
C2S2 Git Tutorial

Johnny Martinez

1 Git Setup

Go to this link to install Git. To start, we need to edit our config file by executing
the following commands:

git config –global user.name “YOUR NAME”
git config –global user.email EMAIL
git config –global init.defaultBranch “main”
git config –global core.editor “code”

Ensure that the email you use is the one tied to your GitHub account. The
first two commands configure Git to associate your name and email with your
commits. The third command sets your default branch name to “main.” The
fourth command sets VSCode as your standard text editor for Git. Now, when
you type “code” into the command line, a VSCode window will appear. If you
would like to edit your config file directly, type

git config –global -e

2 Making a Repository

To make a repository, navigate to the directory you would like to work out of,
and execute the following commands:

mkdir tutorial
cd tutorial

Note, as a general rule of thumb, do not put spaces in file or folder names!
Now, let’s make a GitHub repository. First, go to the GitHub website. Click

on the green button labeled “new.”
After pressing the button, your screen should look like figure 2. Let’s name

our repository “git-tutorial.” We can leave the description blank for now, but
just know it is there for future reference. Also, be sure to select ”Add a
README file.” Now push the “create repository button.”

1

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://github.com/


Figure 1: GitHub homepage

Figure 2: GitHub repository creation page

2



Figure 3: HTTPS link to clone repository

Great! We should now have an empty GitHub repository (aside from the
README file). Let’s clone the repository into the local directory we created
before. To do this, press the green button labeled “code.” Copy the link in the
HTTPS section.

Now, open the terminal. Make sure you are working inside of the folder you
previously made and execute the following:

git clone <REPO LINK>

If all went well, we have now cloned the remote repository in our local
directory! You can check to see if the repository has been cloned by typing
“ls” in the command line, and ensuring there is a folder called “git-tutorial” in
your current directory. Let’s populate our local repository with some files by
executing the following:

cd git-tutorial
echo “a text file named file 1” >file1.txt
echo “a text file named file 2” >file2.txt
echo “// A blank Verilog file” >module.v
mkdir subdir
cd subdir
echo “a text file named file 3” >file3.txt
cd ..

The above commands make two text files (file1, file2), one Verilog file (mod-
ule), one subdirectory (subdir), and another text file (file3) within subdir. “cd
..” is used to navigate to the parent directory of your current directory.

3



3 The Git Workflow

Before proceeding, I want to take a second to describe the Git Workflow. It is
mainly divided into four sections:

1. Working Directory: The working directory, also known as the working
tree, is your local directory where you create, modify, and organize your
project’s files. It’s the place where you do your actual work.

2. Staging Area (Index): The staging area, often referred to as the ”in-
dex,” acts as a middle ground between your working directory and the
commit history. It’s where you prepare and organize your changes before
committing them. When you make changes to files in your working direc-
tory, you can choose to stage specific changes or files for the next commit.
This selective staging allows you to commit only the changes you want,
rather than everything in your working directory.

3. Commit: When you commit your changes, you’re taking a snapshot of
the changes in the staging area and creating a new commit in Git’s version
history. Each commit contains the changes you’ve staged. Commits are
permanent and represent milestones in your project’s history.

4. HEAD Commit: The HEAD is a special pointer that points to the
latest commit in the current branch. It represents the snapshot of your
project’s files as they exist in your local repository at the moment. When
you switch branches or checkout a specific commit, the HEAD is updated
to reflect the state of the selected branch or commit.

Now that we have established the basic Git Workflow, let’s learn how to use
it in practice.

3.1 Add

As I mentioned before, we need to actually add our changes in the working
directory, and forward them to the staging area. To do this, we used the git
add command. Observe the following commands:

git add file1.txt
git add file2.txt
git add module.v
git add subdir/file3.txt

git add *.txt
git add *.v

git add .

4



Figure 4: Git status before and after adding files to staging area

Above, I have listed three possible methods to add our files to the staging
area (Each method is separated by a blank line and I will refer to them as
methods 1, 2 and 3 respectively. In method 1, we are individually adding all of
the files that we want to stage. In method 2, we make use of a wildcard character
(*) to stage all text files and verilog files. In method 3, we are recursively
staging all files within the working directory (this is the most common way to
add things to the staging area). To see what files are in the staging area, execute
the following command:

git status

In the terminal, you will be shown “untracked files” or the files not on the
staging area, “changes to be committed” or the files on the staging area, and
commits. Right now, you should have no commits. If you would like to remove
something from the staging area, execute one of the following:

git restore –staged <FILE>

git restore –staged .

The first option is useful for removing individual files, while the other clears
the whole staging area. You can execute “git status” again to check that the
file you specified has been unstaged. To clear the whole staging area, execute:

3.2 Commit

Now that we have added all of our files to the staging area, we want to save
them. To do this, run the following command:

5



git commit -m “initial commit”

By executing this command, we are essentially taking a snapshot of the
staging area, and saving it. Notice, we use the “-m” flag to leave a commit
message. It is good practice to leave a commit message describing what has been
changed or fixed. If you do not include the -m flag in your commit command,
a text file will open up for you to write your commit message.

Commit Best Practices

1. Commit Early and Often: Make small, focused commits as you work
on your project. This allows you to track changes incrementally and makes
it easier to identify when and where issues were introduced.

2. Atomic Commits: Each commit should address a single, logical change
or feature. This practice keeps your commit history clean and makes it
easier to manage and review changes.

3. Commit Messages Matter: As I mentioned before, commit messages
are important! Take a moment to think about your commit messages. Ex-
plain not only ”what” was changed but also ”why” it was changed. Clear
and informative commit messages are essential for effective collaboration.

The reason we want to frequently commit, and leave descriptive messages
is in the case we need to revert our code. Having descriptive messages on the
state of your code for each snapshot will be useful in this situation. We will go
further into depth on reverting to a previous commit in a later section, but for
now just keep this in mind.

3.3 Push

Now that we have committed our local changes, we want to push them to the
remote repository. To do so, type:

git push

Now, if you view your repository on the GitHub website, you should see that
your repository has more than just a README file! As a matter of fact, it now
should have all of the files that were present in our working directory.

4 Branches

Recall, Git stores your code in a series of commits. The most recent commit is
the head commit. When you create a branch, instead of adding a commit to
your main branch or the existing chain of commits, you initiate a distinct series
of commits that diverges or branches off from the main branch pointed to by

6



Figure 5: Branch visualization

the head commit. This branch allows you to work on new features, bug fixes, or
experiments independently without affecting the main branch until you’re ready
to merge your changes back into it. To make a branch, execute the following
command:

git branch <YOUR BRANCH NAME >

Let’s name our branch “c2s2” for this tutorial. To see all of your branches,
run “git branch” without specifying a branch name. You should see a list like
this in the command line.

Figure 6: Enter Caption

The asterisk indicated the branch you are currently working on. To switch
to the branch we just created, execute:

git checkout “C2S2”

If you run “git branch” again, your terminal should look something like this.
Notice, the asterisk is now on the “c2s2” branch. Let’s populate the branch
with some files.

echo >branch1.txt
echo >branch2.txt

7



Now, we can commit and push the changes to our new branch as we would
if on the main branch. The one change we make is that we replace “main” with
the name of our branch (in this case “c2s2”) in the push command.

git add .
git commit -m“added branch1, branch2 text files.”
git push -u origin C2S2

Here, you need “-u origin c2s2” in the push command because git doesn’t
have the remote branch linked to yours yet. A couple of clarifying notes: “origin”
is the default alias for the remote repository we are pushing to. The branch name
”c2s2” is the new name for the remote branch you want to create.

If you now go to the GitHub website, and view the repository, you should
see a green button at the top of the screen labeled “Compare and pull request.”
Before we cover pull requests, I want to clarify one thing. If you clone a directory
locally, and run “git branch” you may not see all of the branches available in
your local repository. To view all of the branches of your repository, run

git branch -a

And, if you want to switch to one of these remote branches, just use ”git
Checkout.” Furthermore, if another person working on the same repository
makes a new branch, to access it, you must run

git fetch –all

5 Pull Requests

Recall, after we pushed our branch to the remote repository, and opened GitHub,
we were prompted with a button to create a pull request.

8



Figure 7: GitHub pull request prompt 1

To merge the “C2S2” branch with our main branch, we need to open a pull
request. To do so, press the button prompting us to open a pull request. Your
screen should now look like figure 8.

Figure 8: GitHub pull request prompt 2

If you look at figure 8, you will see on the right there is a section labeled
“assignees,” as well as a button prompting you to assign yourself. An assignee
is someone tasked with working on a specific pull request or issue. A reviewer
is someone tasked with reviewing, and approving a pull request; you cannot
assign yourself as a reviewer of your own PR so it’s impossible to show that in
a tutorial, but just know it exists. Let’s assign ourselves to the pull request. To
open our pull request, write a description of the pull request in the text box,
and press the button labeled “Create pull request.”

9



Figure 9: GitHub pull request prompt 3

If you want to view the changes that have been made to any files in the
pull request, go to the ”Files changed” section. Because the files we added were
blank text tiles, this section is pretty empty right now. Typically, there will be
more insertions and deletions that happen, and this section will be more densely
populated.

Figure 10: Files changed section

Notice, our branch has no merge conflicts and can be merged. A merge
conflict occurs when there are conflicting changes in different branches, and Git
is unable to automatically resolve the differences during a merge. This typically
happens when two or more contributors make changes to the same part of a file
or to related lines of code in their respective branches. Merge conflicts can also
arise when a file is deleted in one branch but modified in another. We will go
over resolving merge conflicts in a later section. For now, let’s merge our branch
by pressing the button labeled “Merge pull request.”

10



Figure 11: Updated repository

Now, if you view the code section, you will notice our main branch has the
branch1 and branch2 text files we created. We now also need to ensure that our
local repository is up to date. To do this, run the following

git checkout main
git pull

The “git pull” command is a convenient way to update your local branch
with the latest changes from a remote repository in a single step. It helps
keep your local branch in sync with the remote branch, making it useful for
collaborative and team-based development. However, it’s essential to watch for
merge conflicts if there are conflicting changes between your local branch and
the remote branch. Otherwise, you will not be able to pull from the remote
repository.

Sometimes, you are not prompted with the button to create a pull request.
In this case, you need to go to the section labeled ”Pull requests.” Here, not only
can you open a new pull request, but you can see other opened pull requests
made by either yourself or your team members.

Figure 12: Pull requests section

11



6 Reverting Commits

As I am sure you know by this point, Git stores code in a series of commits. To
revert a commit, you can execute the following command:

git checkout <COMMIT HASH>

There are multiple ways to access commit hashes. The first way is in your
terminal. By running the “git log” command, you can view all commits in the
history of the repository. The second way is via the GitHub website.

Figure 13: Git log

Notice, in figure 11, at the top right of the picture there is a clock icon
followed by the number of commits. Click on it. Now, you have access to all of
the commit hashes and can use them to restore past commits.

Figure 14: Commit hash

12


	Git Setup
	Making a Repository
	The Git Workflow
	Add
	Commit
	Push

	Branches
	Pull Requests
	Reverting Commits

