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Abstract

This article will pose the following challenge: that despite four decades of
research characterizing the response properties of V1 neurons, we still do not
have a decent picture of how V1 really operates—i.e., how a population of
its neurons represents natural scenes under realistic viewing conditions. We
identify five problems with the current view that stem largely from biases in
the design and execution of experiments, in addition to the contributions of
non-linearities in the cortex that are not well understood. Our purpose is to
open the window to new theories, a number of which we describe along with
some proposals for testing them.

1 Introduction

The primary visual cortex (area V1) of mammals has been the subject of intense study
for at least four decades. Hubel and Wiesel’s original studies in the early 1960’s cre-
ated a paradigm shift by demonstrating that the responses of single neurons in the
cortex could be tied to distinct image properties such as the local orientation of
contrast. Since that time, the study of V1 has become something of a miniature
industry, to the point where the annual Society for Neuroscience meeting now rou-
tinely devotes multiple sessions entirely to V1 anatomy and physiology. Given the
magnitude of these efforts, one might reasonably expect that we would by now have a
fairly concrete grasp of how V1 works and its role in visual system function. However,
as we shall argue here, there still remains so much unknown that, for all practical
purposes, we stand today in nearly the same state of ignorance as did Hubel and
Wiesel 40 years ago.!

"We do not mean to imply here that nothing has been learned, but rather that what has been
learned is but a small fraction of what lies ahead and still needs to be understood.
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Figure 1: Standard model of V1 simple cell responses. The neuron computes a weighted
sum of the image over space and time, and this result is normalized by the responses of
neighboring units, and passed through a pointwise non-linearity (see e.g., Carandini et al.,
1997

It may seem surprising to some that we should take such a stance. V1 does
afterall have a seemingly ordered appearance—a clear topographic map, and an or-
derly arrangement of ocular dominance and orientation columns. Many neurons are
demonstrably tuned for stimulus features such as orientation, spatial-frequency, color,
direction of motion, and disparity. And there has even emerged a fairly well agreed
upon “standard model” for V1 in which simple-cells compute a linearly weighted sum
of the input over space and time (usually a Gabor-like function) and the output is
passed through a pointwise nonlinearity, in addition to being subject to contrast gain
control to avoid response saturation (Figure 1). Complex cells are similarly explained
in terms of summing the outputs of a local pool of simple-cells with similar tuning
properties but different positions or phases. The net result is to think of V1 roughly
as a “Gabor filter bank.” There are now many papers showing that this basic model
fits much of the existing data well, and many scientists have come to accept this as a
working model of V1 function (see e.g., Lennie, 2003a)

But behind this picture of apparent orderliness, there lies an abundance of un-
explained phenomena, a growing list of untidy findings, and an increasingly uncom-
fortable feeling among many about how the experiments that have led to our current
view of V1 were conducted in the first place. The main problem stems from the
fact that cortical neurons are highly nonlinear—i.e., they emit all-or-nothing action
potentials, not analog values. They also adapt, so their response properties depend
upon the history of activity. Cortical pyramidal cells have highly elaborate dendritic
trees, and realistic biophysical models suggest that each thin branch could act as a
non-linear subunit, so that any one neuron could be computing many different non-
linear combinations of its inputs (Hausser & Mel, 2003), in addition to being sensitive
to coincidences (Softky & Koch, 1993; Azouz & Gray, 2000, 2003). Everyone knows
that neurons are non-linear, but few have acknowledged the implications for studying
cortical function. Unlike linear systems, where there exist mathematically tractable,
textbook methods for system identification, non-linear systems can not be teased
apart using some straightforward, reductionist approach. In other words, there is no
general method for characterizing non-linear systems.’

2The Volterra series expansion is often touted as a general approach for characterizing non-linear



The reductionist approach has formed the bedrock of V1 physiology for the past
four decades. Indeed, it would seem necessary given the stunning complexity of
the brain to tease apart one chunk at a time. But whether or not a reductionist
approach tells you anything useful depends entirely on how you reduce. Some modes
of interaction may be crucial to the operation of the system, and so cutting them
out—either in theories or experiments—may give a misleading picture of how the
system actually works. Obviously, if one knew in advance what the important modes
of interaction were then one could choose to reduce appropriately. But when it
comes to the brain we really haven’t a clue. V1 physiologists have for the most part
chosen one particular way to reduce complexity by using highly simplfied stimuli and
recording from only one neuron at a time, and from this body of experiments has
emerged the standard model which forms the basis for our conceptual understanding
of V1. But whether or not the physiologists chose correctly is anyone’s guess. The
best-case scenario is that they did, and that the standard model is more or less correct.
The worst-case scenario, which we lean towards, is that they chose inappropriately in
many cases, that the standard model is but one small part of the full story, and that
we still have much to learn about V1.

In this chapter we lay out the reasons for our skepticism by identifying five fun-
damental problems with the reductionist approach that have led us to the current
view of V1 as a Gabor filter bank. In addition, we attempt to quantify the level of
our current understanding by considering two important factors: an estimate of the
fraction of V1 neuron types that have actually been characterized and the fraction
of variance explained in the responses of these neurons under natural viewing condi-
tions. Together, these lead us to conclude that at present we can rightfully claim to
understand only 10-20% of how V1 actually operates under normal conditions.

Our aim in pointing out these things is not to simply tear down the current
framework. Indeed, we ourselves have attempted to account for some aspects of the
standard model in terms of efficient coding principles (sparse coding), so obviously
we buy into at least part of the story. We are also not claiming that reductionism in
general is flawed. Rather, our goal is to make room for new theories that we believe
are essential for understanding V1 and its relation to perception, and we shall present
a few candidates in the second part of this chapter. A central conclusion that emerges
from this exercise is that we need to begin seriously studying how V1 behaves using
natural scenes. Based on these observations, we will then be in a more informed
position when it comes to making choices about how to reduce complexity to tease
apart the fundamental components of the system.

systems, but it has been of little practical value in analyzing neural systems because it requires
estimating many higher-order moments. In addition, it is an overly-general, “black-box” approach
that does not easily allow one to incorporate prior knowledge about the types of non-linearities
known to exist in the nervous system.



2 Five problems with the current view

2.1 Biased sampling of neurons

The vast majority of our knowledge about V1 function has been obtained from single
unit recordings in which a single micro-electrode is brought into close proximity with
a neuron in cortex. Ideally, when doing this one would like to obtain an unbiased
sample from any given layer of cortex. But some biases are unavoidable. For instance,
neurons with large cell bodies will give rise to extracellular action potentials that have
larger amplitudes and propagate over larger distances than neurons with small cell
bodies. Without careful spike sorting, the smaller extracellular action potentials may
easily become lost in the background when in the vicinity of neurons with large
extracellular action potentials. This creates a bias in sampling that is not easy to
dismiss.

Even when a neuron has been successfully isolated, detailed investigation of the
neuron may be bypassed if the neuron does not respond “rationally” to the investiga-
tors stimuli or fit the stereotype of what the experimenter believes the neuron should
do. This is especially true for higher visual areas like area V4, but it is also true for
V1. Such neurons are commonly regarded as “visually unresponsive.” It is difficult
to know how often such neurons are encountered because oftentimes they simply go
unreported, or else it is simply stated that only visually responsive units were used
for analysis.

While it is certainly difficult to characterize the information processing capabilities
of a neuron that seems unresponsive, it is still important to know in what way these
neurons are unresponsive. What are the statistics of activity? Do they tend to appear
bursty or tonic? Do they tend to be encountered in particular layers of cortex? And
most importantly, are they merely unresponsive to bars and gratings, or are they
also equally uninterpretable in their responses to a wider variety of stimuli, such
as natural images? A seasoned experimentalist who has recorded from hundreds of
neurons would probably have some feel for these things. But for the many readers not
directly involved in collecting the data, there is no way of knowing these unreported
aspects of V1 physiology. It is possible that someone may eventually come up with
a theory that could account for some of these unresponsive neurons, but this can’t
happen if no one knows they are there.

Another bias that arises in sampling neurons, perhaps unintentionally, is that the
process of hunting for neurons with a single micro-electrode will almost invariably
steer one towards neurons with higher firing rates. This is especially disturbing in
light of recent analyses showing that, based on estimates of energy consumption, the
average firing rates of neurons in cortex must be rather low—i.e., less than 1 Hz
(Attwell & Laughlin 2001; Lennie 2003b). One finds many neurons in the literature
for which even the spontaneous or background rates are well above 1 Hz, suggesting
then that they are likely to be substantially overrepresented (Lennie 2003b). What
makes matters worse is that if we assume that most neurons exhibit an exponential
distribution of firing rates, as has been demonstrated for natural scenes (Baddeley
et al., 1997), then a mean firing rate of 1 Hz would yield the distribution shown in
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Figure 2: a) Exponential firing rate distribution with a mean of 1 Hz (dashed line denotes
mean). b) resulting overall mean-rate of the populaton (top), and fraction of the population
captured (bottom), as a result of recording from neurons only above a given mean firing-rate
(threshold).

Figure 2a. Under natural conditions, then, only a small fraction of neurons would
exhibit the sorts of firing rates normally associated with a robust response. For
example, the total probability for firing rates of even 5 Hz and above is 0.007, meaning
that one would have to wait 1-2 minutes on average in order to observe a one-second
interval containing five or more spikes. It seems possible that such neurons could
either be missed altogether, or else purposely bypassed because they do not yield
enough spikes for data analysis. For example, the overall mean firing rate of V1
neurons in the Baddeley et al. study was 4.0 Hz (std. 3.6 Hz), suggesting that
these neurons constitute a sub-population that were perhaps easier to find, but not
necessarily representative of the population as a whole. Interestingly, the authors
point out that even this rate is considered low (which they attribute to anaesthesia),
as previous studies (Legendy & Salcman, 1985) report the mean firing rate to be 8.9
Hz (s.d. 7.0 Hz).

Presumably V1 contains a heterogeneous population of neurons with different
mean firing rates. If we assume some distribution over these rates, then it is possible to
obtain an estimate of the fraction of the population characterized, and the subsequent
observed mean rate, if one were to selectively record from neurons only above a certain
mean rate. The result of such an analysis, assuming a log-normal distribution of mean-
rates so as to yield an overall mean of 1 Hz, is shown in Figure 2b. As one can see,
an overall mean of 4 Hz implies that the selection criterion was somewhere between
1-2 Hz, which would capture less than 20% of the population.

Neurophysiological studies of the hippocampus provide an interesting lesson about
the sorts of biases introduced by low firing rates. Prior to the use of chronic implants,
in which the activity of neurons could be monitored for extended periods while a rat
explored its environment, the granule cells of the dentate gyrus were thought to be



mostly high rate “theta” cells (e.g., Rose et al., 1983). But it eventually became
clear that the majority are actually very low rate cells (Jung & McNaughton, 1993),
and that for technical reasons only high-rate interneurons were being detected in the
earlier studies (Skaggs, personal communication). In fact, Thompson & Best (1989)
found that nearly two-thirds of all hippocampal neurons which showed activity under
anaesthesia became silent in the awake, behaving rat. This overall pattern appears to
be upheld in macaque hippocampus, where the use of chronic implants now routinely
yields neurons with overall firing rates below 0.1 Hz (Barnes et al., 2003), which is in
stark contrast to the “low baseline rates” of 8.1 Hz reported by Wirth et al. (2003)
using acutely implanted electrodes.

The dramatic turn of events afforded by the application of chronic implants com-
bined with natural stimuli and behavior in the hippocampus can only make one won-
der what mysteries could be unraveled when similar techniques are applied to visual
cortex. What are the patterns of activity that occur during free-viewing of natural
scenes? What are the actual average firing rates and other statistics of activity in
layers 2/3? What are the huge numbers of granule cells in macaque layer 4, which
outnumber the geniculate fiber inputs by 30:1, doing? Do they provide a sparser
code than their geniculate counterparts? And what about the distribution of actual
receptive field sizes? Current estimates show that most parafoveal neurons in V1
have receptive field sizes on the order of 0.1 deg. But based on retinal anatomy and
psychophysical performance one would expect to find a substantial number of neu-
rons with receptive fields an order of magnitude smaller, ca. 0.01 deg. (Olshausen &
Anderson, 1995). Such receptive field sizes are extremely rare, if not non-existent, in
the existing data on macaque V1 neurons collected using acute recording techniques
(De Valois et al., 1982; Parker & Hawken, 1988).

Overall, then, one can identify at least three different biases in the sampling of
neurons: 1) neurons with large cell bodies, 2) “visually responsive” neurons, and 3)
neurons with high firing rates. So where does this leave us? If we assume that 5-10%
of the population is missed because of weak extracellular action potentials, another 5-
10% is discarded for being visually unresponsive, and 50-60% is missed because of low
firing rates (as demonstrated in Figure 2), then even allowing for some overlap among
these populations would yield the generous estimate that 40% of the population has
been adequately sampled.

2.2 Biased stimuli

Much of our current knowledge of V1 neural response properties is derived from ex-
periments using reduced stimuli. Oftentimes these stimuli are ideal for characterizing
linear systems—i.e., spots, white noise, or sinewave gratings—or else they are de-
signed around pre-existing notions of how neurons should respond. The hope is that
the insights gained from studying neurons using these reduced stimuli will generalize
to more complex situation—e.g., natural scenes. But of course there is no guarantee
that this is the case. And given the non-linearities inherent in neural responses, we
have every reason to be skeptical.

Sinewave gratings are ubiquitous tools in visual system neurophysiology and psy-



chophysics. In fact, the demand for using these stimuli is so high that some com-
panies produce lab equipment with specialized routines designed for this purpose
(e.g., Cambridge Research Systems). But sinewaves are special only because they
are eigenfunctions of linear, time- or space-invariant systems. For non-linear systems,
they bear no particular meaning, nor do they occupy any special status. In the au-
ditory domain, sinewaves could be justified from the standpoint that many natural
sounds are produced by oscillating membranes. However, in the visual world there
are few things that naturally oscillate either spatially or temporally. Given these ob-
servations, one is led to the unavoidable conclusion that there is no principled reason
for using sinewaves to study vision.

White noise, m-sequences, and spots suffer from similar problems. They are in-
formative stimuli only to the extent that the system is linear, or contains rather
simplistic nonlinearities (such as squaring, or response normalization) that can be
characterized via 2nd-order methods (Touryan et al. 2002; Rust et al. 2004). Oth-
erwise, they are no more valid than any other stimulus. Although it is true that an
orthonormal basis (which could comprise any of these stimuli) can fully describe any
pattern, characterizing the responses to each basis function in isolation is of limited
value when the system is strongly non-linear.

What about bars of light or Gabor patches? The use of these stimuli also makes
some assumptions about linearity. However, this approach primarily assumes that
neurons are selective or tuned to localized, oriented, bandpass structure, and that
the appropriate parameters for characterizing them are properties such as position,
length /width, orientation, spatial- frequency, etc. This may seem reasonable given
the fact that images also contain localized, oriented structure (i.e., edges), but how
do we really know this is the right choice?

The use of reduced stimuli is sometimes justified by the fact that one would
actually like to know how a neuron responds to a single point of light in an image, or
to a specific spatial-frequency. In this case, one does need to construct a controlled
stimulus. But we would argue that such questions are misplaced to begin with.
Given the nonlinearities inherent in real neurons, there is every reason to believe that
neurons are selective to certain combinations of pixel values or spatial-frequencies,
and so probing the system’s response to one element at a time will not necessarily
tell you how it responds to particular combinations. Of course, we will never know
this until it is tested, and that’s precisely the problem—the central assumption of the
elementwise, reductionist approach has yet to be thoroughly tested.

The brute force solution would be to exhaustively search the stimulus space. How-
ever, even an 8 X 8 patch with 6 bits of grey level requires searching 23%* > 10'%° pos-
sible combinations. Needless to say, this is far beyond what any experimental method
could explore. Therefore, the hope is that the non-linearities are smooth enough to
allow predictions from a smaller set of stimuli.

We believe that the solution to these problems is to turn to natural scenes. Our
intuitions for how to reduce stimuli should be guided by the sorts of structure that
occur in natural scenes, not arbitrary mathematical functions or stimuli that are
simple to think about or happen to be easy to generate on a monitor. If neurons
are selective to specific combinations of stimuli, then we will need to explore their



responses to the sorts of combinations that occur in natural scenes. And at the same
time, we will need to put more effort into mathematically characterizing the structure
of natural scenes so as to better understand the forms of structure contained in them.
No matter what stimuli one uses to characterize the response of a neuron, the true
test that the characterization is correct is to demonstrate that one can predict the
neuron’s behavior in ecological conditions.

2.3 Biased theories

Currently in neuroscience there is an emphasis on “telling a story.” This often encour-
ages investigators to demonstrate when a theory explains data, not when a theory
provides a poor model. We therefore have theories of grating responses and line
weighting functions which may predict grating responses and line responses with
some success, but which appear to provide poor predictions for natural scene data
(as noted below). In addition, editorial pressures often encourage one to make a tidy
picture out of data that may actually be quite messy. This of course runs the risk of
forcing a picture that does not actually exist. Theories then emerge that are centered
around explaining a particular subset of published data, or which can be conveniently
proven, rather than being motivated by functional considerations—i.e., how does this
help the brain to solve difficult problems in vision?

Hubel and Wiesel introduced the classification of neurons into categories of simple,
complex, and hypercomplex or end-stopped based on their investigations using stimuli
composed largely of bars of light. Simple cells are noted for having oriented receptive
fields organized into explicit excitatory and inhibitory subfields, whereas complex cells
are tuned for orientation but are less sensitive to position and the sign of contrast
(black-white edge vs. white-black edge). Hypercomplex cells display more complex
shape selectivity and some appear most responsive to short bars or the terminations
of bars of light (so-called “end-stopping”). Are these categories real, or a result of
the way neurons were stimulated and the data analyzed?

A widely accepted theory that accounts for the distinction between simple and
complex cells is that simple cells compute a (mostly linear) weighted sum of image
pixels, whereas complex cells compute a sum of the squared and half-rectified outputs
of simple cells of the same orientation but having different positions or phases—i.e.,
the so-called “energy model” (Adelson & Bergen, 1985). This theory is consistent
with measurements of response modulation in response to drifting sinewave gratings,
otherwise known as the “F1/F0 ratio” (Skottun et al., 1991). From this measure one
finds clear evidence for a bimodal distribution of neurons, with simple-cells having
ratios greater than one, and complex-cells having ratios less than one. Recently,
however, it has been shown that this particular nonlinear measure tends to exaggerate
or even introduce bimodality rather than revealing an actual, intrinsic property of the
data (Mechler & Ringach, 2002). When receptive fields are characterized instead by
the degree of overlap between zones activated by increments or decrements in contrast,
one still obtains a bimodal distribution, in addition to a clear separation according
to layer, but the F1/F0 ratio does a poor job at predicting which cells are complex
according to the overlap criterion (Kagan et al., 2002). In addition, the energy model



Figure 3: A natural scene (left), and an expanded section of it (middle). Far right shows
the information conveyed by an array of complex cells at four different orientations. The
length of each line indicates the strength of response of a model complex cell at that location
and orientation. The red dashed line shows the location of the boundary of the log in the
original image.

of complex cells does a poor job accounting for complex cells with a partial overlap
of activating zones. Thus, the way in which response properties are characterized
can have a profound effect on the resulting theoretical framework that is adopted to
explain the results.

The notion of “end-stopped” neurons introduces even more questions when one
considers the structure of natural images. Most natural scenes are not littered with
line terminations or short bars—see for example Figure 3. Indeed, at the scale of
a V1 receptive field, the structures in this image are quite complex and they defy
the simple, line drawing-like characterization of a “blocks world.” Where in such an
image would one expect an end-stopped neuron to fire? By asking this question, one
could possibly be led to a more ecologically relevant theory of these neurons than
suggested by simple laboratory stimuli.

Another theory bias often embedded in investigations of V1 function is the notion
that simple cells, complex cells, and hypercomplex cells are actually coding for the
presence of edges, corners, or other 2D shape features in images. But years of research
in computer vision have demonstrated that it is impossible to compute the presence
even of simple edges in an image in a purely bottom-up fashion (i.e., using a filter
such as a simple or complex cell model). As an example, Figure 3 demonstrates the
result of processing a natural scene with the standard energy-model of a complex
cell. Far from making contours explicit, this representation creates a confusing array
of activity from which it would be quite difficult to make sense of what is going
on. Our perception of crisp contours, corners, and junctions in images is largely a
posthoc phenomenon that is the result of massive inferential computations performed
by the cortex. In this sense then, our initial introspections about scene structure may
actually be a poor guide as to the actual problems faced by the cortex.

In order to properly understand V1 function, we will need to go beyond bottom-



up filtering models and think about the ‘priors’ used by V1, or fed back from higher
areas, for interpreting images (Olshausen, 2003; Lee & Mumford, 2003). Our theories
need to be guided by functional considerations and an appreciation for the ambiguities
contained in natural images, rather than appealing to simplistic notions of feature
detection that are suggested by a select population of recorded neurons using reduced
stimuli.

2.4 Interdependence and contextual effects

It has been estimated that roughly 5% of the excitatory input in layer 4 of V1 arises
from the LGN, with the majority resulting from intracortical inputs (Peters & Payne
1993; Peters et al. 1994). Thalamocortical synapses have been found to be stronger,
making them more likely to be effective physiologically (Ahmed et al., 1994). Nev-
ertheless, based on visually evoked membrane potentials, Chung and Ferster (1998)
have argued that the geniculate input is responsible for just 35% of a layer 4 neurons
response. This leaves 65% of the response determined by factors outside of the direct
feedforward input. Using optical imaging methods, Arieli et al. (1996) show that
the population ongoing activity can account for 80% of an individual V1 neuron’s
response variance. Thus, we are left with the real possibility that somewhere between
60-80% of the response of a V1 neuron is a function of other V1 neurons, or inputs
other than those arising from LGN.

It should also be noted that recent evidence from the early blind has demonstrated
that primary visual cortex has the potential for a wide range of multi-modal input.
Sadato et al (1996) and Amedi et al (2003) demonstrated that both tactile Braille
reading and verbal material can activate visual cortex in those that have been blind
from an early age, even though no such activation occurs in those with normal sight.
This implies that in the normal visual system, primary visual cortex has the potential
for interactions with quite high-level sources of information.

That V1 neurons are influenced by context—i.e., the spatio-temporal structure
outside of the classical receptive field (CRF)—is by now well known and has been the
subject of many investigations over the past decade. Knierim & Van Essen (1992)
showed that many V1 neurons are suppressed by a field of oriented bars outside
the classical receptive field of the same orientation, and Sillito et al. (1995) have
shown that one can introduce quite dramatic changes in orientation tuning based on
the orientation of gratings outside the CRF (see Figure 4). But these investigations
have likely tapped only a portion of the interdependencies and contextual effects that
actually exist.

The problem in teasing apart contextual effects in a reductionist fashion is that
one faces a combinatorial explosion in the possible spatial/featural configurations
of surrounding stimuli such as bars or gratings. What we really want to know is
how neurons respond within the sorts of context encountered in natural scenes. For
example, given the results of Knierim & Van Essen (1993), or Sillito et al. (1995),
what should we reasonably expect to result from the sorts of context seen in the
natural scene of Figure 37 Indeed, it is not even clear whether one can answer the
question since the contextual structure here is so much richer and more diverse than
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Figure 4: a) Knierim & Van Essen (1992) showed that many neurons in V1 of the alert
macaque monkey are inhibited by stimuli outside their classical receptive field, even though
these stimuli by themselves elicit little or no response from the neuron. Shown for each con-
figuration is the peristimulus time histrogram (PSTH) of the neuron’s response (bar denotes
stimulus duration, which was 500 ms.). b) Sillito et al. (1995) showed that the presence of a
grating stimulus outside the classical receptive field (CRF) could have a profound influence
on the orientation tuning to a grating inside the CRF. Shown are the responses—denoted
by the size of the square—to different combinations of grating orientation in the center and
surround.

that which has been explored experimentally. Some of the initial studies exploring
the role of context in natural scenes have demonstrated pronounced nonlinear effects
that tend to sparsify activity in a way that would have been hard to predict from the
existing reductionist studies (Vinje & Gallant, 2000). More studies along these lines
are needed, and most importantly, we need to understand how context is doing this.

Another striking form of interdependence exhibited by V1 neurons is in the syn-
chrony of activity. Indeed, the fact that one can even measure large-scale signals
such as the local field potential or EEG implies that large numbers of neurons must
be acting together. Gray et al. (1989) demonstrated gamma-band synchronization
between neurons in cat V1 when bars moved through their receptive fields in sim-
ilar directions, suggesting that synchrony is connected to a binding process. More
recently, Worgotter et al. (1998) have shown that receptive field sizes change sig-
nificantly with the degree of synchrony exhibited in the EEG, and Maldonado et al.
(2004) have shown that periods of synchronizaton preferentially occur during periods
of fixation as opposed to during saccades or drifts. However, what role synchrony
plays in the normal operation of V1 neurons is entirely unclear, and it is fair to say
that this aspect of response variance remains a mystery.

2.5 Ecological deviance

Publishing findings only in conditions when a particular model works would be poor
science. It is important to know not only where the current models can successfully
predict neural behavior, but also under what conditions they break down and why.
And as we have emphasized above, it is most important to know how they fare under
ecological conditions. If the current models fail to predict neural responses under
such conditions, then the literature should reflect this.
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The Gallant lab at UC Berkeley has for the past several years attempted to see
how well one can predict the responses of V1 neurons to natural stimuli using a
variety of different models. However, assessing how well these models fare, and what
it implies about our current understanding of V1, is difficult for two reasons. One is
that responses to repeated trials vary, and so if one wishes to attribute the variability
to noise, then one must measure the inter-trial variability and discount this from
the unexplained variance. The other problem is that whatever model is chosen, one
is always subject to the criticism that it is not sufficiently elaborate, and thus any
inability to predict the neuron’s response is simply due to some missing element in
the model.

For example, David, Vinje & Gallant (1999) have explored two different types of
models—a linear model in which the neuron’s response is a weighted sum of the image
pixels, and a “Fourier power” model in which the neuron’s response is a weighted sum
of the local power spectrum (which is capable of capturing the position or phase invari-
ance non-linearity of a complex cell). After correcting for inter-trial variability, which
is only approximate due to the limited number of trials, these models can explain
approximately 20-30% of the response variance. It is possible that with more trials,
and with the addition of non-linearities such as contrast normalization, adaptation,
and response saturation, the fraction of variance explained would rise considerably.
However, our own view is that these are well-established models that have been given
a fair run for their money, and the addition of simple response non-linearities such as
these is unlikely to improve matters much. Moreover, we contend that one can not
easily dismiss inter-trial variability as “noise”—e.g., it could well be due to internally
generated activity that plays an important role in information processing that we
simply do not as yet understand (Arieli et al., 1996; see also Section 3.1). Given
these results with both linear and Fourier power models, we conjecture the best-case
scenario is that the percentage of variance explained is likely to reach an asymptote
of 30-40% with the standard model.

One of the reasons for our pessimism is due to the way in which these models fail.
For example, Figure 5 shows data collected from the Gray lab at Montana State Uni-
versity, Bozeman, in which the responses of V1 neurons to repeated presentations of
a natural movie are recorded using tetrodes. Shown (Fig. 5a) is the peristimulus time
histogram (PSTH) of one neuron, in addition to the predicted response generated
by convolving the neuron’s space-time receptive field (obtained from an M-sequence)
with the movie. The receptive field model does a poor job predicting the neuron’s
actual response, especially in capturing the brief, punctate episodes of activity. More-
over, the responses of nearby neurons (recorded off the same tetrode) having similar
receptive fields are extremely heterogeneous, much more so than expected from a lin-
ear receptive field model (Fig. 5b). It quickly becomes evident from looking at these
and many other such neurons that adding further pointwise non-linearities or simple
network nonlinearities such as contrast normalization is going to be of limited use.
(Recently, Machens et al. (2004) came to a similar conclusion for neurons in auditory
cortex.) What seems to be suggested by this behavior is a fairly complex network
non-linearity involving interactions among neurons that are not yet fully understood.

An important lesson of these findings is that simply mapping out receptive fields
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Figure 5: Activity of V1 neurons in anaesthetized cat in response to a natural movie.
a) The PSTH of one neuron’s response (blue), together with the predicted response (red)
generated from convolving the space-time receptive field with the movie. b) Simultaneous
responses of three different neurons, with similar receptive fields, to the same movie. Spike
rates were obtained by averaging across trials in 30 ms bins.
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does not provide a complete understanding of V1 response properties. For example,
Ringach et al. (2002) have shown that it is possible to map out receptive fields
using natural scenes, and they show that it is even possible to recover some non-
linear effects such as cross-orientation inhibition. However, the resulting receptive
field models were not tested by comparing their predictions to the actual activity of
neurons in response to natural movies. Without doing so, it is difficult assess what
these results really mean.

Unfortunately, journals are often unprepared to publish results when a study
demonstrates the failure of a model, unless the study also presents a competing model
which works well. However, in this case the models being tested are well established
in the literature, and up to now they have been largely assumed to work. Thus,
these sorts of data are crucial to presenting a complete picture of V1 function, even
without a competing model in hand. And given the magnitude of the task before us,
it could take years before a good model emerges. In the meantime, what would be
most helpful is to accumulate a database of single unit or multi-unit data (stimuli and
neural responses) that would allow modelers to test their best theory under ecological
conditions.

Finally, it should be noted that much better success has been obtained in using
receptive field models to predict the responses of neurons to natural scenes in the
LGN (Dan et al., 1996), or the response of cortical neurons to purely static images
(Smyth et al., 2003). This would seem to suggest that the difficulty in predicting
responses in cortex has to do with the effects of the massive, recurrent intra-cortical
circuitry that is engaged during the natural dynamics of vision.

2.6 Summary

Table 1 presents a summary of the five problems we have identified with the current,
established view of V1 as a “Gabor filter bank.” Given these factors, is it possible
to quantify how well we currently understand V1 function? We attempt to estimate
this as follows:

fraction of population

[fraction understood] = |plained from neurons
recorded

recorded

fraction of variance ex—]
X

If we consider that roughly 40% of the population of neurons in V1 has actually been
recorded from and characterized, together with what appears to be 30-40% of the
response variance of these neurons that is explained under natural conditions using
the currently established models, then we are left to conclude that we can currently
account for 12-16% of V1 function. Thus, approximately 85% of V1 function has yet
to be explained.?

3We have primarily drawn upon the Gallant lab’s data for obtaining the percentage of variance
explained, and so we are assuming that their methods for isolating neurons are subject to the same
biases in sampling discussed earlier.

14



Biased
sampling

Biased stimuli

Biased theories

Interdependence
& context

Ecological
deviance

large neurons;
visually respon-
sive neurons;
neurons with

high firing-rates

use of reduced
stimuli such as
bars, gratings &
spots

simple/complex
cells; data-
driven theories

vs. functional

theories

influence of
intra-cortical
input, context
in

natural scenes.
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tions of standard

models

synchrony

Table 1: Five problems with the current view of V1.

3 New theories

Given the above observations, it becomes clear that there is so much unexplored
territory that it is very difficult to rule out theories at this point (although there
are some obvious bounds dictated by neural architecture—e.g., fan-in/fan-out, the
spatial extent of axonal and dendritic arbors, etc.). In the sections below, we discuss
some of the theories that are plausible given our current data. However, it must
be emphasized that considering that there may exist a large family of neurons with
unknown properties, and given the low level of prediction for the neurons studied,
there is still considerable room for theories dramatically different than those theories
presented here.

3.1 Dynamical systems and the limits of prediction.

Imagine tracking a single molecule within a hot gas as it interacts with the surrounding
molecules. The particular trajectory of one molecule will be erratic and fundamentally
unpredictable without knowledge of all other molecules with potential influence. Even
if we presumed the trajectory of the particular molecule was completely deterministic
and following simple laws, in a gas with large numbers of interacting molecules one
could never provide a prediction of the path of a single molecule except over very
short distances.

In theory, the behavior of single neurons may have similar limitations. To make
predictions of what a single neuron will do in the presence of a natural scene may
be fundamentally impossible without knowledge of the surrounding neurons. The
non-linear dynamics of interacting neurons may put bounds on how accurately the
behavior of any neuron can be predicted. And at this time, we cannot say where that
limit may be.

What is fascinating in many ways then is that neurons are as predictable as they
are. For example, work from the Gallant lab has shown that under conditions where a
particular natural scene sequence is repeated to a fixating macaque monkey, a neuron’s
response from trial-to-trial is fairly reliable (e.g., Vinje & Gallant, 2000). This clearly
suggests that the response is dependent in large part on the stimulus, certainly more
than a molecule in the “gas model.” So how do we treat the variability that is not
explained by the stimulus? We may find that the reliability of a local group of neurons
is more predictable than a single neuron, which would then require multi-electrode
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recording to attempt to account for the remaining variance. For example, Arieli et al.
(1996) have shown that much of the inter-trial variability may be explained in terms of
large-scale fluctuations in ongoing activity of the surrounding population of neurons
measured using optical recording. However, what role these large-scale fluctuations
play in the normal processing of natural scenes has yet to be investigated.

3.2 Sparse, overcomplete representations

One effort to explain many of the non-linearities found in V1 is to argue that neurons
are attempting to achieve some degree of gain control (e.g., Heeger, 1992). Because
any single neuron lacks the dynamic range to handle the range of contrasts in natural
scenes, it is argued, the contrast response must be normalized. Here we provide
a different line of reasoning to explain the observed response non-linearities of V1
neurons (further details are provided by Olshausen & Field, 1997, and Field & Whu,
2004). We argue that the spatial non-linearities primarily serve to reduce the linear
dependencies that exist in an overcomplete code, and as we shall see this leads to a
fundamentally different set of predictions about the population activity.

Consider the number of vectors needed to represent a particular set of data with
dimensionality D (e.g., an 8 x 8 pixel image patch would have D = 64). No matter
what form the data takes, such data never requires more than D vectors to represent
it. A system where data with dimensionality D is spanned by D vectors is described
as “critically sampled.” Such critically sampled systems (e.g., orthonormal bases)
are popular in the image coding community as they allow any input pattern to be
represented uniquely, and the transform and its inverse are easily computed. The
wavelet code, for example, has seen widespread use, and wavelet-like codes similar to
that of the visual system have been shown to provide very high efficiency, in terms
of sparsity, when coding natural scenes (e.g., Field, 1987). Some basic versions of
ICA also attempt to find a critically sampled basis which minimizes the dependencies
among the vectors, and the result is a wavelet-like code with tuning much like the
neurons in V1 (Bell and Sejnowski, 1997; van Hateren & van der Schaaf 1998).

However, the visual system is not using a critically sampled code. In cat V1,
for example, there are 25 times as many output fibers as there are input fibers from
the LGN, and in macaque V1 the ratio is on the order of 50:1. Such overcomplete
codes have one potential problem: the vectors are not linearly independent. Thus, if
neurons were to compute their output simply from the inner-product between their
weight vector and the input, their responses will be correlated.

Figure 6a shows an example of a two-dimensional data space represented by three
neurons with linearly dependent weight vectors. Even assuming the outputs of these
units are half-rectified so they produce only positive values, the data are redundantly
represented by such a code. The only way to remove this linear dependence is through
a non-linear transform. One of the non-linear transforms that will serve this goal
is shown in Figure 6b. Here, we show the iso-response curves for the same three
neurons. This curvature represents an unusual non-linearity. For example, consider
the responses of a unit to two stimuli: the first stimulus aligned with the neuron’s
weight vector, and a second stimulus separated by 90 degrees. The second stimulus
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Figure 6: Overcomplete representation. a) Shown are the iso-response contours of three
linear neurons (with half-wave rectification) having linearly dependent weight vectors. A
stimulus falling anywhere along a given contour will result in the same response from the
neuron. A stimulus falling in the upper half-plane will result in responses on all three
neurons, even though only two would be required to uniquely determine its position in the
space. b) Curving the response contours removes redundancy among these neurons. Now
only two neurons will code for a stimulus anywhere in this space. ¢) A full tiling of the 2D
stimulus space now requires eight neurons, which would be overcomplete as a linear code,
but critically sampled given this form of non-linear response.

will have no effect on the neuron on its own since its vector is orthogonal to that
of the neuron. However, when added to the first vector, the combined stimulus will
be on a lower iso-response curve (i.e. the neuron will have reduced its activity). In
other words, the response curvature of the neuron results in a non-linearity with the
characteristic “non-classical,” suppressive behavior: Stimuli which on their own have
no affect on the neuron (stimuli orthogonal to the principal direction of the neuron),
can modulate the behavior of an active neuron. This general non-linearity comes
in several forms and includes end-stopping and cross orientation inhibition, and is
what is typically meant by the term “non-classical surround.” Indeed, as Zetzsche et
al (1999) note, this curvature is simply a geometric interpretation of such behaviors.
With the addition of a compressive non-linearity this curvature results in the behavior
described as “contrast normalization.”

In contrast to the gain control or divisive normalization theory, we argue that
the non-linearities observed in V1 neurons are present primarily to allow a large
(overcomplete) population of neurons to represent data using a small number of active
units, a process we refer to as “sparsification.” The goal is not to develop complete
independence, as the activity of any neuron partially predicts the lack of activity in
neighboring neurons. However, the code allows for expanding the dimensionality of
the representation without incurring the linear dependencies that would be present
in a non-orthogonal code.

Importantly, this model predicts that the non-linearities are a function of the angle
between the neuron’s weight vector and those surrounding it. Future multi-electrode
recordings may provide the possibility to test this theory. From the computational
end, we have found that our sparse coding network (Olshausen & Field, 1996; 1997)
produces non-linearities much like those proposed. It seems possible, then, that the

17



family of non-linearities found in V1 can eventually be explained within one general
framework of efficient coding.

3.3 Contour integration

If the contrast normalization model were a complete account of V1 neurons, then
we might expect the surround suppression to be relatively unspecific. However, the
physiological and anatomical evidence implies that V1 neurons have a rather selective
connection pattern both within layers and between layers. For example, research
investigating the lateral projections of pyramidal neurons in V1 has shown that the
long range lateral connections project primarily to regions of the cortex with similar
orientation columns, as well as to similar ocular dominance columns and cytochrome
oxidase blobs (Malach et al., 1993; Yoshioka et al., 1996). The short range projections,
by contrast, do not show such specificity. Early studies exploring the horizontal
connections in V1 discovered that selective long range connections extend laterally
for 2 to 5 mm parallel to the surface (Gilbert and Wiesel, 1979), and studies on the
tree shrew (Rockland and Lund, 1982; Bosking et al., 1997), primate (e.g., Malach et
al., 1993; Sincich & Blasdel, 2001), ferret (Ruthazer & Stryker, 1996), and cat (e.g.,
Gilbert & Weisel, 1989) have all demonstrated significant specificity in the projection
of these lateral connections.

A number of neurophysiological studies also show that co-linearly oriented stimuli
presented outside of the classical receptive field have a facilitatory effect (Kapadia et
al., 1995; Kapadia et al., 2000; Polat et al. 1998). The results demonstrate that when
a neuron is presented with an oriented stimulus within its receptive field, a second
collinear stimulus will sometimes increase the response rate of the neuron while the
same oriented stimulus presented orthogonal to the main axis of orientation (displaced
laterally) will produce inhibition, or at least less facilitation.

These results suggest that V1 neurons have an orientation- and position-specific
connectivity structure, beyond what is usually included in the standard model. One
line of research suggests that this connectivity helps resolve the ambiguity of contours
in scenes and is involved in the process of contour integration (e.g., Field et al 1993).
This follows from work showing that the amplification of locally co-aligned, oriented
elements provides an effective means of identifying contours in natural scenes (Parent
& Zucker, 1989; Sha’ashua & Ullman, 1990). This type of mechanism could work in
concert with the sparsification non-linearities mentioned above, since the facilitatory
interactions would primarily occur among elements that are non-overlapping—i.e.,
receptive fields whose weight vectors are orthogonal.

An alternative theoretical perspective is that the effect of the orientation- and
position-specific connections should be mainly suppressive, with the goal of remov-
ing dependencies among neurons that arise due to the structure in natural images
(Schwartz & Simoncelli, 2001). In contrast to the contour integration hypothesis,
which proposes that the role of horizontal connections is to amplify the structure of
contours, this model would attempt to attenuate the presence of such structure in the
V1 representation. Although this may be a desirable outcome in terms of redundancy
reduction, we would argue that the cortex has objectives other than redundancy re-
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Figure 7: The three line-strokes at left are interpreted as different objects depending on
the arrangement of occluders. Thus, pattern completion depends on resolving figure-ground
relationships. At what level of processing is this form of completion taking place? Since it
would seem to demand access to high-resolution detail in the image, it can not simply be
relegated to high-level areas.

duction per se (Barlow, 2001). Chief among these is to provide a meaningful represen-
tation of image structure that can be easily read out and interpreted by higher-level
areas.

Finally it is important to note, with respect to the discussion in the previous
section, that the type of redundancy we are talking about here is due to long-range
structure in images beyond the size of a receptive field, not that which is simply due
to the overlap among receptive fields. Thus, we propose that the latter should be
removed via sparsification, while the former should be amplified by the long-range
horizontal connectons in V1.

3.4 Surface representation

We live in a three-dimensional world, and the fundamental causes of images that
are of behavioral relevance are surfaces, not two-dimensional features such as spots,
bars, edges, or gratings. Moreover, we rarely see the surface of an object in its
entirety—occlusion is the rule, not the exception, in natural scenes. It thus seems
quite reasonable to think that the visual cortex has evolved effective means to parse
images in terms of the three-dimensional structure of the environment—i.e., surface
structure, foreground/background relationships, etc. Indeed, there is now a strong
body of psychophysical evidence showing that 3D surfaces and figure-ground rela-
tionships consitute a fundamental aspect of intermediate-level representation in the
visual system (Nakayama et al., 1995; see also Figure 7).

Nevertheless, it is surprising how little V1 physiology has actually been devoted to
the subject of three-dimensional surface representation. Recently, a few studies along
these lines have begun to yield interesting findings in extra-striate cortex (Nguyenkim
& DeAngelis, 2003; Zhou, 2000; Bakin et al., 2000). But V1’s involvement in surface
representation remains a mystery. Although many V1 neurons are disparity selective,
this by itself does not tell us how surface structure is represented, nor how figure-
ground relationships of the sort depicted in Figure 7 are resolved.

At first sight it may seem preposterous to suppose that V1 is involved in computing
three-dimensional surface representations. But again, given how little we actually do
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know about V1, combined with the importance of 3D surface representations for
guiding behavior, it is a plausible hypothesis to consider. In addition, problems such
as occlusion demand resolving figure-ground relationships in a relatively high-level
representation where topography is preserved (Lee & Mumford, 2003). There is now
beginning to emerge physiological evidence supporting this idea. Neurons in V1 have
been shown to produce a differential response to the figure vs. background in a scene
of texture elements (Lamme 1995; Zipser et al., 1996), and a substantial fraction of
neurons in V1 are selective to border ownership (Zhou, 2000). In addition, Lee et
al. (1998) have demonstrated evidence for a medial axis representation of surfaces in
which V1 neurons become most active along the skeletal-axis of an object. It seems
quite possible such effects are just the tip of the iceberg, and there could be even
more effects lurking.

3.5 Top-down feedback and disambiguation

Although our perception of the visual world is usually quite clear and unambiguous,
the raw image data that we start out with is not. Looking back at Figure 3, one
can see that even the presence of a simple contour can be ambiguous in a natural
scene. The problem is that information at the local level is insufficient to determine
whether a change in luminance is an object boundary, simply part of a texture, or
a change in reflectance. Although boundary junctions are also quite crucial to the
interpretation of a scene, a number of studies have now shown that human observers
are quite poor judges of what constitutes a boundary or junction when these features
are shown in isolation (Elder et al., 1999; McDermott, 2003). Thus, the calculation
of what forms a boundary is dependent on the context, which provides information
about the assignment of figure and ground, surface layout, and so forth.

Arriving at the correct interpretation of an image, then, constitutes something
of a chicken-egg problem between lower and higher levels of image analysis. The
low-level shape features that are useful for identifying an object—edges, contours,
surface curvature and the like—are typically ambiguous in natural scenes, so they
cannot be computed directly based on a local analysis of the image. Rather, they
must be inferred based on global context and higher-level knowledge. However, the
global context itself will not be clear until there is some degree of certainty about
the presence of low-level shape features. A number of theorists have thus argued
that recognition depends on information circulating through cortico-cortical feedback
loops in order to disambiguate representations at both lower and higher levels in
parallel (Mumford, 1994; Ullman, 1995; Lewicki & Sejnowski, 1997; Rao & Ballard,
1999; Lee & Mumford, 2003).

An example of disambiguation at work in the visual cortex can be seen in the res-
olution of the aperture problem in computing direction of motion. Because receptive
fields limit the field of a view of a neuron to just a portion of an object, it is not
possible for any one neuron to signal with certainty the true direction of the object in
a purely bottom up fashion. Pack & Born (2001) have shown that the initial phase
of response of neurons in MT signals the direction of motion directly orthogonal to a
contour, and that the latter phase of the response reflects the actual direction of the
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object that the contour is part of, presumably from the interaction with other neu-
rons viewing other parts of the object. Interestingly, this effect does not occur under
anaesthesia. A similar delayed response effect has been demonstrated in end-stopped
V1 neurons as well (Pack et al., 2003).

Recent evidence from fMRI points to a disambiguation process occuring in V1
during shape perception (Murray et al., 2002). Subjects viewed a translating dia-
mond that was partially occluded so that the vertices are invisible, resulting in a
bistable percept in which the line segments forming the diamond are seen moving
independently in one case, and coherently in the direction of the object motion in
the other case. When subjects experience the coherent motion and shape percept,
activity in LOC increases while activity in V1 decreases. This is consistent with the
idea that when neurons in LOC are representing the diamond, they feed back this
information to V1 so as to refine the otherwise ambiguous representations of contour
motion. If the refinement of activity attenuates the many incorrect responses while
amplifying the few that are consistent with the global percept, the net effect could
be a reduction as seen in the BOLD signal measured by fMRI. An alternative inter-
pretation for the reduction in V1 is based on the idea of predictive coding, in which
higher areas actually subtract their predictions from lower areas.

There exists a rich set of feedback connections from higher levels into V1, but little
is known about the computational role of these connections. Recent experiments in
which higher areas are cooled to look at the effect upon activity in lower areas seem to
suggest that these connections play a role in enhancing the salience of stimuli (Hupe
et al., 1998). But we would argue that feedback has a far more important role to play
in disambiguation, and as far as we know, no one has yet investigated the effect of
feedback using such cooling techniques under normal conditions that would require

disambiguation. (See also Young (2000) for similar arguments to those presented
here.)

3.6 Dynamic routing

A challenging problem faced by any visual system is that of forming object representa-
tions that are invariant to position, scale, rotation, and other common deformations
of the image data. The currently accepted, traditional view is that complex cells
constitute the first stage of invariant representation by summing over the outputs of
simple-cells whose outputs are half-rectified and squared—i.e., the classical “energy
model” (Adelson & Bergen 1985). In this way, the neuron’s response changes only
gradually as an edge is passed over its receptive field. This idea forms the basis of
so-called “Pandemonium models,” in which a similar feature extraction and pooling
process is essentially repeated at each stage of visual cortex (see Tarr (1999) for a
review).

However, the Pandemonium model leaves much to be desired—namely, there is
no provision for how phase, or information about relative spatial relationships, is
preserved. Clearly, though, we have conscious access to this information. In addition,
resolving figure/ground relationships and occlusion demands that higher levels of
analysis have access to this information as well.
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One of us has proposed a model for forming invariant representations that pre-
serves relative spatial relationships by explicitly routing information at each stage of
processing (Olshausen et al. 1993). Rather than passively pooling, information is
dynamically linked from one stage to the next by a set of control neurons that pro-
gressively remaps information into an object-centered reference frame. Thus, it is pro-
posed that there are two distinct classes of neurons—those conveying image/feature
information, and those controlling the flow of information. The former corresponds
to the invariant part, the latter to the variant part. The two are combined multi-
plicatively, so mathematically it is equivalent to a bilinear model (e.g., Tenenbaum
& Freeman, 2000; Grimes & Rao, 2003).

Is it possible that dynamic routing occurs in V1 and underlies the observed shift-
invariant properties of complex cells? If so, there are at least two things we would
expect to see: 1) that at any given moment a complex cell is effectively connected to
only one or a small fraction of simple cells to which it is physically connected, and
2) that there are control neurons which dynamically gate these connections. Interest-
ingly, the observed invariance properties of complex cells are just as consistent with
the idea of routing as they are with pooling. What could possibly distinguish between
these models is to look at the population activity: if the complex cell outputs are the
result of passive pooling, then one would expect a dense, distributed representation
of contours among the population of complex cells. Whereas if information is routed
then the representation at the complex cell level would remain sparse. The control
neurons, on the other hand, would look something like contrast normalized simple
cells, which represent phase independent of magnitude (Zetzsche & Rohrbein, 2001).

One of the main predictions of the dynamic routing model is that the receptive
fields of the invariant neurons would be expected to shift depending on the state of
the control neurons. Such effects have been seen in V4, where some neurons shift
their receptive fields depending on where the animal is directing its attention (Moran
& Desimone, 1985; Connor et al., 1997. And in V1, Brad Motter has shown that
neurons appear to shift their receptive fields in order to compensate for the small
eye movements that occur during fixation (Motter & Poggio, 1990; Motter, 1995),
although Gur & Snodderly (1997) provide evidence to the contrary. Thus, there
exists some evidence for dynamic routing in visual cortex, but further experiments
are needed in order to characterize how and to what extent this occurs in V1 under
normal viewing conditions.

4 Conclusions

Our goal in this article has been to point out that there are still substantial gaps in
our knowledge of V1 function, and more importantly, that there is more room for
new theories to be considered than the current conventional wisdom allows. We have
identified five specific problems with the current view of V1, emphasizing the need
for using natural scenes in experiments, in addition to multi-unit recording methods,
in order to obtain a more representative picture of V1 function. While the single-
unit, reductionist approach has been a useful enterprise for getting a handle on basic
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response properties, we feel that its usefulness as a tool for investigating V1 function
has nearly been exhausted. It is now time to dig deeper, using richer, ecologically
relevant experimental paradigms, and developing theories that can help to elucidate
how the cortex performs the computationally challenging problems of vision.

As we explore the response properties of V1 neurons using natural scenes, we are
likely to uncover some interesting new phenomena that defy explanation with current
models. It is at this point that we should be prepared to revisit the reductionist
approach in order to tease apart what is going on. Reductionism does have its place,
but it needs to be motivated by functionally and ecologically relevant questions,
similar to the European tradition in ethology (Tinbergen, 1972).

At what point will we actually “understand” V1?7 This is obviously a difficult
question to answer, but we believe at least three ingredients are required: 1) an un-
biased sample of neurons of all types, firing rates, and layers of V1, 2) the ability to
observe simultaneously the activities of hundreds of neurons in a local population,
and 3) the ability to predict, or at least qualitatively model, the responses of the
population under natural viewing conditions. Given the extensive feedback connec-
tions into V1, in addition to the projections from pulvinar and other sources, it seems
unlikely that we will ever understand V1 in isolation. Thus, our investigations must
also be guided by how V1 fits into the bigger picture of thalamo-cortical function.
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