. Feng, V. N.

Murthy, G. Lauder, C. Dulac, M. Mathis, and A. Mathis,

“Multi-animal pose estimation, identification and tracking

with DeepLabCut,” Nature Methods, vol. 19, pp. 496 – 504,

2022. 11

[19] A. Pérez-Escudero, J. Vicente-Page, R. C. Hinz, S. Arganda,

and G. G. De Polavieja, “idTracker: tracking individuals in

a group by automatic identification of unmarked animals,”

Nature Methods, vol. 11, no. 7, pp. 743–748, 2014. 11

[20] C. Kim, F. Li, A. Ciptadi, and J. M. Rehg, “Multiple hypoth-

esis tracking revisited,” in ICCV, 2015. 11

[21] S. Tang, M. Andriluka, B. Andres, and B. Schiele, “Mul-

tiple people tracking by lifted multicut and person re-

identification,” in CVPR, 2017. 11

[22] P. Bergmann, T. Meinhardt, and L. Leal-Taixe, “Tracking

without bells and whistles,” in ICCV, 2019. 11

[23] H. K. Cheng and A. G. Schwing, “XMem: Long-term

video object segmentation with an Atkinson-Shiffrin mem-

ory model,” in ECCV, 2022. 11

[24] A. Athar, J. Luiten, P. Voigtlaender, T. Khurana, A. Dave,

B. Leibe, and D. Ramanan, “BURST: A benchmark for

unifying object recognition, segmentation and tracking in

video,” in WACV, 2023. 11

[25] X. Zou, J. Yang, H. Zhang, F. Li, L. Li, J. Gao, and

Y. J. Lee, “Segment everything everywhere all at once,”

arXiv:2304.06718, 2023. 11

[26] F. Li, H. Zhang, P. Sun, X. Zou, S. Liu, J. Yang, C. Li,

L. Zhang, and J. Gao, “Semantic-SAM: Segment and recog-

nize anything at any granularity,” arXiv:2307.04767, 2023.

11

[27] X. Zhao, W. Ding, Y. An, Y. Du, T. Yu, M. Li, M. Tang, and

J. Wang, “Fast Segment Anything,” 2023. 11

[28] Y. Xiong, B. Varadarajan, L. Wu, X. Xiang, F. Xiao, C. Zhu,

X. Dai, D. Wang, F. Sun, F. Iandola, R. Krishnamoorthi, and

V. Chandra, “EfficientSAM: Leveraged masked image pre-

training for efficient Segment Anything,” arXiv:2312.00863,

2023. 11

[29] H. Cai, C. Gan, and S. Han, “Efficientvit: Enhanced linear

attention for high-resolution low-computation visual recog-

nition,” arXiv:2205.14756, 2022. 11

12

A. Supplementary Data

Table S1. Example of the Annolid Tracked CSV format output, featuring columns for Frame Number, Instance Name, cx, cy, Motion

Index, and Timestamps. (cx, cy) are the centroid coordinates of the instance mask, measured in pixel units. The Motion Index is computed

as the sum of magnitudes of the polar coordinates of the optical flow overlaid on the instance mask, divided by the mask size [1]. The

naming convention for this file follows the pattern ’videoname tracked.csv’.

Frame Number Instance Name cx cy Motion Index Timestamps

0 mouse 324 141 -1.0 00:00:00

0 teaball 99 236 -1.0 00:00:00

1 mouse 326 146 1.099 00:00:00.024

1 teaball 98 236 0.0 00:00:00.024

2 mouse 329 150 1.112 00:00:00.048

2 teaball 98 236 0.0 00:00:00.048

3 mouse 331 153 1.256 00:00:00.072

3 teaball 98 236 0.0 00:00:00.072

4 mouse 333 157 1.076 00:00:00.096

4 teaball 98 236 0.0 00:00:00.096

5 mouse 335 159 0.817 00:00:00.120

5 teaball 98 236 0.0 00:00:00.120

6 mouse 336 162 0.655 00:00:00.144

6 teaball 98 236 0.0 00:00:00.144

7 mouse 337 165 0.769 00:00:00.168

7 teaball 98 236 0.0 00:00:00.168

8 mouse 339 168 0.927 00:00:00.192

Table S2. Predictions for the tracking data of a video featuring a mouse interacting with a teaball, presented in a CSV file format generated

by Annolid. The output includes the frame number, bounding box coordinates x1, y1, x2, y2, center coordinates cx, cy, and the segmenta-

tion mask encoded in COCO format. The naming convention for this CSV file follows the pattern ’videoname tracking.csv’. When this file

is placed in the same directory as the corresponding video file, Annolid automatically loads the predicted instances in polygons or points,

along with other shapes, from this CSV file. This facilitates quality control and editing during video analysis.

Frame x1 y1 x2 y2 cx cy Instance Name Segmentation
0 117.0 148.0 175.0 227.0 143.74 185.36 mouse1040 {’“[13U94......MmoY2’

0 212.0 70.0 263.0 128.0 236.88 100.41 teaball {’ngd01......HllV3’

1 116.0 150.0 174.0 225.0 143.63 185.32 mouse1040 {’XS\14......IobZ2’

1 212.0 70.0 263.0 128.0 236.72 100.64 teaball {’hgd01......MPmV3’

2 117.0 149.0 175.0 226.0 143.93 185.77 mouse1040 { ’li[12V94......L]YZ2’

2 212.0 70.0 263.0 130.0 236.73 101.40 teaball {’hgd04......JSZV3’

3 117.0 148.0 175.0 226.0 143.91 185.66 mouse1040 {’“[12W93......K\YZ2’

3 212.0 70.0 263.0 130.0 236.85 102.36 teaball {’hgd01......MkPV3’

4 118.0 148.0 175.0 226.0 143.50 185.90 mouse1040 {’“[12X92......1Oj[̂2’

4 214.0 70.0 263.0 131.0 236.84 102.31 teaball {’hgd01......IgPV3’

5 118.0 148.0 175.0 227.0 143.64 185.84 mouse1040 {’“[12X92......NooY2’

5 214.0 70.0 263.0 131.0 236.85 102.36 teaball {’hgd01......MjPV3’

a Note that the middle section of the segmentation COCO format encoding has been replaced with dots for com-

pact display purposes. The segmentation column in the tracking CSV file comprises the complete encoding,

consistently commencing with ”’size’:[’H’,’W’],’counts’:”. In this encoding, ’size’ denotes the video’s dimen-

sions in pixel units, encompassing its height H and width W, whereas the ’counts’ value corresponds to the

COCO format Run-Length Encoding (RLE).

13

Table S3. Listing of issues and corrections made during prediction for the video drosophila 80.mp4. See section 3.2.7 for details.

Frame Number Issue Encountered Actions Taken
333 Tracking lost for ’fly32’. Reverted back to frame 298 and identified an imperfect polygon.

Ceased prediction. Rectified the issue before resuming prediction

from frame 334.

349 Missing ’fly34’. Resolved at 349, then resumed prediction.

393 Missing ’fly32’. Resolved at 393, then resumed prediction.

681 Enlarged polygon of ’fly27’

and ’fly31’.

Resolved at 681, then resumed prediction.

881 Corrected polygon for ’fly5’. Resolved at 881, then resumed prediction.

1000 Corrected polygon for ’fly19’. Resolved at 1000, then resumed prediction.

1203, 1238, 1277 Corrected ’fly39’. Resolved at 1203, 1238, 1277, then resumed prediction.

1448 Missing ’fly31’. Resolved at 1448, then resumed prediction.

1555 Fixed polygons for ’fly21’,

’fly28’, and ’fly66’.

Resolved at 1555, then resumed prediction.

1700 Fixed polygon for ’fly56’. Resolved at 1700, then resumed prediction.

1899 Missing ’fly39’. Resolved at 1899, then resumed prediction.

2120 Missing ’fly55’. Resolved at 2120, then resumed prediction.

2278 Black dot on ’fly32’ polygon Corrected polygon for ’fly32’ due to the black dot

2419 Missing ’fly31’ Corrected polygon for ’fly17’; handled missing ’fly31’

2587 Enlarged ’fly65’ polygon Corrected polygon size for ’fly65’

3256 Missing ’fly31’; spiking

’fly32’

Corrected ’fly32’ polygon; handled missing ’fly31’ with large mo-

tion

3701 Missing ’fly32’; spiking

’fly79’

Handled missing ’fly32’; corrected ’fly79’ polygon

3871 Resized ’fly18’ polygon Resized polygon for ’fly18’

3887 Missing ’fly54’; spiking

’fly79’

Handled missing ’fly54’ with large motion; corrected ’fly79’ poly-

gon

4039 Missing ’fly0’ flying Addressed missing ’fly0’ flying

4045 Missing ’fly12’ Addressed missing ’fly12’

4200 Enlarged polygon for ’fly66’ Fixed enlarged polygon for ’fly66’

4453 Missing ’fly79’ Addressed missing ’fly79’

4563 Missing ’fly66’ Addressed missing ’fly66’

4704 Missing ’fly77’; Missing

’fly40’

Addressed missing ’fly77’; Addressed missing ’fly40’

4908 Missing ’fly21’; Spiking poly-

gons for ’fly79’

Addressed missing ’fly21’; Addressed spiking polygons for ’fly79’

5126 Enlarged ’fly49’ polygon Fixed the enlarged polygon for ’fly49’

5148 Missing ’fly34’ Addressed missing ’fly34’

5203 Enlarged ’fly49’ polygon Fixed the enlarged polygon for ’fly49’

5246 Missing ’fly66’ Addressed missing ’fly66’

5258 Missing ’fly74’ flying Addressed missing ’fly74’ flying

5424 Missing ’fly63’ flying Addressed missing ’fly63’ flying

5471 Missing ’fly79’ Addressed missing ’fly79’

5554 Missing ’fly31’ Addressed missing ’fly31’

5824 Enlarged ’fly78’ polygon Fixed the enlarged polygon for ’fly78’

5887 Enlarged ’fly32’ polygon Fixed the enlarged polygon for ’fly32’

5929 Prediction start Checked this frame

6029 Missing ’fly32’ Resolved at 6014, then resumed prediction.

6379 Missing ’fly19’ Resolved at 6379, then resumed prediction.

6994 Missing ’fly77’ Resolved at 6993, then resumed prediction.

Continued on next page

14

Table S3 – continued from previous page
Frame Number Issue Encountered Actions Taken

7045 Missing ’fly22’ Resolved at 7042, then resumed prediction.

7114 Missing ’fly16’ Resolved at 7113, then resumed prediction.

7241 Missing ’fly8’ Resolved at 7239, then resumed prediction.

7114 Missing ’fly16’ Resolved at 7114, then resumed prediction.

7633 Missing ’fly55’ Resolved at 7613, then resumed prediction.

7624 Missing ’fly32’ Resolved at 7623, then resumed prediction.

7653 Missing ’fly37’ Resolved at 7652, then resumed prediction.

7654 Missing ’fly77’ Resolved at 7648, then resumed prediction.

7661 Missing ’fly0’ Resolved at 7661, then resumed prediction.

7700 Missing ’fly79’ Resolved at 7699, then resumed prediction.

7701 Missing ’fly76’ Resolved at 7700, then resumed prediction.

7719 Missing ’fly16’ Resolved at 7719, then resumed prediction.

7729 Missing ’fly16’ Resolved at 7728, then resumed prediction.

7793 Missing ’fly32’ Resolved at 7793, then resumed prediction.

8836 Missing ’fly67’ Resolved at 8835, then resumed prediction.

8848 Missing ’fly77’ Resolved at 8847, then resumed prediction.

8967 Missing ’fly5’ Resolved at 8967, then resumed prediction.

9054 Missing ’fly34’ Resolved at 9053, then resumed prediction.

9095 Missing ’fly28’ Resolved at 9095, then resumed prediction.

9161 Missing ’fly12’ Resolved at 9160, then resumed prediction.

9168 Missing ’fly12’ Resolved at 9167, then resumed prediction.

9240 Missing ’fly4’ Resolved at 9239, then resumed prediction.

9238 Missing ’fly4’ Resolved at 9238, then resumed prediction.

9258 Missing ’fly77’ Resolved at 9258, then resumed prediction.

9403 Missing ’fly32’ Resolved at 9403, then resumed prediction.

9607 Missing ’fly32’ Resolved at 9606, then resumed prediction.

9876 Missing ’fly27’ Resolved at 9876, then resumed prediction.

9891 Missing ’fly21’ Resolved at 9889, then resumed prediction.

10041 Missing ’fly55’ Resolved at 9911, then resumed prediction.

10099 Missing ’fly34’ Resolved at 10097, then resumed prediction.

10623 Missing ’fly76’ Resolved at 10615, then resumed prediction.

10710 Missing ’fly79’ Resolved at 10710, then resumed prediction.

10711 Missing ’fly79’ Resolved at 10710, then resumed prediction.

10917 Missing ’fly2’ Resolved at 10911, then resumed prediction.

10957 Missing ’fly5’ Resolved at 10956, then resumed prediction.

11434 Missing ’fly79’ Resolved at 11433, then resumed prediction.

12036 Missing ’fly55’ Resolved at 12035, then resumed prediction.

12259 Missing ’fly61’ Resolved at 12250, then resumed prediction.

12615 Missing ’fly16’ Resolved at 12607, then resumed prediction.

12615 Missing ’fly16’ Resolved at 12615, then resumed prediction.

12631 Missing ’fly31’ Resolved at 12610, then resumed prediction.

12615 Missing ’fly16’ Resolved at 12615, then resumed prediction.

12631 Missing ’fly31’ Resolved at 12631, then resumed prediction.

12671 Missing ’fly32’ Resolved at 12670, then resumed prediction.

12737 Missing ’fly61’ Resolved at 12737, then resumed prediction.

12753 Missing ’fly61’ Resolved at 12751, then resumed prediction.

12880 Missing ’fly4’ Resolved at 12876, then resumed prediction.

13123 Missing ’fly40’ Resolved at 13123, then resumed prediction.

13334 Missing ’fly55’ Resolved at 13330, then resumed prediction.

13369 Missing ’fly62’ Resolved at 13368, then resumed prediction.

Continued on next page

15

Table S3 – continued from previous page
Frame Number Issue Encountered Actions Taken

13617 Missing ’fly32’ Resolved at 13613, then resumed prediction.

13752 Missing ’fly8’ Resolved at 13713, then resumed prediction.

13726 Missing ’fly56’ Resolved at 13726, then resumed prediction.

13750 Missing ’fly8’ Resolved at 13749, then resumed prediction.

13916 Missing ’fly72’ Resolved at 13873, then resumed prediction.

14022 Missing ’fly8’ Resolved at 14021, then resumed prediction.

14046 Missing ’fly5’ Resolved at 14045, then resumed prediction.

14146 Missing ’fly5’ Resolved at 14144, then resumed prediction.

14314 Missing ’fly28’ Resolved at 14313, then resumed prediction.

14482 Missing ’fly71’ Resolved at 14482, then resumed prediction.

14700 Missing ’fly31’ Resolved at 14699, then resumed prediction.

14737 Missing ’fly3’ Resolved at 14735, then resumed prediction.

14833 Missing ’fly16’ Resolved at 14832, then resumed prediction.

14862 Missing ’fly55’ Resolved at 14845, then resumed prediction.

14869 Missing ’fly55’ Resolved at 14863, then resumed prediction.

14867 Missing ’fly55’ Resolved at 14866, then resumed prediction.

14899 Missing ’fly50’ Resolved at 14899, then resumed prediction.

14948 Missing ’fly0’ Resolved at 14945, then resumed prediction.

15110 Missing ’fly66’ Resolved at 15109, then resumed prediction.

15229 Missing ’fly8’ Resolved at 15229, then resumed prediction.

15258 Missing ’fly72’ Resolved at 15256, then resumed prediction.

15591 Missing ’fly8’ Resolved at 15589, then resumed prediction.

15597 Missing ’fly8’ Resolved at 15594, then resumed prediction.

15759 Missing ’fly10’ Resolved at 15757, then resumed prediction.

15847 Missing ’fly72’ Resolved at 15845, then resumed prediction.

15951 Missing ’fly4’ Resolved at 15950, then resumed prediction.

16010 Missing ’fly52’ Resolved at 15976, then resumed prediction.

16010 Missing ’fly52’ Resolved at 16009, then resumed prediction.

16026 Missing ’fly11’ Resolved at 16021, then resumed prediction.

16074 Missing ’fly10’ Resolved at 16071, then resumed prediction.

16082 Missing ’fly66’ Resolved at 16081, then resumed prediction.

16102 Missing ’fly66’ Resolved at 16100, then resumed prediction.

16175 Missing ’fly5’ Resolved at 16174, then resumed prediction.

16202 Missing ’fly63’ Resolved at 16200, then resumed prediction.

16261 Missing ’fly39’ Resolved at 16261, then resumed prediction.

16279 Missing ’fly32’ Resolved at 16266, then resumed prediction.

16317 Missing ’fly0’ Resolved at 16317, then resumed prediction.

16354 Missing ’fly4’ Resolved at 16347, then resumed prediction.

16358 Missing ’fly4’ Resolved at 16353, then resumed prediction.

16445 Missing ’fly67’ Resolved at 16445, then resumed prediction.

16507 Missing ’fly32’ Resolved at 16507, then resumed prediction.

16655 Missing ’fly12’ Resolved at 16654, then resumed prediction.

16679 Missing ’fly32’ Resolved at 16678, then resumed prediction.

16680 Missing ’fly28’ Resolved at 16674, then resumed prediction.

16831 Missing ’fly72’ Resolved at 16830, then resumed prediction.

16910 Missing ’fly66’ Resolved at 16907, then resumed prediction.

17066 Missing ’fly40’ Resolved at 17065, then resumed prediction.

17158 Missing ’fly5’ Resolved at 17158, then resumed prediction.

17187 Missing ’fly5’ Resolved at 17186, then resumed prediction.

17277 Missing ’fly66’ Resolved at 17273, then resumed prediction.

Continued on next page

16

Table S3 – continued from previous page
Frame Number Issue Encountered Actions Taken

17285 Missing ’fly79’ Resolved at 17284, then resumed prediction.

17338 Missing ’fly50’ Resolved at 17318, then resumed prediction.

17494 Missing ’fly36’ Resolved at 17493, then resumed prediction.

17601 Missing ’fly65’ Resolved at 17600, then resumed prediction.

17603 Missing ’fly65’ Resolved at 17602, then resumed prediction.

17649 Missing ’fly0’ Resolved at 17645, then resumed prediction.

17646 Missing ’fly35’ Resolved at 17646, then resumed prediction.

17649 Missing ’fly0’ Resolved at 17649, then resumed prediction.

17684 Missing ’fly31’ Resolved at 17676, then resumed prediction.

17691 Missing ’fly4’ Fixed smaller polygon at 17690, then resumed prediction.

17861 Missing ’fly7’ Fixed smaller polygon at 17834, then resumed prediction.

17882 Missing ’fly79’ Fixed smaller polygon at 17880, then resumed prediction.

17893 Missing ’fly32’ Fixed smaller polygon at 17892, then resumed prediction.

17933 Missing ’fly16’ Fixed smaller polygon at 17932, then resumed prediction.

17943 Missing ’fly31’ Fixed smaller polygon at 17942, then resumed prediction.

17955 Missing ’fly31’ Fixed smaller polygon at 17953, then resumed prediction.

18078 Missing ’fly40’ Fixed smaller polygon at 18074, then resumed prediction.

18110 Missing ’fly4’ Fixed smaller polygon at 18076, then resumed prediction.

18112 Missing ’fly27’ Fixed smaller polygon at 18353, then resumed prediction.

18112 Missing ’fly27’ Fixed smaller polygon at 18353, then resumed prediction.

18354 Missing ’fly72’ Fixed smaller polygon at 18353, then resumed prediction.

18475 Missing ’fly9’ Fixed smaller polygon at 18473, then resumed prediction.

18555 Missing ’fly9’ Fixed smaller polygon at 18553, then resumed prediction.

18687 Missing ’fly4’ Resolved at 18686, then resumed prediction.

18735 Missing ’fly72’ Resolved at 18689, then resumed prediction.

18738 Missing ’fly72’ Resolved at 18730, then resumed prediction.

18830 Missing ’fly32’ Resolved at 18826, then resumed prediction.

18876 Missing ’fly9’ Resolved at 18873, then resumed prediction.

18929 Missing ’fly9’ Resolved at 18928, then resumed prediction.

18959 Missing ’fly12’ Resolved at 18959, then resumed prediction.

19025 Missing ’fly71’ Resolved at 19021, then resumed prediction.

19071 Missing ’fly66’ Resolved at 19070, then resumed prediction.

19084 Missing ’fly4’ Resolved at 19083, then resumed prediction.

19148 Missing ’fly39’ Resolved at 19146, then resumed prediction.

19201 Missing ’fly39’ Resolved at 19179, then resumed prediction.

19204 Missing ’fly39’ Resolved at 19202, then resumed prediction.

19376 Missing ’fly8’ Resolved at 19373, then resumed prediction.

19441 Missing ’fly9’ Resolved at 19441, then resumed prediction.

19444 Fixed a enlarged polygon Resolved at 19444 , then resumed prediction.

19513 Missing ’fly16’ Resolved at 19513, then resumed prediction.

19523 Fixed a enlarged polygon Resolved at 19523, then resumed prediction.

19732 Missing ’fly9’ Resolved at 19731, then resumed prediction.

19961 Missing ’fly39’ Resolved at 19959, then resumed prediction.

20039 Missing ’fly66’ Resolved at 20039, then resumed prediction.

20110 Missing ’fly66’ Resolved at 20109, then resumed prediction.

20141 Missing ’fly40’ Resolved at 20139, then resumed prediction.

20269 Missing ’fly26’ Resolved at 20269, then resumed prediction.

20289 Missing ’fly32’ Resolved at 20288, then resumed prediction.

20338 Missing ’fly48’ Resolved at 20336, then resumed prediction.

20370 Missing ’fly8’ Resolved at 20352, then resumed prediction.

Continued on next page

17

Table S3 – continued from previous page
Frame Number Issue Encountered Actions Taken

20371 Missing ’fly8’ Resolved at 20367, then resumed prediction.

20422 Missing ’fly10’ Resolved at 20420, then resumed prediction.

20493 No issue Video completed

18

