
C2S2 Digital RTL Training

Aidan McNay, acm289 and Will Salcedo, wrs225

C2S2

This tutorial should serve as an introduction to using the open-source OpenLane flow. By the

end, you should have a working knowledge of how to use the flow, where different files are stored,

and to be able to harden your own design within the Caravel Harness.

1 Setup

To setup your environment, first log into the C2S2 server using the SSH protocol. The server is

<NetID>@c2s2-dev.ece.cornell.edu , and the password should be your NetID password. (If you’ve

never logged in using SSH before, please see the Linux Development Environment Tutorial). From

there, you should always begin by sourcing the setup script for C2S2:

% source setup-c2s2.sh

(Note that in this tutorial, a ”%” preceeding a terminal command only indicates that it is such, and

should not be included in the terminal command.)

Next, we’ll create the space we’ll be working in. This involves cloning the Caravel User Project

and Digital RTL Tutorial repository from GitHub; if you haven’t used GitHub or set up GitHub

before, be sure to check out the GitHub tutorial. We will assume here that GitHub has been set up

properly for you.

% mkdir -p ${HOME}/c2s2/digital_rtl_tutorial

% cd ${HOME}/c2s2/digital_rtl_tutorial

% TUTROOT=${PWD}

% git clone git@github.com:efabless/caravel_user_project.git caravel_user_project

% git clone git@github.com:cornellcustomsiliconsystems/DigitalRTL-Tut.git rtl_design

% cd rtl_design

% TOPDIR=${PWD}

Great! Now we’re all set to start designing.

2 Registered Incrementer

For this portion of the tutorial we will walk through the process of designing, testing, and simulating

a registered incrementer using Verilog and a PyMTL test bench. We will walk through the creation

1

of a test bench before moving onto Verilog RTL design.

Figure 1: Block Diagram of Registered Incrementer

2.a Designing the Incrementer

The rtl design repository contains a skeleton of modules and unit tests you could use to follow along

with the tutorial. If you get tired of copy and pasting every line individually, you could use the

command:

% alias %=""

Next, create a build folder in sim and navigate to your sim/block test folder in the structure.

A folder named ”sim” will be our convention for the file structure which stores our test benches,

simulators, and Verilog source files. We will use tools in the sim file strucure to generate pickled

Verilog files to push through the OpenLANE flow.

% cd sim

% mkdir build

% cd reginc/block_test

Next you should use your preferred text editor to open the file RegInc test.py.

2.b PyMTL Test Bench

We will now discuss how to create a PyMTL test bench. We use PyMTL to test and simuilate our

RTL designs because it is easier to develop unit tests with Python rather than Verilog. However,

it is preferable to develop our hardware with Verilog because that is the language we use in our

intro classes. Thus, we develop wrappers for our Verilog code which interface with PyMTL test

benches. Test benches are an important part of hardware design because they ensure our designs

are functionally correct. Mistakes in code are much cheaper to fix than mistakes on silicon.

2

Figure 2: Image of PyMTL Test Bench Code for Registered Incrementer

To run our tests, we use the testing framework PyTest. Any file with ”test ” at the start of the

name, or ” test” at the end of its name will run all of the tests contained within when you run the

command ”pytest” in that directory.

Observe Figure 2. This is an image of a PyMTL test bench for the registered incrementer. Any

method with ”test ” in the name will be automatically ran by the PyTest framework. Within the

method you must provide assertions to define the test cases. PyMTL provides tools to easily create

hardware tests using input vectors.

Please make more tests for the registered incrementer. Note that the input takes one cycle to

propagate to the output.

Run your unit tests by using the following commands.

% cd ${TOPDIR}/sim/build

% pytest ../reginc/block_test

2.c Python Verilog Wrapper

Now, navigate to to your Verilog source code folder and open the file RegIncRTL.py.

3

% cd ../reginc

Figure 3: Image of Python Verilog Wrapper

Shown in Figure 3 is the Python verilog wrapper. This wrapper allows our test cases to interface

with the hardware we specify in Verilog. The name of your class must be the same as your Verilog

module. Your port names defined in the construct method must correspond with those in your

Verilog module as well.

2.d Verilog

Finally, open the file titled RegIncVRTLv. This file contains the Verilog source code for your

registered incrementer.

Observe that it only consists of a module named RegIncVRTL. In Verilog you specify modules

with ports. Within modules you implement your hardware specification.

In Verilog you could design hardware using behavioral or structural specifications. Behavioral

specification allows you to specify hardware outputs as a function of input. Structural specification

requires you specify the hardware structure as discrete blocks or gates.

In Verilog, the logic keyword is used to define nets, variables, and ports. Instantiate a 32 bit

wide bus called regout by copying the following code.

logic [31:0] regout;

Next, we will create a register using behavioral specification. A register can be designed using

an always block that gets triggered by the positive edge of a clock signal. ”Always@” blocks trigger

upon a certain event. Shown below is an always block which triggers on the positive edge of a clock

signal. ”Always@(*)” defines a combinational behavioral block.

4

always @(posedge clk) begin

//<code>

end

In an always block there are two types of assingments: ”=” and ”<=.” The ”=” assignment

statements are blocking. They are assinged in the order they appear. ”<=” statements are non-

blocking, meaning they are assigned concurrently with one another.

”If” statements may also be used in always blocks. You can instantiate an ”if” statement using

the following structure.

if(<expression>) begin

//<code>

end

We will now assign the output using combinational logic. Use this line to assign b to regout + 1.

assign b = regout + 1;

Finish implementing the registered incrementer (Hint: the rest of the work is in the always

block). Ensure that you account for a high reset signal (regout = 0 when reset = 1). If you need

help, reach out to your subteam lead. Ensure your test cases pass, and move onto the next section.

3 Moving to Caravel

Caravel is a open-source digital ASIC harness that expedites the design time/process for new users

to make custom chips. It provides a harness for you to use (including a pad ring for all of your

I/O’s, as well as a tiny RISC-V processor and some memory), but leaves most of the space up to

your design. While a user is free to experiment with the harness, it provides a clean way to serve as

a base to build off of, so we will be using it for our designs.

5

Figure 4: The Caravel harness

By here, you should have a fair amount of confidence in your design from your tests. We can

now transfer the design over to the Caravel harness. We’ll begin by copying your Verilog code over:

% cp ${TOPDIR}/sim/reginc/RegIncVRTL.v ${TUTROOT}/caravel_user_project/verilog/rtl

% cd ${TUTROOT}/caravel_user_project

% FLOW_DIR=${PWD}

% ls

As you can see from the output of ls, the Caravel directory is very complicated! Let’s break it

down:

• def : Contains all of your generated .def files. Def stands for Design Exchange Format,

and is how the information about the physical design of your IC (such as the location of the

cells) is stored

• docs: Some general documentation. However, I would recommend looking here instead (al-

though for software design, there have been updates, so some of the memory-mapped IO

documentation is incorrect)

• gds: Contains all of your .gds files. GDS stands for Graphic Design System, and is

essentially a picture of all of the layers of your design. This is the final product, and is what

6

https://caravel-harness.readthedocs.io/en/latest/index.html

we send off to the foundry so they can make your design!

• lef :Contains all of your generated .lef files. Lef stands for Library Exchange Format, and

is used to contain an abstracted representation of an object. For example, all PDKs have a

lef file containing enough information about the cells for placement (such as the size, where

the pins are, etc.), but not their actual implementation (how the silicon is doped). It is useful

to have a lef file of your design, in case you want to use it as a macro and place it inside of

another design!

• mag: These contain all of the .mag files for the project. These are used by Magic, an open

source circuit design tool. While it is primarily used for standard cell design and patterning,

it can also be used to generate a GDS file. OpenLANE uses this ability to stream its final

results through Magic to generate the final GDS

• maglef : Library files for Magic

• openlane: Contains all of the specifications needed to tell OpenLANE how you want to build

your design (including any specifications about the physical design, where macros should be

places, etc.)

• signoff : Generated from running the flow to indicate which versions of OpenLANE and the

PDK’s you were using (PDK stands for Process Design Kit, and contains the specifications

for all of the standard cells used in your design)

• spi: Contains the Spice files for your design, which are used for the LVS check (Layout Versus

Schematic - essentially checking whether the current layout/connection of the cells will have

the same functionality as your design)

• verilog: THIS is where most of your work will be done. It contains:

– rtl: All of your RTL design files (where you put your designs!). It comes with a wrapper

(which interfaces your designs with the rest of Caravel), and an example project (an

up-counter)

– gl: Generated gate-level netlists of your designs

– dv: All of your tests

– includes: Contains the files that tell the simulator which designs to include when simu-

lating

Not included here (but still necessary for running the flow) are the pdk directory (which contains

all of the PDK’s) and a separate openlane directory (which contains all of the OpenLANE tools

and scripts). These are installed globally, and are already set up for you when you source the setup

script. You can check their location with echo ${OPENLANE ROOT} and echo ${PDK ROOT},
respectively.

First, we need to set up the caravel directory. We already have OpenLANE and the PDK’s set

up, so all you need to do is run

7

http://www.opencircuitdesign.com/magic/

% make install check-env install_mcw setup-timing-scripts

• install will pull and install the latest version of the Caravel harness. After running this, you

should see a new caravel directory inside of your user project directory. This directory contains

all of the source and build files for the harness

• check-env checks that Caravel was pulled successfully, and that there’s nothing else to be

done with it

• install mcw installs the management core wrapper. While Caravel contains the files for the

overall pad ring and some of the interconnects, the management SOC (System-on-Chip) is

kept as a separate unit, so that the process can be updated separately from Caravel (...which

has happened! The processor switched a little bit back from a Pico-based processor to a Litex

VexRISCV, and this modular design allowed it to happen very easily). After running this,

you should see a new mgmt core wrapper directory inside of your user project directory. This

directory contains all of the source and build files for the management SOC

• setup-timing-scripts pulls the latest timing scripts into a dependencies folder. (Efabless ran

into a few hold time issues previously, and after discovering that the tools for checking them

weren’t working, created their own timing scripts to check for timing violations)

Notice how the insides of both the caravel and mgmt core wrapper directories look just like your

high-level design directory - that’s because they were designed and build the same way! They can

always serve as a reference for how things ”should” be.

Great - now that the setup is done, we can move on to working on your design!

4 Modifying the Design for Caravel

4.a Goodbye, SystemVerilog

Unfortunately, SystemVerilog doesn’t tend to play nicely with the synthesis tools. There is ongoing

work to fix this (and a couple hacky work-arounds that we personally found), but for the large part,

it works better if it’s in Verilog. To achieve this, we will use SV2V, an open-source SystemVerilog-

to-Verilog conversion tool. We can use it to convert all of our work from before into Verilog:

% cd ${FLOW_DIR}/verilog/rtl

% mv RegIncVRTL.v RegIncVRTL.sv

% sv2v -w adjacent RegIncVRTL.sv

% rm RegIncVRTL.sv

Take a look at the result (in RegIncVRTL.v) - you can see that, while it functions correctly, it’s

not quite what we’re used to. SV2V is great at handling large files, but the flow tools still want

all of the inputs and outputs declared in the interface, so let’s modify it to have our old interface

(keeping in mind that the I/O’s are now considered wires):

8

https://github.com/efabless/caravel_pico
https://github.com/efabless/caravel_mgmt_soc_litex
https://github.com/efabless/caravel_mgmt_soc_litex
https://github.com/zachjs/sv2v

module RegIncVRTL (

input wire clk,

input wire reset,

input wire [31:0] a,

output wire [31:0] b

);

// Delete the other declarations of the wires as inputs and outputs

For small files like this, it might be easier to edit by hand, but for large files, it can prove to

be a useful tool. The other alternative is to code in Verilog from the start, but that comes at the

downside of not being able to use SystemVerilog constructs like logic - it’s all up to you!

4.b Modifying RegIncVRTL.v

When considering how our design will be hardened into a chip, there’s one set of connections that

we’re missing in the module declaration - the power connections! Normally, these are abstracted

away when simulating, but when building a real chip, we absolutely need to remember them. When

hardening the design, USE POWER PINS is defined, so we can use that to modify our module

interface to include power pins. Navigate to RegIncVRTL.v inside ${FLOW DIR}/verilog/rtl, and
use your favorite text editor to modify the module interface like so:

module RegIncVRTL(

‘ifdef USE_POWER_PINS

inout vccd1, // User area 1 1.8V supply

inout vssd1, // User area 1 digital ground

‘endif

input wire clk,

input wire reset,

input wire [31:0] a,

output wire [31:0] b

);

4.c Modifying Caravel

We also need to be able to tell Caravel how to harden this new design. The design-specific instructions

Caravel uses (including any specific parameters) are located in ${FLOW DIR}/openlane, in the

design specific folder. First, we need to create a new folder for our design - we can use the example

up-counter provided as a template

% cd ${FLOW_DIR}/openlane

% cp -r user_proj_example RegIncVRTL

% cd RegIncVRTL

% ls

Lets examine the contents of our new folder:

9

• base user proj example.sdc contains the base constraints for our design. This tells us some

specifications about the clock and delays that are part of the technology.

• config.json contains all of the configuration parameters that Caravel uses when synthesizing

your design. This is where physical design comes into play - modifying these parameters is

how we modify how Caravel hardens your design. A complete list of possible parameters can

be found here - don’t get too bogged down with all of them, the defaults are usually fine, but

they’re good to know about

• pin order.cfg contains details about how the pins should be placed around your design. Your

design is hardened into a rectangle, and this file tells us which side of the rectangle, as well

as which order they should be in (if it isn’t present, then OpenLANE just does whatever it

wants). There was no good documentation for this, so I created my own here from things I

learned by experimenting. You might consider the location of the final design and the location

of the GPIO’s when writing this file. Note that we don’t handle power here - power rails

extend across the entire chip, so we don’t have to worry about them being ”inputs” anywhere

in particular

Alright - let’s edit these files so that we can harden our design

4.c.1 Modifying base user proj example.sdc

For this file, we don’t need to change any of the specifications - we just need to rename it for our

new design, instead of after the example project:

% mv base_user_proj_example.sdc base_RegIncVRTL.sdc

4.c.2 Modifying pin order.cfg

You can edit this however you want to include all of the pins for your design. For this tutorial, I

decided I wanted the clk and reset on the top of the chip, a on the left, and b on the right - see if

you can modify the file to achieve this. Remember to include * if you want all items that match it

(Hint: you might want to use a.* and b.* to connect all the bits of a and b)

4.c.3 Modifying config.tcl

Use your favorite code editor to examine this file and see how it defines the parameters it wants to

use. We want to edit a couple of these:

• DESIGN NAME - should be ”RegIncVRTL”

• VERILOG FILES - replace ”user proj example.v” with ”RegIncVRTL.v”

• CLOCK PORT - should be ”clk”

• CLOCK NET - should be ”clk”

10

https://openlane.readthedocs.io/en/latest/reference/configuration.html
https://drive.google.com/file/d/1HTkPjBTwmuEDAliY3Y9hg5a3XYaqz2ih/view?usp=sharing
https://caravel-harness.readthedocs.io/en/latest/_images/die_pads.svg
https://caravel-harness.readthedocs.io/en/latest/_images/die_pads.svg

• BASE SDC FILE - change from ”base user proj example.sdc” to our renamed ”base RegIncVRTL.sdc”

The rest of the configurations should be fine for now, although as you get more experienced and

start making more designs, you may wish to play around with them

5 Hardening your Design

We should have all the configurations we need to harden our design now! Hardening is the process

from going from an RTL design all the way to a final GDS file. A flow is the process of how you do

this, involving many tools along the way. The OpenLANE flow is detailed below:

Figure 5: The OpenLANE flow

I won’t go over all of these steps here (but will instead point you to this paper or the documen-

tation if you’re interested), as it’s outside the scope of this tutorial, but I would be happy to go over

it with you at some point if you wish. One could run all of the tools one-by-one, but luckily for us,

it’s all been automated in scripts:

% cd ${FLOW_DIR}

% make RegIncVRTL

11

https://woset-workshop.github.io/PDFs/2020/a21.pdf
https://openlane-docs.readthedocs.io/en/rtd-develop/index.html#openlane-design-stages
https://openlane-docs.readthedocs.io/en/rtd-develop/index.html#openlane-design-stages

This may take a bit, but at the end, it should be successful (I got some fanout warnings - while

those aren’t critical right now, it could be an area to improve upon with our physical design parame-

ters!). All of the reports on the design are generated in ${FLOW DIR}/openlane/RegIncVRTL/runs,
all labeled with when you ran them (although RegIncVRTL is a link to the most recent one). Here,

you can go through the outputs to get detailed information on exactly how OpenLANE built your

project.

However, these reports can be long and hard to navigate this. To combat this, a member of the

open-source community named Matt Venn created a Python tool to parse these results for easier

viewing, as well as view the generated GDS file (a picture of your design!). This tool has been

installed and modified for C2S2, such that you need to export the top-level Caravel directory as

PROJ ROOT to use it.

% cd ${FLOW_DIR}

% export PROJ_ROOT=${PWD}

% summary.py --design RegIncVRTL --summary

If you’re in a graphical viewer (such as X2GO or MobaXTerm), you can also use it it view the GDS

in 2D (using klayout). You can also view it in 3D, using GDS3D (look at the README.txt inside

the repository for instructions on how to use - it doesn’t tend to play nicely with remote viewers,

so you can either use a physical machine connected to the servers in Phillips 314, or download the

.gds file and build GDS3D on your local machine, using the sky130.txt techfile to view your design)

% summary.py --design RegIncVRTL --gds

% summary.py --design RegIncVRTL --gds-3d

You can also view the GDS file with just klayout. The GDS files are generated both in your run

directory, as well as in the top-leve gds directory. The GDS file can look a little bit weird if klayout

doesn’t know what it’s looking at and tries to interpret it, so we can give it some information with

a layer file. Move this file (caravel.lyp) to the same directory as your GDS, then run

% cd ${FLOW_DIR}/gds

% klayout RegIncVRTL.gds -l caravel.lyp

Notice from viewing that there is a lot of empty space - see if you can use what you’ve learned

to build your design in a smaller amount of area!

6 Hardening Caravel

You’ve just hardened your design as a stand-alone block. The final step of design is instantiating

this block inside of the Caravel User Space, so that we can compose the entire chip

6.a Modifying your Design

One last thing we need to do is to tell Caravel which pins are inputs and outputs, beyond just telling

Verilog. This involves setting specific pins as 1 or 0, depending whether a connection is an input or

output (respectively). However, we cannot do this at the top-level, as that only involves routing (for

12

https://github.com/mattvenn/openlane_summary
https://github.com/trilomix/GDS3D
https://drive.google.com/file/d/1JQxNVt0N2Vlr3pHE6X3K6EQbjEaqwSLp/view?usp=sharing

those familiar with the different layers, it only routes on Metal 5), and can’t place standard cells to

drive signals. Instead, we need to modify our design to drive these signals appropriately. To do this,

we’ll create 4 new outputs from our design:

• clk en should be 1 (clk is an input)

• reset en should be 1 (reset is an input)

• a en (32 bits) should be all 1 (a is an input)

• b en (32 bits) should be all 0 (b is an output)

We’ll re-harden our block with these new details (remember to include these new pins explicitly

in your pin order.cfg if they aren’t covered by a regex expression)

% cd ${FLOW_DIR}

% make RegIncVRTL

6.b Instantiating within Caravel

Navigate to $FLOW DIR/verilog/rtl and open up user project wrapper.v. This contains the

entire instantiation of the user project space, so we want to declare our design module within here.

First, comment out or delete the design already in there - this is a sample counter design that

we won’t use. Then, you can declare your module as normal in Verilog (naming the instantiation

RegInc). For the connections, the GPIO’s are controlled by either io in or io out, depending on the

setting of io oeb (1 for input, 0 for output). Caravel has 38 GPIO’s (indexed 0 to 37). Therefore, if

I wanted to hook up the clk signal to GPIO 10, I would instantiate it like this:

.clk (io_in[10]),

...

.clk_en (io_oeb[10]),

See if you can hook up the rest of the signals! Given the limited number of GPIO’s, you might

also choose to use the Logic Analyzer connections internal to the chip - there are 128 of them, with

a similar syntax to the GPIO’s (look at the interface for the user project wrapper - however, we

don’t need any enable lines for them). For this project, connect clk to GPIO 10 (like above), reset

to GPIO 11, a to LA Probes [31:0], and b to LA Proves [63:32]. You should also hook up the power

pins to their corresponding signals from the user project wrapper module, as done with the given

example project.

6.c Modifying our build configurations

Lastly, we have to modify our build configurations for our overall user project wrapper! Navigate

to $FLOW DIR/openlane/user project wrapper. Here, we need to edit two files

13

6.c.1 Modifying macro.cfg

Here is the placement details of all of the macros, including the name that they were instantiated

with and the distance of their bottom left corner from the bottom left corner of the user space (x

distance, then y distance) in µm. We don’t need to change the distances for right now, but modify

the macro name from mprj to RegInc, as that’s what we named our instantiation within the wrapper

6.c.2 Modifying config.json

Here, we have a lot of changes. We can first off change any reference from ”user proj example” to

”RecIncVRTL” (this should change a total of 3 things - the black-box Verilog files, the extra LEF’s

and the extra GDS’s). In addition, change any reference from ”mprj” to ”RegInc” (this should

change a total of 2 things - the name of the clock net, as well as the Macro power connections).

Lastly, we need to change which port OpenLANE analyzes as our clock port. On the line where

we set ”CLOCK PORT” (the pin that’s used as the clock), change ”user clock2” to ”io in.10” (the

name of GPIO 10 that Caravel recognizes)

With that, we should be good to go! You can harden your design similar to before

% cd ${FLOW_DIR}

% make user_project_wrapper

This should generate similar files to before - see if you can view the results of your overall

user project area GDS! (This flow should be a fair amount quicker - the flow already knows every-

thing it needs to about our RegIncVRTL block from the Verilog, LEF, and GDS file, so it doesn’t

need to push it through the flow again, giving us the advantages of incremental, hierarchal design)

7 Testing our Design

Having our design is good, but being able to test it is the key to having a functional product. In

Caravel, we can do 4-state testing based on the Verilog, as well as gate-level testing based on the

netlist that Yosys produces. OUr testing doesn’t actually depend on the results of the flow (as it

runs LVS to make sure that the result is equivalent to the input). All of our tests are kept in the

folder $FLOW DIR/verilog/dv. Here, we can see that they gave us a couple of sample tests -

these are to test the counter, so we won’t be using them. I’ve created an adhoc test directory here

- let’s clone it into this directory

% cd ${FLOW_DIR}/verilog/dv

% git clone git@github.com:cornell-c2s2/reginc_adhoc_test.git

We can see that this test directory (like all of the directories given) contains 3 files:

• Makefile: This specifies how Caravel will build and simulate our files - we don’t need to touch

this

• reginc adhoc test.c: This contains the C code that will be run on our chip!!

14

https://github.com/cornell-c2s2/reginc_adhoc_test

• reginc adhoc test tb.v: This contains the Verilog code that will instantiate our Caravel

module (a.k.a. our entire chip) and provides stimuli from outside the chip

I’ve done my best to try and comment the code to best explain it, so take a look through and

see if you can understand what the test is doing, and let me know if you have any confusions! (Note

that if you used different inputs than those I specified, you may have to modify the test a bit to

account for it)

7.a Modifying test includes

The only other thing we need to do is modify what code that our test runs on - our test instantiates

Caravel, but we may have hardened several versions, so which one do we use? These are contained

in $FLOW DIR/verilog/includes. Navigate here and view the files:

% cd ${FLOW_DIR}/verilog/includes

% ls

Here, we can see that there are a bunch of files that tell us what hardware to include, de-

pending on which type of test we’re running. We’ll only use the 4-state RTL tests (with the in-

cludes in includes.rtl.caravel user project) and the gate-level tests (with the includes in

includes.gl.caravel user project). For now, we’ll just modify the includes for the RTL

test - open up includes.rtl.caravel user project, and notice how the files are included.

Change ”user proj example” to ”RegIncVRTL”.

With that, we should be good to go for testing our design! Navigate to the top level:

% cd ${FLOW_DIR}

Our testing command is of the format make verify-<test name>-<test type>, where

• <test name> is the name of the test directory that we’re testing

• <test type> is the type of test that we’re running - either ”rtl” or ”gl”

With this, we can run our RTL test on our Verilog design

% make verify-reginc_adhoc_test-rtl

If everything was set up correctly, this test should pass. If you look back in the test directory,

you can find a waveform of the test as it was run on your chip - feel free to open it up and explore

it in GTKWave (assuming you are using a graphical viewer or are using X11 Forwarding):

‘ % cd ${FLOW_DIR}/verilog/dv/reginc_adhoc_test/

% gtkwave RTL-reginc_adhoc_test.vcd

After hardning your design from before, we also have a gate-level netlist - see if you can test your

design using a gate-level test, knowing our setup from before (don’t forget to change the includes!).

This will take a LOT longer (as we’re simulating the signals propagating through the actual gates

on the chip), but in the end, the result should be the same.

That wraps it up for this tutorial - hopefully you’ve learned a lot, including how to harden and

test your designs in the OpenLANE flow. As always, feel free to reach out with any questions!

15

	Setup
	Registered Incrementer
	Designing the Incrementer
	PyMTL Test Bench
	Python Verilog Wrapper
	Verilog

	Moving to Caravel
	Modifying the Design for Caravel
	Goodbye, SystemVerilog
	Modifying RegIncVRTL.v
	Modifying Caravel
	Modifying base_user_proj_example.sdc
	Modifying pin_order.cfg
	Modifying config.tcl

	Hardening your Design
	Hardening Caravel
	Modifying your Design
	Instantiating within Caravel
	Modifying our build configurations
	Modifying macro.cfg
	Modifying config.json

	Testing our Design
	Modifying test includes

