
 C2S2 Git Tutorial
 Johnny Martinez

 1.) Git Setup
 Go to this link to install Git.
 To start, we need to edit our config file by executing the following commands:

 git config --global user.name “<YOUR NAME>”
 git config --global user.email <EMAIL>
 git config --global init.defaultBranch “main”
 git config --global core.editor “code”

 Ensure that the email you use is the one tied to your GitHub account. The first two commands
 configure Git to associate your name and email with your commits. The third command sets your
 default branch name to “main.” The fourth command sets VSCode as your standard text editor
 for Git. Now, when you type “code” into the command line, a VSCode window will appear. If
 you would like to edit your config file directly, type

 git config --global -e

 2.) Making a Repository
 To make a repository, navigate to the directory you would like to work out of, and execute the
 following commands:

 mkdir tutorial
 cd tutorial

 Note, as a general rule of thumb, do not put spaces in file or folder names!
 Now, let’s make a GitHub repository. First, go to the GitHub website. Click on the green button
 labeled “new.”

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://github.com/

 Figure 1: GitHub homepage

 After pressing the button, your screen should look like figure 2. Let's name our repository
 “git_tutorial.” We can leave the description blank for now, but just know it is there for future
 reference. Also, make sure “Add a README file” is selected. Now push the “create repository
 button.”

 Figure 2: GitHub repository creation page

 Great! We should now have an empty GitHub repository (aside from the README file). Let’s
 clone the repository into the local directory we created before. To do this, press the green button
 labeled “code.” Copy the link in the HTTPS section.

 Figure 3: HTTPS link to clone repository

 Now, open the terminal. Make sure you are working inside of the folder you previously made
 and execute the following:

 git clone <HTTPS link>

 If all went well, we have now cloned the remote repository in our local directory! You can check
 to see if the repository has been cloned by typing “ls” in the command line, and ensuring there is
 a folder called “git_tutorial” in your current directory. Let’s populate our local repository with
 some files by executing the following:

 cd git_tutorial
 echo “a text file named file 1” > file1.txt
 echo “a text file named file 2” > file2.txt
 echo “// A blank Verilog file” > module.v
 mkdir subdir
 cd subdir
 echo “a text file named file 3” > file3.txt
 cd ..

 The above commands make two text files (file1, file2), one verilog file (module), one
 subdirectory (subdir), and another text file (file3) within subdir. “cd ..” is used to navigate to the
 parent directory of your current directory.

 2.a The Git Workflow
 Before proceeding, I want to take a second to describe the Git Workflow. It is mainly divided
 into four sections:

 1. Working Directory : The working directory, also known as the working tree, is your local
 directory where you create, modify, and organize your project's files. It's the place where
 you do your actual work.

 2. Staging Area (Index) : The staging area, often referred to as the "index," acts as a middle
 ground between your working directory and the commit history. It's where you prepare
 and organize your changes before committing them. When you make changes to files in
 your working directory, you can choose to stage specific changes or files for the next
 commit. This selective staging allows you to commit only the changes you want, rather
 than everything in your working directory.

 3. Commit : When you commit your changes, you're taking a snapshot of the changes in the
 staging area and creating a new commit in Git's version history. Each commit contains
 the changes you've staged. Commits are permanent and represent milestones in your
 project's history.

 4. HEAD Commit : The HEAD is a special pointer that points to the latest commit in the
 current branch. It represents the snapshot of your project's files as they exist in your local
 repository at the moment. When you switch branches or checkout a specific commit, the
 HEAD is updated to reflect the state of the selected branch or commit.

 Now that we have established the basic Git Workflow, lets learn how to work with it in practice.

 2.b Add
 As I mentioned before, we need to actually add out changes in the working directory, and
 forward them to the staging area. To do this, we used the git add command. Observe the
 following commands:

 git add file1.txt
 git add file2.txt
 git add module.v
 git add subdir/file3.txt

 git add *.txt
 git add *.v

 git add .

 Above, I have listed three possible methods to add our files to the staging area (Each method is
 separated by a blank line and I will refer to them as methods 1, 2 and 3 respectively. In method 1,
 we are individually adding all of the files that we want to stage. In method 2, we make use of a
 wildcard character (*) to stage all text files and verilog files. In method 3, we are recursively
 staging all files within the working directory (this is the most common way to add things to the
 staging area). To see what files are in the staging area, execute the following command:

 git status

 In the terminal, you will be shown “untracked files” or the files not on the staging area, “changes
 to be committed” or the files on the staging area, and commits. Right now, you should have no
 commits. If you would like to remove something from the staging area, execute the following:

 git restore --staged <file>

 You can execute “git status” again to check that the file you specified has been unstaged. To clear
 the whole staging area, execute:

 git restore --staged .

 2.c Commit
 Now that we have added all of our files to the staging area, we want to save them. To do this, run
 the following command:

 git commit -m “initial commit”

 By executing this command, we are essentially taking a snapshot of the staging area, and saving
 it. Notice, we use the “-m” flag to leave a commit message. It is good practice to leave a commit
 message describing what has been changed or fixed. If you do not include the -m flag in your
 commit command, a text file will open up for you to write your commit message.

 Commit Best Practices
 Commit Early and Often: Make small, focused commits as you work on your project. This
 allows you to track changes incrementally and makes it easier to identify when and where issues
 were introduced.

 Atomic Commits: Each commit should address a single, logical change or feature. This practice
 keeps your commit history clean and makes it easier to manage and review changes.

 Commit Messages Matter: As I mentioned before, commit messages are important! Take a
 moment to think about your commit messages. Explain not only "what" was changed but also
 "why" it was changed. Clear and informative commit messages are essential for effective
 collaboration.

 The reason we want to frequently commit, and leave descriptive messages is in the case we need
 to revert our code. Having descriptive messages on the state of your code for each snapshot will
 be useful in this situation. We will go further into depth on reverting to a previous commit in a
 later section, but for now just keep this in mind.

 2.d Push
 Now that we have saved a snapshot of our local working directory, we want to push it to the
 remote repository. To do so, type

 git push origin main

 Note, sometimes you may need to replace “main” with “master”.
 Now, if you view your repository on the GitHub website, you should see that your repository has
 more than just a README file! As a matter of fact, it now should have all of the files that were
 present in our working directory. A couple of clarifying notes: “origin” is the default alias for the
 remote repository we are pushing to. The branch name "main" is commonly used as the default

 branch name in many git repositories. However, some repositories may use "master" instead of
 "main" as the default branch name. Generally, it is not good practice to push directly to main. We
 circumvent this issue by creating branches and merging them with “main.” This is a perfect
 segway into our next section which is about branches!

 3.) Branches

 Figure 4: Branch visualization

 Recall, Git stores your code in a series of commits. The most recent commit is the head commit.
 When you create a branch, instead of adding a commit to your main branch or the existing chain
 of commits, you initiate a distinct series of commits that diverges or branches off from the main
 branch pointed to by the head commit. This branch allows you to work on new features, bug
 fixes, or experiments independently without affecting the main branch until you're ready to
 merge your changes back into it. To make a branch, execute the following command:

 git branch <YOUR BRANCH NAME>

 Let’s name our branch “c2s2” for this tutorial. To see all of your branches, run “git branch”
 without specifying a branch name. You should see a list like this in the command line.

 Figure 5: Command line snapshot 1 showcasing selected branch

 The asterisk indicated the branch you are currently working on. To switch to the branch we just
 created, execute:

 git checkout “c2s2”

 If you run “git branch” again, your terminal should look something like this. Notice, the asterisk
 is now on the “c2s2” branch.

 Figure 6: Command line snapshot 2 showcasing changed selected branch

 Let’s populate the branch with some files.

 echo > branch1.txt
 echo > branch2.txt

 Now, we can commit and push the changes to our new branch as we would if on the main
 branch. The one change we make is that we replace “main” with the name of our branch (in this
 case “c2s2”) in the push command.

 git add .
 git commit -m “added branch1, branch2 text files.”
 git push origin c2s2

 If you now go to the GitHub website, and view the repository, you should see a green button at
 the top of the screen labeled “Compare & pull request.” Before we cover pull requests, I want to
 explain a couple of other features of branches. If you want to clone a specific branch directly,
 execute:

 git clone -b <branchname> <remote-repo-url>

 Furthermore, if you clone a directory locally, and run “git branch” you may not see all of the
 branches available in your local repository. To view all of the branches of your repository, run

 git branch -a

 And, if you want to switch to any branch, use “git checkout.”’

 4.) Pull Requests

 Recall, after we pushed our branch to the remote repository, and opened GitHub, we were
 prompted with a button to create a pull request.

 Figure 7: GitHub pull request prompt 1

 To merge the “c2s2” branch with our main branch, we need to open a pull request. To do so,
 press the green button.

 Once you do that, your screen should look like figure 8 shown below.

 Figure 8: Figure 7: GitHub pull request prompt 2

 If you scroll down on the screen, you can also see a section like the one below, outlining added
 files, changes to pre existing files, etc. Because the files we added were blank text tiles, this
 section is pretty empty right now. Typically, there will be more insertions and deletions that
 happen, and this section will be more densely populated.

 Figure 9: Visualization of additions and deletions to be implemented

 If you look at figure 7, you will see on the right there is a section labeled “assignees,” as well as
 a button prompting you to assign yourself. An assignee is someone tasked with reviewing, and in

 some cases confirming a pull request. Let’s assign ourselves. To open our pull request, write a
 description of the pull request in the text box, and press the button labeled “Create pull request.”

 Figure 10: GitHub pull request prompt 3

 Notice, our branch has no merge conflicts and can be merged. A merge conflict occurs when
 there are conflicting changes in different branches, and Git is unable to automatically resolve the
 differences during a merge. This typically happens when two or more contributors make changes
 to the same part of a file or to related lines of code in their respective branches. Merge conflicts
 can also arise when a file is deleted in one branch but modified in another. We will go over
 resolving merge conflicts in a later section. For now, let’s merge our branch by pressing the
 button labeled “Merge pull request.” On C2S2, we generally do not allow creators of a pull
 request to confirm their own pull request. Furthermore, we use GitHub Actions to run test cases
 and ensure modifications to files did not break anything.

 Figure 11: Updated main branch after successful merge

 Now, if you view the code section, you will notice our main branch has the branch1 and branch2
 text files we created. We now also need to ensure that our local repository is up to date. To do
 this, run the following

 git checkout main
 git pull

 The “git pull” command is a convenient way to update your local branch with the latest changes
 from a remote repository in a single step. It helps keep your local branch in sync with the remote
 branch, making it useful for collaborative and team-based development. However, it's essential to
 watch for merge conflicts if there are conflicting changes between your local branch and the
 remote branch. Otherwise, you will not be able to pull from the remote repository.

 5.) Reverting Commits

 As I am sure you know by this point, Git stores code in a series of commits. To revert a commit,
 you can execute the following command:

 git checkout <commit-hash>

 There are multiple ways to find commit hashes. The first way is in your terminal. By running the
 “git log” command, you can view all commits in the history of the repository. The second way is
 via the GitHub website.

 Figure 11: GitHub commit information

 By pressing the circled button, you will be brought to a screen with all of your commits. You will
 have the option to copy a commit hash for any given commit.

 Figure 11: GitHub hashes
 After you revert your commit, you will be able to make a branch, and make any changes as
 needed.

