
‭C2S2 Git Tutorial‬
‭Johnny Martinez‬

‭1.) Git Setup‬
‭Go to‬‭this link‬‭to install Git.‬
‭To start, we need to edit our config file by executing the following commands:‬

‭git config --global user.name “<YOUR NAME>”‬
‭git config --global user.email <EMAIL>‬
‭git config --global init.defaultBranch “main”‬
‭git config --global core.editor “code”‬

‭Ensure that the email you use is the one tied to your GitHub account. The first two commands‬
‭configure Git to associate your name and email with your commits. The third command sets your‬
‭default branch name to “main.” The fourth command sets VSCode as your standard text editor‬
‭for Git. Now, when you type “code” into the command line, a VSCode window will appear. If‬
‭you would like to edit your config file directly, type‬

‭git config --global -e‬

‭2.) Making a Repository‬
‭To make a repository, navigate to the directory you would like to work out of, and execute the‬
‭following commands:‬

‭mkdir tutorial‬
‭cd tutorial‬

‭Note, as a general rule of thumb, do not put spaces in file or folder names!‬
‭Now, let’s make a GitHub repository. First, go to the‬‭GitHub‬‭website. Click on the green button‬
‭labeled “new.”‬

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://github.com/

‭Figure 1: GitHub homepage‬

‭After pressing the button, your screen should look like figure 2. Let's name our repository‬
‭“git_tutorial.” We can leave the description blank for now, but just know it is there for future‬
‭reference. Also, make sure “Add a README file” is selected. Now push the “create repository‬
‭button.”‬

‭Figure 2: GitHub repository creation page‬

‭Great! We should now have an empty GitHub repository (aside from the README file). Let’s‬
‭clone the repository into the local directory we created before. To do this, press the green button‬
‭labeled “code.” Copy the link in the HTTPS section.‬

‭Figure 3: HTTPS link to clone repository‬

‭Now, open the terminal. Make sure you are working inside of the folder you previously made‬
‭and execute the following:‬

‭git clone <HTTPS link>‬

‭If all went well, we have now cloned the remote repository in our local directory! You can check‬
‭to see if the repository has been cloned by typing “ls” in the command line, and ensuring there is‬
‭a folder called “git_tutorial” in your current directory. Let’s populate our local repository with‬
‭some files by executing the following:‬

‭cd git_tutorial‬
‭echo “a text file named file 1” > file1.txt‬
‭echo “a text file named file 2” > file2.txt‬
‭echo “// A blank Verilog file” > module.v‬
‭mkdir subdir‬
‭cd subdir‬
‭echo “a text file named file 3” > file3.txt‬
‭cd ..‬

‭The above commands make two text files (file1, file2), one verilog file (module), one‬
‭subdirectory (subdir), and another text file (file3) within subdir. “cd ..” is used to navigate to the‬
‭parent directory of your current directory.‬

‭2.a The Git Workflow‬
‭Before proceeding, I want to take a second to describe the Git Workflow. It is mainly divided‬
‭into four sections:‬

‭1.‬ ‭Working Directory‬‭: The working directory, also known‬‭as the working tree, is your local‬
‭directory where you create, modify, and organize your project's files. It's the place where‬
‭you do your actual work.‬

‭2.‬ ‭Staging Area (Index)‬‭: The staging area, often referred‬‭to as the "index," acts as a middle‬
‭ground between your working directory and the commit history. It's where you prepare‬
‭and organize your changes before committing them. When you make changes to files in‬
‭your working directory, you can choose to stage specific changes or files for the next‬
‭commit. This selective staging allows you to commit only the changes you want, rather‬
‭than everything in your working directory.‬

‭3.‬ ‭Commit‬‭: When you commit your changes, you're taking‬‭a snapshot of the changes in the‬
‭staging area and creating a new commit in Git's version history. Each commit contains‬
‭the changes you've staged. Commits are permanent and represent milestones in your‬
‭project's history.‬

‭4.‬ ‭HEAD Commit‬‭: The HEAD is a special pointer that points‬‭to the latest commit in the‬
‭current branch. It represents the snapshot of your project's files as they exist in your local‬
‭repository at the moment. When you switch branches or checkout a specific commit, the‬
‭HEAD is updated to reflect the state of the selected branch or commit.‬

‭Now that we have established the basic Git Workflow, lets learn how to work with it in practice.‬

‭2.b Add‬
‭As I mentioned before, we need to actually add out changes in the working directory, and‬
‭forward them to the staging area. To do this, we used the git add command. Observe the‬
‭following commands:‬

‭git add file1.txt‬
‭git add file2.txt‬
‭git add module.v‬
‭git add subdir/file3.txt‬

‭git add *.txt‬
‭git add *.v‬

‭git add .‬

‭Above, I have listed three possible methods to add our files to the staging area (Each method is‬
‭separated by a blank line and I will refer to them as methods 1, 2 and 3 respectively. In method 1,‬
‭we are individually adding all of the files that we want to stage. In method 2, we make use of a‬
‭wildcard character (*) to stage all text files and verilog files. In method 3, we are recursively‬
‭staging all files within the working directory (this is the most common way to add things to the‬
‭staging area). To see what files are in the staging area, execute the following command:‬

‭git status‬

‭In the terminal, you will be shown “untracked files” or the files not on the staging area, “changes‬
‭to be committed” or the files on the staging area, and commits. Right now, you should have no‬
‭commits. If you would like to remove something from the staging area, execute the following:‬

‭git restore --staged <file>‬

‭You can execute “git status” again to check that the file you specified has been unstaged. To clear‬
‭the whole staging area, execute:‬

‭git restore --staged .‬

‭2.c Commit‬
‭Now that we have added all of our files to the staging area, we want to save them. To do this, run‬
‭the following command:‬

‭git commit -m “initial commit”‬

‭By executing this command, we are essentially taking a snapshot of the staging area, and saving‬
‭it. Notice, we use the “-m” flag to leave a commit message. It is good practice to leave a commit‬
‭message describing what has been changed or fixed. If you do not include the -m flag in your‬
‭commit command, a text file will open up for you to write your commit message.‬

‭Commit Best Practices‬
‭Commit Early and Often:‬‭Make small, focused commits‬‭as you work on your project. This‬
‭allows you to track changes incrementally and makes it easier to identify when and where issues‬
‭were introduced.‬

‭Atomic Commits:‬‭Each commit should address a single,‬‭logical change or feature. This practice‬
‭keeps your commit history clean and makes it easier to manage and review changes.‬

‭Commit Messages Matter:‬‭As I mentioned before, commit‬‭messages are important! Take a‬
‭moment to think about your commit messages. Explain not only "what" was changed but also‬
‭"why" it was changed. Clear and informative commit messages are essential for effective‬
‭collaboration.‬

‭The reason we want to frequently commit, and leave descriptive messages is in the case we need‬
‭to revert our code. Having descriptive messages on the state of your code for each snapshot will‬
‭be useful in this situation. We will go further into depth on reverting to a previous commit in a‬
‭later section, but for now just keep this in mind.‬

‭2.d Push‬
‭Now that we have saved a snapshot of our local working directory, we want to push it to the‬
‭remote repository. To do so, type‬

‭git push origin main‬

‭Note, sometimes you may need to replace “main” with “master”.‬
‭Now, if you view your repository on the GitHub website, you should see that your repository has‬
‭more than just a README file! As a matter of fact, it now should have all of the files that were‬
‭present in our working directory. A couple of clarifying notes: “origin” is the default alias for the‬
‭remote repository we are pushing to. The branch name "main" is commonly used as the default‬

‭branch name in many git repositories. However, some repositories may use "master" instead of‬
‭"main" as the default branch name. Generally, it is not good practice to push directly to main. We‬
‭circumvent this issue by creating branches and merging them with “main.” This is a perfect‬
‭segway into our next section which is about branches!‬

‭3.) Branches‬

‭Figure 4: Branch visualization‬

‭Recall, Git stores your code in a series of commits. The most recent commit is the head commit.‬
‭When you create a branch, instead of adding a commit to your main branch or the existing chain‬
‭of commits, you initiate a distinct series of commits that diverges or branches off from the main‬
‭branch pointed to by the head commit. This branch allows you to work on new features, bug‬
‭fixes, or experiments independently without affecting the main branch until you're ready to‬
‭merge your changes back into it. To make a branch, execute the following command:‬

‭git branch <YOUR BRANCH NAME>‬

‭Let’s name our branch “c2s2” for this tutorial. To see all of your branches, run “git branch”‬
‭without specifying a branch name. You should see a list like this in the command line.‬

‭Figure 5: Command line snapshot 1 showcasing selected branch‬

‭The asterisk indicated the branch you are currently working on. To switch to the branch we just‬
‭created, execute:‬

‭git checkout “c2s2”‬

‭If you run “git branch” again, your terminal should look something like this. Notice, the asterisk‬
‭is now on the “c2s2” branch.‬

‭Figure 6: Command line snapshot 2 showcasing changed selected branch‬

‭Let’s populate the branch with some files.‬

‭echo > branch1.txt‬
‭echo > branch2.txt‬

‭Now, we can commit and push the changes to our new branch as we would if on the main‬
‭branch. The one change we make is that we replace “main” with the name of our branch (in this‬
‭case “c2s2”) in the push command.‬

‭git add .‬
‭git commit -m “added branch1, branch2 text files.”‬
‭git push origin c2s2‬

‭If you now go to the GitHub website, and view the repository, you should see a green button at‬
‭the top of the screen labeled “Compare & pull request.” Before we cover pull requests, I want to‬
‭explain a couple of other features of branches. If you want to clone a specific branch directly,‬
‭execute:‬

‭git clone -b <branchname> <remote-repo-url>‬

‭Furthermore, if you clone a directory locally, and run “git branch” you may not see all of the‬
‭branches available in your local repository. To view all of the branches of your repository, run‬

‭git branch -a‬

‭And, if you want to switch to any branch, use “git checkout.”’‬

‭4.) Pull Requests‬

‭Recall, after we pushed our branch to the remote repository, and opened GitHub, we were‬
‭prompted with a button to create a pull request.‬

‭Figure 7: GitHub pull request prompt 1‬

‭To merge the “c2s2” branch with our main branch, we need to open a pull request. To do so,‬
‭press the green button.‬

‭Once you do that, your screen should look like figure 8 shown below.‬

‭Figure 8: Figure 7: GitHub pull request prompt 2‬

‭If you scroll down on the screen, you can also see a section like the one below, outlining added‬
‭files, changes to pre existing files, etc. Because the files we added were blank text tiles, this‬
‭section is pretty empty right now. Typically, there will be more insertions and deletions that‬
‭happen, and this section will be more densely populated.‬

‭Figure 9: Visualization of additions and deletions to be implemented‬

‭If you look at figure 7, you will see on the right there is a section labeled “assignees,” as well as‬
‭a button prompting you to assign yourself. An assignee is someone tasked with reviewing, and in‬

‭some cases confirming a pull request. Let’s assign ourselves. To open our pull request, write a‬
‭description of the pull request in the text box, and press the button labeled “Create pull request.”‬

‭Figure 10: GitHub pull request prompt 3‬

‭Notice, our branch has no merge conflicts and can be merged. A merge conflict occurs when‬
‭there are conflicting changes in different branches, and Git is unable to automatically resolve the‬
‭differences during a merge. This typically happens when two or more contributors make changes‬
‭to the same part of a file or to related lines of code in their respective branches. Merge conflicts‬
‭can also arise when a file is deleted in one branch but modified in another. We will go over‬
‭resolving merge conflicts in a later section. For now, let’s merge our branch by pressing the‬
‭button labeled “Merge pull request.” On C2S2, we generally do not allow creators of a pull‬
‭request to confirm their own pull request. Furthermore, we use GitHub Actions to run test cases‬
‭and ensure modifications to files did not break anything.‬

‭Figure 11: Updated main branch after successful merge‬

‭Now, if you view the code section, you will notice our main branch has the branch1 and branch2‬
‭text files we created. We now also need to ensure that our local repository is up to date. To do‬
‭this, run the following‬

‭git checkout main‬
‭git pull‬

‭The “git pull” command is a convenient way to update your local branch with the latest changes‬
‭from a remote repository in a single step. It helps keep your local branch in sync with the remote‬
‭branch, making it useful for collaborative and team-based development. However, it's essential to‬
‭watch for merge conflicts if there are conflicting changes between your local branch and the‬
‭remote branch. Otherwise, you will not be able to pull from the remote repository.‬

‭5.) Reverting Commits‬

‭As I am sure you know by this point, Git stores code in a series of commits. To revert a commit,‬
‭you can execute the following command:‬

‭git checkout <commit-hash>‬

‭There are multiple ways to find commit hashes. The first way is in your terminal. By running the‬
‭“git log” command, you can view all commits in the history of the repository. The second way is‬
‭via the GitHub website.‬

‭Figure 11: GitHub commit information‬

‭By pressing the circled button, you will be brought to a screen with all of your commits. You will‬
‭have the option to copy a commit hash for any given commit.‬

‭Figure 11: GitHub hashes‬
‭After you revert your commit, you will be able to make a branch, and make any changes as‬
‭needed.‬

