Flow within Two Concentric Cylinders

Contributed by Prof. John Cimbala and Matthew Erdman, The Pennsylvania State University

Part 1: Analytical Solution

An incompressible Newtonian liquid is confined between two concentric circular cylinders of infinite length - a solid inner cylinder of radius R_{i} and a hollow, stationary outer cylinder of radius R_{o}. (See sketch; the z axis is out of the page.) The inner cylinder rotates at angular velocity Ω_{i}. The outer cylinder rotates at angular velocity Ω_{0}. The flow is steady, laminar, and twodimensional in the r - θ plane. The flow is also rotationally symmetric, meaning that nothing is a function of coordinate $\theta\left(u_{\theta}\right.$ and p are functions of radius r only). The flow is also circular, meaning that velocity component $u_{r}=0$ everywhere.
(a) Generate an exact expression for velocity component u_{θ} as a function of radius r and the other parameters in the problem. You may ignore gravity. Show all your work.
(b) Plot $u_{\theta}(\mathrm{m} / \mathrm{s})$ as a function of radius $r(\mathrm{~m})$ for the particular case in which $R_{i}=0.07 \mathrm{~m}, R_{o}=0.12 \mathrm{~m}, \Omega_{i}=100 \mathrm{rpm}$, and $\Omega_{o}=-200$
 rpm. For consistency, use a curve only (no symbols) on your plot.

Part 2: Numerical Solution using ANSYS FLUENT

Repeat the above problem using ANSYS FLUENT. A free student version of ANSYS Workbench (including FLUENT) is available for students to download onto their own computers! You can get the free download at http://www.ansys.com/student. Make sure you follow the installation directions carefully. [Warning: Installation is more cumbersome than most software that you download because of the licensing, but it works.]

Watch the YouTube tutorial (https://www.youtube.com/watch?v=3DnLP9-UruA\&feature=youtu.be) on how to use ANSYS Fluent to set up and solve a problem like this. Run the CFD code to convergence for this problem. Plot u_{θ} as a function of radius r on the same plot as the previous problem and compare. For consistency, use symbols only (no curve) for these data so that the CFD results are symbols and the analytical (exact) solution is a curve. If all goes well with both your analytical solution (previous problem) and your CFD solution, the two profiles should agree well. If not, you have probably made an error somewhere.

