
C2S2 Analog Subteam

Analog FA23 SP24 Repository Guide

Compiled by Daniel Kaminski

Table of Contents

Naming Conventions 2
Cases and Word Seperation . 2
File Versioning . 2

Working Tree 3
Main Branch . 3
Dev Branch . 3
FA22 SP23 Branch . 3

Basic Command Line Interface (CLI) Git Tutorial 4

Naming Conventions

Cases and Word Seperation

It will be standard to use an underscore Pascal case naming convention. This means that the

first letter of every word will be capitalized, and underscores will be used to signify different

words. Some examples are shown below.

This Is A Sample File Name.txt (1)

ADC SigmaDelta 1Bit.mag (2)

Testing Circuit SP24.sch (3)

While you do not have to be exact with what counts as a word and what doesn’t (for example,

”1Bit” or ”ADC”), just do what you see to be most sensible. Sometimes words can be

combined, like ”SigmaDelta”, if they can sensibly go together. In this case, make

sure to capitalize each word. Try to make things as verbose and understandable for others as

possible. Please make sure to save your files with this naming convention, and please rename

any existing files to match this convention (at least those you’re going to upload to the GitHub

page).

File Versioning

To ensure that file versioning is as understandable as possible, please try to follow the following

conventions.

File Name Stage pVersion pSubVersion.Extension (4)

In this case, the ”Stage” is essentially whether something is in the development stage (0), or

if it’s ready for production/usage (1), Version is how many large changes have been made, and

SubVersion is simply how many changes have been made since the last major version update.

For example, if you’re working on a 1-bit ∆Σ ADC that is just starting development in Magic

(see .mag extension), you could use the filename in line 5 (line numbers are shown to the right

of the content). The ”p” is used instead of a ”.” to avoid issues with certain software.

ADC SigmaDelta 1Bit 0p0p0.mag (5)

This naming convention indicates that it is a 1-bit ∆Σ ADC that is currently under devel-

opment, and is in its first revision. When a major change is made, the Version number should

be increased by 1. It should be noted that these values can go above 9, for example, a valid

versioning value is ”0p1p23,” which means that the project is in development, and there have

Page 2 of 5

https://github.com/cornell-c2s2/Analog_FA23_SP24

been 23 changes since the last major change (another major change would reset the version to

”0p2p0”).

Relatively speaking, a minor change would be changing how something is routed or re-

exporting from magic to LTSpice, while a major change would be adding a new block to a

design, or fixing a fundamental flaw. Minor changes would be work that could be completed in

about a week, while major changes should occur around every 2-4 weeks. In general, make

sure to save often.

Working Tree

Main Branch

The main branch will always contain the main files for the project. You can switch to it using

command 6, where git calls the git package, checkout ”checks-out” to a different source, -b

specifies that this source is a branch, and main specifies that the branch being switched to is

the main branch.

git checkout -b main (6)

You should more or less never use the main branch unless told to do so by the team lead.

The main branch is meant to be an up-to-date presentation of the project, so merging the dev

branch with the main branch can introduce a bug from the development branch that hasn’t yet

been fixed. Anyone who is relying on functional files will see that the main branch has been

changed, and on attempting to use the new files will experience issues. So, almost all the work

will be performed in the dev branch, which is the subject of the next section.

Dev Branch

The dev branch is where the working files will live. This is where you should upload all the

files you are working with, regardless of whether you think they are important or not. Of

course, if something is too large to be uploaded, check with the subteam to see if it should be

added. Overall, this branch should be where most of the work goes on, with changes to the

main branch only occurring after a major modification is begun, worked on, and polished. The

importance of having this backup branch cannot be overstated. To switch to this branch, run

command 6, but replace ”main” with ”dev”. Git should then tell you that you have switched

over, and running ”ls” if you’re on Linux or examining your files on other operating systems

should show that you are up-to-date with the dev branch.

FA22 SP23 Branch

The purpose of this branch should be relatively self-explanatory. This is where the testing goes

on for the op-amp taped out last year, and all the relevant files, including data and graphs (as

well as the python files used to generate those graphs) should be placed here. This is a critical

portion of testing documentation, and will be referenced on the testing Cadence page.

Page 3 of 5

Basic Command Line Interface (CLI) Git Tutorial

A great git tutorial is already on Confluence, so please check that out if you’re still confused

after this basic tutorial. The linked tutorial also goes over how to set up Git, and how to

download a repository, configure your password and username, etc. Of course, there is also

a plethora of resources available online, as the git CLI is a very widely used tool. Here, the

commands relevant to just this repository and its current branches will be mentioned. The

commands from now on will be performed using the Git CLI.

The first command (command 7) is used to clone the GitHub repository (Analog FA23 SP24)

to your current directory. In a bash shell, you can check what that directory is with the com-

mand ”pwd.”

git clone https://github.com/cornell-c2s2/Analog FA23 SP24.git (7)

You can then switch to either the dev (equation 8) or the FA22 SP23 (equation 9) branches,

depending on whether you’re developing the ADC or testing the OpAmp (respectively). Check

that you’re on this branch by looking at the files, and seeing that they’re matching with what

you see on the GitHub page (which can be found at the link in command 7).

git checkout -b dev (8)

git checkout -b FA22 SP23 (9)

At this point, you can perform the work you need to perform using the local files. Whatever

you’re doing, you first want to run command 10 to check that you’re up-to-date, replacing the

branch name with whatever branch you’re working on.

git pull origin BRANCHNAME (10)

Once you’re done (and in fact at intermediate points in the git local −→ remote process),

you can run command 11 to check which files have been modified.

git status (11)

You can then ”add”/stage individual files (equation 12), directories (equation 13), or all of

the modified content (equation 14). This tells Git that you’d like to record the changed made

to these files. You then ”commit” these changes locally using command 15, making sure to add

a message stating what you did between the parentheses after the -m flag.

git add . FILE1 FILE2 FILE3 (12)

git add .DIRECTORYNAME/* (13)

git add . (14)

Page 4 of 5

https://confluence.cornell.edu/pages/viewpage.action?pageId=476108648&preview=/476108648/495396783/Git_Tutorial.pdf

git commit -m ”Type your message here explaning what you did” (15)

Committing is essentially like saying that this is the point at which you’d like Git to take

your files, and to store the changes made. This is only done locally, however, so you would

then run equation 16, once again replacing BRANCHNAME with the branch you’re working

on. This command simply sends the files as they were when you committed them to the remote

repository stored on GitHub servers, so that others can access your changed files.

git push origin BRANCHNAME (16)

You may be prompted for a username and password. If you’re using a CLI, there’s a chance

you may need to generate a personal access token for GitHub, the information about which can

be found here. These personal access tokens would be entered in place of your password, and

you want to make sure that you keep these somewhere secure, accessible, and permanent. You

will likely only need to do this if you have 2FA enabled.

This is simply an example workflow, and you can refer to online tutorials, as well as the

tutorial on the C2S2 Confluence page for more information.

Page 5 of 5

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/managing-your-personal-access-tokens

	Naming Conventions
	Cases and Word Seperation
	File Versioning

	Working Tree
	Main Branch
	Dev Branch
	FA22_SP23 Branch

	Basic Command Line Interface (CLI) Git Tutorial

