C2S2 Git Tutorial

Johnny Martinez

1.) Git Setup

Go to this link to install Git.
To start, we need to edit our config file by executing the following commands:

git config --global user.name “<YOUR NAME>”
git config --global user.email <EMAIL>

git config --global init.defaultBranch “main”

git config --global core.editor “code”

Ensure that the email you use is the one tied to your GitHub account. The first two commands
configure Git to associate your name and email with your commits. The third command sets your
default branch name to “main.” The fourth command sets VSCode as your standard text editor
for Git. Now, when you type “code” into the command line, a VSCode window will appear. If
you would like to edit your config file directly, type

git config --global -e

2.) Making a Repository
To make a repository, navigate to the directory you would like to work out of, and execute the
following commands:

mkdir tutorial
cd tutorial

Note, as a general rule of thumb, do not put spaces in file or folder names!
Now, let’s make a GitHub repository. First, go to the GitHub website. Click on the green button
labeled “new.”

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://github.com/

< C O B https//github.com

= o Dashboard

Home = Filter 8

@ iimaso -

Top Repositories Updates to your homepage feed X

We've combined the power of the Following feed with the For you feed so there's one place to discover
content on GitHub. There's improved filtering so you can customize your feed exactly how you like it, and a

@ iim469jm469.github.io shiny new visual design.

B comell-c2s2/c2s2_ip Learn more
@ iim469/eced7s0_lab2
@ im469/G.A.LE.-Robot

See more

@ iim469/VerilogAl

haotia /LLaVA Star

comell-c2s2/C2S2: ® % g d
B packetRoutinglnterconnect Visual Instruction Tuning: Large Language-and-Vision Assistant built towards multimodal
GPT-4 level capabilities.

2 comell-zhang/hw-chatbot

®ry ¥ 7%
Pythagora-io/gpt-pilot | =
Recent activity d o Sar
. Dev tool that writes scalable apps from scratch while the developer oversees the
o - implementation
Multiplier stall logic
o oy 7.4

469/0004750,
Cloning a branch

Test case SLTU

Your teams

70 comell-zhang/hw-chatbot

Figure 1: GitHub homepage

C) UNIVERSE23

Get your Al questions answered.

We know you have some.

Get free tickets

Latest changes

Updated IP addresses for GitHub Enterprise
Importer

Actions — Secure deployment rollouts to
protected environments based on select tag
GitHub Actions: NODE_OPTIONS is now
restricted from GITHUB_ENV

Repository Rules — insight enhancements

Explore repositories

© openwrt / openwrt e

After pressing the button, your screen should look like figure 2. Let's name our repository
“git_tutorial.” We can leave the description blank for now, but just know it is there for future
reference. Also, make sure “Add a README file” is selected. Now push the “create repository

button.”

<« C O 8 https;//github.com/new

Create a new repository
Arepository contains all project files, including the revision history. Already have a project repository elsewhere?
Import a repository.

Required fields are marked with an asterisk ()
Repository template

Notemplate ~

¥ with a template reposiory's

Owner* Repository name *

@ imss « /[
Great repository names are short and memorable. Need inspiration? How about fuzzy-parakeet ?

Description (optional)

o q Public
o6

on the intemet can see this repository. You choose who can commit

e
& Who can see and commit {0 this reposiory.

You

Initialize this repository with:
Add a README file
™ e you can wrie a long description for your project Leam more about READMES.

Add gitignore
gitignore tempiate: None. »

o track from a st of emplates. Leam more about ignoring files.

Choose alicense

s others what they can and ca

do with your code. Leam more about foenses.

This will set $main as the default branch. Change the defaut name in your settings

@ You are creating a public reposiory in your personal accouni

Figure 2: GitHub repository creation page

0% Tr

aQ
]
Il

Great! We should now have an empty GitHub repository (aside from the README file). Let’s
clone the repository into the local directory we created before. To do this, press the green button
labeled “code.” Copy the link in the HTTPS section.

« @ O 8 https://github.com/jjma69/git_tutorial 0% w7 Yy =
- -
= O {469 / git_tutorial & T N (3@ (a e
<> Code () Issues 1 Pullrequests () Acions [Projects [J Wiki () Security |~ Insights £ Settings
e git_tutorial Pusic £ Pn || @Unwatch 1 - @ Fork 0 ., gy Star 0
¥ main - ¥ 1branch © 0tags Go to file Add file - About &
Local Codespaces (R&w) No description, website, or topics
e, im468 Initial commit — provided.
Clone aadm
[README.md Initial commit & @ 0 Readme
HTTPS SSH GitHub GLI A Activity
README.md -)
https://github.com/jjm469/git_tutorial.gi LI;I ® 1wal C}"Iﬂ;\
Use Git or checkout with SVN using the web URL. ¥ Oforks

git_tutorial »

[} Download ZIP

& Code 55% faster with Al pair programming.

Start my free trial = Don't show again

Figure 3: HTTPS link to clone repository

Now, open the terminal. Make sure you are working inside of the folder you previously made
and execute the following:

git clone <HTTPS link>

If all went well, we have now cloned the remote repository in our local directory! You can check
to see if the repository has been cloned by typing “Is” in the command line, and ensuring there is
a folder called “git_tutorial” in your current directory. Let’s populate our local repository with
some files by executing the following:

cd git_tutorial

echo “a text file named file 1™ > filel.txt
echo “a text file named file 2” > file2.txt
echo ““// A blank Verilog file” > module.v
mkdir subdir

cd subdir

echo “a text file named file 3” > file3.txt
cd ..

The above commands make two text files (filel, file2), one verilog file (module), one
subdirectory (subdir), and another text file (file3) within subdir. “cd ..” is used to navigate to the
parent directory of your current directory.

2.a The Git Workflow

Before proceeding, I want to take a second to describe the Git Workflow. It is mainly divided
into four sections:

1.

Working Directory: The working directory, also known as the working tree, is your local
directory where you create, modify, and organize your project's files. It's the place where
you do your actual work.

Staging Area (Index): The staging area, often referred to as the "index," acts as a middle
ground between your working directory and the commit history. It's where you prepare
and organize your changes before committing them. When you make changes to files in
your working directory, you can choose to stage specific changes or files for the next
commit. This selective staging allows you to commit only the changes you want, rather
than everything in your working directory.

Commit: When you commit your changes, you're taking a snapshot of the changes in the
staging area and creating a new commit in Git's version history. Each commit contains
the changes you've staged. Commits are permanent and represent milestones in your
project's history.

HEAD Commit: The HEAD is a special pointer that points to the latest commit in the
current branch. It represents the snapshot of your project's files as they exist in your local
repository at the moment. When you switch branches or checkout a specific commit, the
HEAD is updated to reflect the state of the selected branch or commit.

Now that we have established the basic Git Workflow, lets learn how to work with it in practice.

2.b Add

As I mentioned before, we need to actually add out changes in the working directory, and
forward them to the staging area. To do this, we used the git add command. Observe the
following commands:

git add filel.txt

git add file2.txt

git add module.v

git add subdir/file3.txt

git add *.txt
git add *.v

gitadd .

Above, I have listed three possible methods to add our files to the staging area (Each method is
separated by a blank line and I will refer to them as methods 1, 2 and 3 respectively. In method 1,
we are individually adding all of the files that we want to stage. In method 2, we make use of a
wildcard character (*) to stage all text files and verilog files. In method 3, we are recursively
staging all files within the working directory (this is the most common way to add things to the
staging area). To see what files are in the staging area, execute the following command:

git status

In the terminal, you will be shown “untracked files” or the files not on the staging area, “changes
to be committed” or the files on the staging area, and commits. Right now, you should have no
commits. If you would like to remove something from the staging area, execute the following:

git restore --staged <file>

You can execute “git status” again to check that the file you specified has been unstaged. To clear
the whole staging area, execute:

git restore --staged .

2.c Commit
Now that we have added all of our files to the staging area, we want to save them. To do this, run
the following command:

git commit -m “initial commit”

By executing this command, we are essentially taking a snapshot of the staging area, and saving
it. Notice, we use the “-m” flag to leave a commit message. It is good practice to leave a commit
message describing what has been changed or fixed. If you do not include the -m flag in your
commit command, a text file will open up for you to write your commit message.

Commit Best Practices

Commit Early and Often: Make small, focused commits as you work on your project. This
allows you to track changes incrementally and makes it easier to identify when and where issues
were introduced.

Atomic Commits: Each commit should address a single, logical change or feature. This practice
keeps your commit history clean and makes it easier to manage and review changes.

Commit Messages Matter: As I mentioned before, commit messages are important! Take a

moment to think about your commit messages. Explain not only "what" was changed but also
"why" it was changed. Clear and informative commit messages are essential for effective
collaboration.

The reason we want to frequently commit, and leave descriptive messages is in the case we need
to revert our code. Having descriptive messages on the state of your code for each snapshot will
be useful in this situation. We will go further into depth on reverting to a previous commit in a
later section, but for now just keep this in mind.

2.d Push

Now that we have saved a snapshot of our local working directory, we want to push it to the
remote repository. To do so, type

git push origin main

Note, sometimes you may need to replace “main” with “master”.

Now, if you view your repository on the GitHub website, you should see that your repository has
more than just a README file! As a matter of fact, it now should have all of the files that were
present in our working directory. A couple of clarifying notes: “origin” is the default alias for the
remote repository we are pushing to. The branch name "main" is commonly used as the default

branch name in many git repositories. However, some repositories may use "master" instead of
"main" as the default branch name. Generally, it is not good practice to push directly to main. We
circumvent this issue by creating branches and merging them with “main.” This is a perfect
segway into our next section which is about branches!

3.) Branches

Your Work

Master

Figure 4: Branch visualization

Recall, Git stores your code in a series of commits. The most recent commit is the head commit.
When you create a branch, instead of adding a commit to your main branch or the existing chain
of commits, you initiate a distinct series of commits that diverges or branches off from the main
branch pointed to by the head commit. This branch allows you to work on new features, bug
fixes, or experiments independently without affecting the main branch until you're ready to
merge your changes back into it. To make a branch, execute the following command:

git branch <YOUR BRANCH NAME>

Let’s name our branch “c2s2” for this tutorial. To see all of your branches, run “git branch”
without specifying a branch name. You should see a list like this in the command line.

git branch c2s2
git branch

]

Figure 5: Command line snapshot 1 showcasing selected branch

The asterisk indicated the branch you are currently working on. To switch to the branch we just
created, execute:

git checkout “c2s2”

If you run “git branch” again, your terminal should look something like this. Notice, the asterisk
is now on the “c2s2” branch.

$ git checkout c2s2
switched to branch 'c2s2'

$ git branch
*

main

s

Figure 6: Command line snapshot 2 showcasing changed selected branch

Let’s populate the branch with some files.

echo > branchl.txt
echo > branch?2.txt

Now, we can commit and push the changes to our new branch as we would if on the main
branch. The one change we make is that we replace “main” with the name of our branch (in this
case “c2s2”) in the push command.

gitadd .
git commit -m “added branchl, branch?2 text files.”
git push origin c2s2

If you now go to the GitHub website, and view the repository, you should see a green button at
the top of the screen labeled “Compare & pull request.” Before we cover pull requests, I want to
explain a couple of other features of branches. If you want to clone a specific branch directly,
execute:

git clone -b <branchname> <remote-repo-url>

Furthermore, if you clone a directory locally, and run “git branch” you may not see all of the
branches available in your local repository. To view all of the branches of your repository, run

git branch -a

299

And, if you want to switch to any branch, use “git checkout.

4.) Pull Requests

Recall, after we pushed our branch to the remote repository, and opened GitHub, we were
prompted with a button to create a pull request.
=) im0/ git_tutoria Q Type Dto search > [+~ @ n
<> Code (D lssues) Pullrequests () Actions [Projects [0 Wiki (@ Securty | Insights & Settings

@ git_tutorial rusic £ Pn || @Umwach 1 ~ W Fak 0 | . | ¢ S0 | .

About]

§* ©2s2 had recent pushes 1 minute ago Compare & pull request

No description, website, or topics

provided.
¥ main - P 2branches O 0tags Go to file Add file - <> Code »
0 Readme
} . A Activity
Your main branch isn't protected Protect this branch » 0 e
Pratect this branch from force pushing or defetion, of fequife Status checks before merging. Leam more ¢ Ostars
@ 1walching
Y oforks
e, jim469 initial commit 7724233 lastweek {©) 2 commits
subdir nitial commit last week Releases
[READMEmd Initial commit last week
0O filet.xt al commit
0O fle2.bd al commit
Packages
[modulev initial commit ast week
Na packa d
Publish your first package
README.md Z
. . Languages
git_tutorial »
Verilog 100.0%
O 2023 GitHub, Ine: Terms Privacy Security Status Docs Contact GitHub Pricing AP Training Blog About

Figure 7: GitHub pull request prompt 1

To merge the “c2s2” branch with our main branch, we need to open a pull request. To do so,
press the green button.

= O jim46a / git_tutorial Q Type (7o search > + || 1 @.@

<> Code (O lssues % Pullrequests (5 Actons [Projects [0 Wiki (O Security |~ Insights 5 Settings

Open a pull request

Create a new pull request by comparing changes across two branches. If you need to, you can also compare across forks. Learn more about diff comparisons here.

1 | base:man- € comparc:c2s2~ - Able to merge. These branches can be automatically merged

@ \ added branch1, branch? test files ‘ Reviewers i3
No reviews
Write Preview HB I 2 & EZEZ2@F &«
Assignees &
Leave a comment No one—assign yourself
Labels @9
Mone yet
Projects 5
None yet
4
Altach files by dragging & dropping, selecting or pasting them 4]
Milestone 5
N lest
Create pull request ~ o milestons
- . Development
(@ Remember, contributions to this repository should follow our GitHub Community Guidelines.

Use Closing keywords in the description to
automatically close issues

Helpful resources

GitHub Community Guidelines

o 1 commit 2files changed A 1 contributor

- Commits en Oct 19,

added branch1, branch2 test files D neassan)) (€5
e [Im469 committed 52 minutes ago

Once you do that, your screen should look like figure 8 shown below.
Figure 8: Figure 7: GitHub pull request prompt 2

If you scroll down on the screen, you can also see a section like the one below, outlining added
files, changes to pre existing files, etc. Because the files we added were blank text tiles, this
section is pretty empty right now. Typically, there will be more insertions and deletions that
happen, and this section will be more densely populated.

- Commits on Qct 19, 2023

added branch1, branch? test files 0 beasaza | <>
e [im469 committed 53 minutes ago

Showing 2 changed files with 2 additions and 0 deletions. ‘ﬁ‘ Unified
v 1l branchi.txt (0

oo 7 -9,0 +1

1+
voim branchz.txt (0

oo M -0,0 +1 @

N +

Figure 9: Visualization of additions and deletions to be implemented

If you look at figure 7, you will see on the right there is a section labeled “assignees,” as well as
a button prompting you to assign yourself. An assignee is someone tasked with reviewing, and in

some cases confirming a pull request. Let’s assign ourselves. To open our pull request, write a
description of the pull request in the text box, and press the button labeled “Create pull request.”

added branch1, branch2 test files #1 Eat | <> Code
jim468 wants to merge 1 commit into main from czs2 (0

¢y Conversation o o Commits 1 [l Checks o Files changed 2 +2-0mm
@ jim469 commented now Owner) =e+ Reviewers 0

. . No reviews
Added two text files to our repository.
Still in progress? Convert to draft

Assignees @
o (@) added branchi, branchz test files bessaz4 Q
jimasa
A @ iim469 self-assigned this now Labels]
None yet
Add more commits by pushing to the e2s2 branch on jjm469/git_tutorial i
—_— —_— Projects @
Z"’ [None yet
3+ Require approval from specific reviewers before merging Add rule «
Branch protection rules ensure specific people approve pull requests before they're merged
Milestone 5]
) i . Mo milestone
@ Continuous integration has not been set up
GitHub Actions and several other apps can be used to automatically caich bugs and enforce style.
Development 8

Successfully merging this pull request may close these
issues.

° This branch has no conflicts with the base branch
Merging can be performed automatically.
Mone yet

Merge pull request Rl or view command line instructions. Notifications Customize

B Unsubseribe

g notifications because you're watching
Write Preview HB 7T E <& =220 32 6
Leave a comment 1 participant
4
Attach files by dragging & dropping, selecting or pasting them.] & Lock conversation

11 Close pull request

Figure 10: GitHub pull request prompt 3

Notice, our branch has no merge conflicts and can be merged. A merge conflict occurs when
there are conflicting changes in different branches, and Git is unable to automatically resolve the
differences during a merge. This typically happens when two or more contributors make changes
to the same part of a file or to related lines of code in their respective branches. Merge conflicts
can also arise when a file is deleted in one branch but modified in another. We will go over
resolving merge conflicts in a later section. For now, let’s merge our branch by pressing the
button labeled “Merge pull request.” On C2S2, we generally do not allow creators of a pull
request to confirm their own pull request. Furthermore, we use GitHub Actions to run test cases
and ensure modifications to files did not break anything.

@ git_tutorial Fuic

¥ main - ¥ 2 branches

Your main branch isn't protected

Protect this branch from force

e- jim469 Merge pull request #1 from jjm469/c2s2 -

subdir

README.md

branch1.txt

branch2.bxt

file1 txt

file2 txt

0 O0O00 00

module.v

README.md

git_tutorial »

fd Pin ¢Unwatch 1~
© 0tags Go to file Add file ~ <» Code ~
Protect this branch ®
pushing or deletion, or require status checks before merging. Leamn more
g54fa76 1 minute ago ¥5) 4 commits
nitial commit ast week
Initial commit ast week
added branch1, branch2 test files 1 hour age
added branch1, branch2 test files 1 hour ago
nitial commit ast week
nitial commit ast week
nitial commit ast week
4

%y Fork O - ¥y Star 0 -

About &

No description, websile, or topics
provided.

[0 Readme
v Activity
Y¥r Ostars
@ 1 watching
% 0 forks

Releases

Packages

No package:
Publish your fir:

Languages

Verilog 100.0%

Figure 11: Updated main branch after successful merge

Now, if you view the code section, you will notice our main branch has the branch1 and branch2
text files we created. We now also need to ensure that our local repository is up to date. To do
this, run the following

git checkout main

git pull

The “git pull” command is a convenient way to update your local branch with the latest changes
from a remote repository in a single step. It helps keep your local branch in sync with the remote
branch, making it useful for collaborative and team-based development. However, it's essential to
watch for merge conflicts if there are conflicting changes between your local branch and the
remote branch. Otherwise, you will not be able to pull from the remote repository.

5.) Reverting Commits

As I am sure you know by this point, Git stores code in a series of commits. To revert a commit,
you can execute the following command:

git checkout <commit-hash>

There are multiple ways to find commit hashes. The first way is in your terminal. By running the
“git log” command, you can view all commits in the history of the repository. The second way is
via the GitHub website.

e, git_tutorial Public 5P Pin ©Unwatch 1 ~ Y Fork 0~ W Star 0 -

P main ~ ¥ 9branches © 0 tags Goto file Addfile~ | [N About e

No description, website, or topics provided.

rotected
pushing or deletion, or require status checks before merging. Learn more

Your main branch isn®
Protect this branch from force

Protect this branch x 0] Readme

A Activity
v¢ Ostars
jim469 Merge pull request #6 from jjm463/change2 .. 65b411F yestefday {0 14 commits
e, ii ge pull req Jjjmds 9 y y O s ® 1watching
[} READMEmd Initial commit ¥ Oforks
[branchitxt added branch1, branch2 test files yesterday
[branchztxt added branch1, branch2 test files yesterday Releases
No releases published
¥ change changed yesterday Create s new relesse
[change.txt changed yesterday
O filelixt changed filel.txt yesterday Packages
O file2txt initial commit veeks ago No packages published
Publish your first package
[modulex initial commit 2 weeks ago
[new_featuretxt added new feature yesterday
Languages
README.md Vi

Verilog 100.0%

git_tutorial »

Figure 11: GitHub commit information

By pressing the circled button, you will be brought to a screen with all of your commits. You will
have the option to copy a commit hash for any given commit.

¥ main ~
-0 Commits on Oct 20, 2023
Merge pull request #6 from jjm463/change2 - Verified @ eswan: >

@ a6 commited sty
@ s it s o
Figure 11: GitHub hashes
After you revert your commit, you will be able to make a branch, and make any changes as
needed.

