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State of the Art Review

Ischemia^reperfusion injury pathophysiology,
part I
Maureen McMichael, DVM, DACVECC and Rustin M. Moore, DVM, PhD, DACVS

Abstract

Objective: To review the current scientific literature on ischemia–reperfusion (IR) injury in both

human and veterinary medicine. To describe the normal antioxidant defense mechanisms, the
pathophysiology of IR injury, and the role of neutrophils in IR injury.

Data sources: Data sources include scientific reviews and original research publications in both

human and veterinary medicine.

Summary: IR injury is a complex pathophysiological process involving numerous pathways and

body systems. Normal antioxidant defense mechanisms function to limit oxidative injury during

times of health. Ischemia is the period that occurs before oxygenated blood is re-introduced and

the severity of injury has been shown to correlate with the magnitude and length of ischemia in

dogs. During ischemia, there is a buildup of substances (i.e., xanthine oxidase, hypoxanthine, etc.)
that, upon re-introduction of oxygen, form reactive oxygen species (ROS). ROS, produced in large

part upon reperfusion, can cause extensive damage to DNA, proteins, carbohydrates, and lipids.

Although mammalian systems are endowed with abundant antioxidant defenses, the generation

of large amounts of ROS can overwhelm these mechanisms leading to cell dysfunction and death.

Neutrophils play a critical role in IR injury and may mediate the majority of mucosal and

microvascular injury that occurs by releasing ROS and proteolytic enzymes. Although experi-

mental studies have been carried out on cats, dogs, and horses there are few clinical studies on

companion animals.
Conclusions: The pathophysiology of IR injury is complex and involves damage by ROS to all

biological membranes. Neutrophils play a major role in IR injury and initiate and propogate much

of the damage. This article is intended as a review of the pathophysiology of IR injury.

(J Vet Emerg Crit Care 2004; 14(4): 231–241)

Keywords: antioxidants, free radical, hydroxyl radical, lipid peroxidation, nitric oxide, oxidative

stress, reactive oxygen species, superoxide

Introduction

Ischemia–reperfusion (IR) injury is a complex cascade
of events involving a multitude of pathophysiological

processes. These include activation of neutrophils,

platelets, cytokines, reactive nitrogen species, reactive

oxygen species (ROS), the coagulation system, the

endothelium, and the xanthine-oxido-reductase en-

zyme system. This can eventually lead to cell damage,

cell death, increased vascular permeability, tissue

necrosis, and multi-organ dysfunction.1 Cell death
due to both necrosis and apoptosis is triggered by the

substances released during IR injury.2 ROS are believed

to play a central role in IR injury in addition to several

other diseases including neoplasia, atherosclerosis, and

neurodegenerative diseases.

In humans, the most common syndromes involving

IR injury include myocardial infarction, cardiac bypass
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surgery, and organ transplantation. In veterinary medi-

cine, the most common syndromes include gastric

dilatation volvulus (GDV), arterial thromboembolism

(ATE), resuscitation from hemorrhagic shock, organ

transplantation, diaphragmatic hernia, head trauma,

mesenteric torsion, intestinal incarceration, and spinal

cord trauma.
This article is intended as a review of endogenous

antioxidant defense mechanisms, of the pathophysio-

logy of IR injury, and of the role of neutrophils in IR

injury.

Normal anti-oxidant defense mechanisms

A free radical is a molecule with one or more unpaired

electrons in the outer shell. Since not all of the species
that cause oxidative injury are technically free radicals

(i.e., hydrogen peroxide is not a free radical, but is a key

player in oxidative damage), a more appropriate term is

ROS. ROS are capable of reacting with all biological

molecules, including nucleic acids, proteins, carbo-

hydrates, and lipids.

In health, the major source of ROS formation in cells

is electron leakage from electron transport chains. It is
estimated that B90–95% of the oxygen passing through

the mitochondria is converted to water and that the

remaining 5–10% is reduced, creating ROS.3 The

generation of ROS is kept to a minimum by the high

efficiency of electron transfer and sequestration of

metal ions. Separate microenvironments exist for the

mitochondria, the lysosome, and the peroxisome; each

contains a ROS-generating system coupled to immedi-
ately adjacent antioxidant defense mechanisms. Some

suggest that this compartmentalization may be the

most important endogenous defense mechanism

against ROS.4 Other sources of ROS are the cytochrome

P450 in the endoplasmic reticulum, lipoxygenases,

cyclooxygenases, xanthine oxidase (XO), and NADPH

oxidase.5

Although all molecules are susceptible to ROS injury,
lipids are targeted most frequently. This is believed to

be due to lipids’ propensity to contain double bonds

and their ubiquitous presence in cell membranes.6

Mammalian cells are rich in polyunsaturated fatty acids

(PUFA), which are highly susceptible to oxidative

stress. These PUFAs include linoleic, linolenic, and

arachidonic acids and along with other fatty acids form

part of the structure of triglycerides and phospho-
lipids.7 Once formed, ROS can either react with another

radical to form a covalent bond or, more commonly,

react with a non-radical.8 When a free radical reacts

with a non-radical, the non-radical loses an electron,

transforming into a free radical. This is the essence of

the chain reaction that propagates extensive damage to

cell membranes. When the radical combines with

another radical, the product can be more damaging

than the original radical. An example is when nitric

oxide (NO) combines with superoxide (O2
�� ) creating

peroxynitrite (OONO� ), which is 2000 times more

damaging than hydrogen peroxide (H2O2).
9 Alterna-

tively, the reaction of two radicals can result in a
termination of the cascade. The interaction of ROS with

lipids in the presence of free iron results in lipid

peroxidation.10,11

The 2 major free radicals that can initiate lipid

peroxidation are the hydroxyl radical (OH�) and

peroxynitrite. The hydroxyl radical is formed when

hydrogen peroxide combines with metals (i.e., ferrous

iron) or by fission of water molecules by radiation (i.e.,
UV light or radiation). Peroxynitrite is formed when

NO combines with superoxide. The hydroxyl radical

and peroxynitrite initiate lipid peroxidation by abstrac-

tion of a proton from the PUFA, causing the formation

of a peroxy radical (RO2
�). The RO2

� can now attack other

PUFAs in the membrane and propagate a chain reaction

of lipid peroxidation, ending when the substrate (i.e.,

the lipids of cell membranes) is eliminated or when the
RO2

� encounters a chain-breaking antioxidant such as

vitamin E.12 Lipid peroxidation severely damages cell

membranes, causing alterations in enzyme systems and

receptors, alterations in ionic channels and increased

permeability to calcium and other ions.7 In addition,

the products of lipid peroxidation are also thought to

initiate inflammation, apoptosis, and inactivation of

thiol-containing enzymes.13–15

In general, there are 3 lines of antioxidant defense

against damage caused by ROS. Antioxidants are

defined as substances that can delay or prevent

oxidation of lipids, DNA, or proteins.16 Antioxidant pro-

teins, such as albumin, haptoglobin, ferritin, and cerulo-

plasmin are abundant in plasma.17 Intracellular

enzymatic antioxidants include superoxide dismutase

(SOD), catalase, and glutathione peroxidase.17 These
are expressed in most mammalian cells and prevent the

generation of ROS. Small molecule antioxidants are

divided into water-soluble and lipid-soluble categories.

Water-soluble antioxidants include ascorbic acid (vita-

min C), uric acid, bilirubin, glutathione (GSH), zinc,

and selenium. Lipid-soluble antioxidants include toco-

pherols (vitamin E), b-carotene, ubiquinol-10 (co-en-

zyme Q10), and lycopene.18 Cell membranes contain
tocopherols and b-carotene within their lipid layer and

these can act to quench chain reactions of lipid

peroxidation.8 The extracellular fluids within the

body contain numerous molecules that have anti-

oxidant properties, including ascorbic acid, bilirubin,

transferrin, haptoglobin, albumin, urate, and cerulo-

plasmin.17
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Glutathione peroxidase, synthesized in mammalian

cells, is generally considered the first line of defense

against ROS formation. It is a sulfur-containing tripep-

tide (glycine, cysteine, glutamine) that reduces hydro-

gen peroxide to water, using GSH as a substrate.19

There are two forms, one catalyzes the conversion of

hydrogen peroxide and lipid peroxides and requires
selenium as a cofactor and the other form does not

require selenium, but only catalyzes the reduction of

hydrogen peroxide. Oxidative stress has been shown to

be associated with a depletion of GSH20 and this has

been shown to induce apoptosis of hepatocytes.21

Alpha tocopherol is believed to be the most abundant

of the tocopherols and tocotrienols that comprise

vitamin E, and is considered the second line of defense
against ROS. Vitamin E inhabits the lipophilic interior

of the cell membrane, where the PUFAs are located, and

is a chain-breaking scavenger, halting lipid peroxida-

tion.22 When a wave of lipid peroxidation reaches

vitamin E, it is oxidized to a free radical, sparing any

adjacent PUFAs from oxidation. Vitamin C (ascorbic

acid) then combines with the E radical forming a poorly

reactive, water-soluble, vitamin C radical, and regenera-
ting vitamin E. Vitamin C is the most abundant water-

soluble antioxidant and it can directly scavenge ROS or

regenerate vitamin E.23

SOD is an oxido-reductase that contains copper, zinc,

or manganese at the active site. It catalyzes the

dismutation of superoxide to oxygen and hydrogen

peroxide. It is present in the cytosol (requires copper

and zinc), the mitochondria (requires manganese), and
on the extracellular surface (requires copper and zinc).

Superoxide is often written as an anion (O2
� ), but the

appropriate representation is as a radical anion (O2
�� ).24

Mitochondrial SOD is believed to play a major role in

antioxidant defense mechanisms.25,26

Catalase is a heme protein located in peroxisomes,

which converts hydrogen peroxide to water and

oxygen. Catalase functions in conjunction with SOD;
SOD converts superoxide to hydrogen peroxide, and

catalase then converts the hydrogen peroxide to water

and oxygen.

Ischemia

Reperfusion injury starts with a variable period of

ischemia before oxygenated blood is re-introduced.

Cold ischemia refers to the absence of blood flow in
organs outside the body (i.e., organ transplantation).

Warm ischemia occurs in organs or tissues inside the

body (i.e., during GDV).27 Interestingly, the predomi-

nant cell type affected during IR injury differs in warm

compared with cold ischemia. Hepatocyte death pre-

dominates in warm IR injury, while endothelial cells

and Kupffer cells are damaged earlier in cold IR injury.2

The severity of ischemic injury is determined by the

magnitude and length of decreased blood flow to an

organ or tissue.28

Several events combine during ischemia to set the

stage for massive ROS formation. When cells cannot

maintain adequate adenosine triphosphate (ATP)
synthesis (i.e., during hypoxia) they compensate by

degrading existing ATP into its components adenosine,

then inosine, and finally hypoxanthine. With continued

ischemia, hypoxanthine accumulates. Intracellular pH

decreases during ischemia due to anaerobic metabolism

as lactate and hydrogen ion accumulate. Intracellular

enzymes and regulatory proteins are damaged leading

to even greater cellular dysfunction.29 Decreased ATP
inactivates the ATP-dependent cell membrane pumps,

allowing a net efflux of potassium and an influx of

sodium, calcium, and chloride, which causes acute

cellular swelling. The increase in calcium appears to be

due to several causes including decreased extrusion

owing to inactivation of ATP-dependent cell membrane

pumps, calcium release from organelles, and calcium

influx.30,31 Since the rise in calcium can be inhibited by
calcium channel blockers, increased influx appears to

play a prominent role in the increase in intracellular

calcium.2 This increase in intracellular calcium is one of

the earliest events in IR injury and the damage is

dependent upon both the duration and the extent of the

increase.2 (Figure 1)

Increased cytosolic calcium has been shown to cause

both apoptosis and necrosis of the cell.32,33 The
increased intracellular calcium activates a protease,

calpain, which converts xanthine dehydrogenase (XD)

to XO. Xanthine oxido-reductase is unique in that it

exists in two active forms. In health, the XD

form predominates and converts hypoxanthine to

xanthine and xanthine to uric acid. XD does not

require oxygen for its activation, and uses nicotinamide

adenine dinucleotide, a carrier that can accept
two electrons and transfer them. During ischemia,

due to increased calcium, the XO form predominates

and requires oxygen for its activation.4 There is, in

essence, a roadblock during ischemia, with continued

accumulation of hypoxanthine and XO, neither of

which can be utilized because the enzyme XO requires

oxygen.

Several other important events occur during ische-
mia. Activation of nuclear factor-kB (NFkB) leads to

increases in inflammatory mediators. Increased expres-

sion of adhesion molecules, specifically synthesis

of intracellular adhesion molecule-1 (ICAM-1) and E-

selectin, via activation of NFkB, occurs, leading to

increased leukocyte adhesion at the site of IR injury

during reperfusion. Inactivation of endothelial NO
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causes vasoconstriction, and inhibition of the prosta-

cyclin arm of the arachidonic acid cascade favors

vasoconstriction and platelet aggregation. Oxygen is

also required for NO synthesis and during hypoxia,

oxygen can become a limiting substrate. In addition,

complement activation and synthesis of platelet acti-
vating factor (PAF) occur.34

Reperfusion

Although necessary for cellular salvage, reperfusion

paradoxically creates more injury than ischemia.

Several studies have shown an increase in toxic by-

products of IR injury after reperfusion but not after

ischemia alone.35,36 Reperfusion is associated with

severe endothelial dysfunction. This is most likely

due to a combination of factors including ROS damage

to the endothelium, decreased NO release from the
endothelium, and increased endothelin causing marked

vasoconstriction further impairing blood flow.37 Great

variability exists in the amount of XO present in

different species and in different organs. Dogs and rats

have significantly greater amounts of XO than do

humans or rabbits.38–40 The endothelium and the

mucosal villi of the GI tract have the greatest amount

of XO in the body and are highly susceptible to IR

injury.41 The first area believed to generate ROS during

reperfusion is at the interface between the endothelium

and the blood and XO-mediated endothelial injury is

believed to be a major factor in IR injury.42

When oxygen is re-introduced, it combines with XO
and H2O to convert hypoxanthine to uric acid and

superoxide. A burst of ROS formation is seen within

10–30 seconds after the onset of reperfusion.43 Super-

oxide is released when XO combines with oxygen and

hypoxanthine. Superoxide, by itself, is not a very

damaging molecule. It is, however, a source of hydro-

gen peroxide. SOD converts superoxide to hydrogen

peroxide. Catalase then converts hydrogen peroxide to
water and oxygen. Hydrogen peroxide can combine

with transition metals, usually free iron, to form the

hydroxyl radical. Similar to superoxide, hydrogen

peroxide is not very reactive and its main action of

toxicity is in forming the hydroxyl radical. Neither

superoxide nor hydrogen peroxide can initiate lipid

peroxidation, but can stimulate it when added to lipids

in the presence of iron by forming the hydroxyl radical.
Because the hydroxyl radical is so potent, the body has

several defenses against its formation, including SOD

and catalase.44 In addition, iron is very carefully

sequestered in biological systems and free or loosely

bound iron is never present in health.45 Iron is bound in

hemoglobin and myoglobin in the blood and muscle, to

transferrin while circulating in plasma, and to ferritin

in cells.
During ischemia, intracellular iron that is bound to

ferritin is released, most likely as a result of a

combination of acidosis and increased concentrations

of reducing equivalents.46 In addition, superoxide

mobilizes iron from ferritin47 and hydrogen peroxide

mobilizes iron from heme.48 Proteolytic degradation of

ferritin occurs during times of oxidative stress and may

contribute to the release of free iron. Red blood cells
contain large amounts of iron and hemolysis may

contribute to free iron release during oxidative stress.

In 1934, it was discovered that the hydroxyl radical

(OH�) could be generated from the interaction of

superoxide (O2
�) and H2O2.

49 The Haber–Weiss reaction

(O2
��1H2O2-OH�1O21OH� ) has a second-order

rate constant of zero and cannot occur in biological

systems without a metal catalyst.49 The iron-catalyzed
Haber–Weiss reaction was postulated to account for the

presence of transition metals in biological systems

(Fe211H2O2-OH�1OH�1Fe31).49 The ferrous (Fe21)

form of iron is required for hydroxyl radical formation,

but the ferric (Fe31) form is more common in biological

systems. The conversion of the ferric to the ferrous form

of iron occurs via XO, O2
�� , and NO. The ability of O2

��

Ischemia-Reperfusion Injury

ATP
Xanthine dehydrogenase 

AMP 

Adenosine 

Inosine 

Hypoxanthine 

Xanthine oxidase

Oxygen introduced 
upon reperfusion 

Calcium

Hydrogen Peroxide and Iron 

Hydroxyl Radical

Cell membrane damage

Urate and Superoxide anion 

Inactive protease

Active protease

Figure 1: Ischemia–reperfusion (IR) injury, a schematic of what

occurs in the cell during IR injury. There is breakdown of ATP

into its components. Xanthine dehydrogenase is converted to

xanthine oxidase due to the presence of calcium, which converts

a protease, calpain, to its active form. Hypoxanthine is metabo-

lized by xanthine oxidase to urate and superoxide anion upon

re-introduction of oxygen. ATP – adenosine triphosphate,

AMP – adenosine monophosphate.
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to liberate bound iron and to convert ferric to ferrous

iron may contribute to its toxicity.50

The hydroxyl radical is the one of the most

destructive and potent oxidizing agents known reacting

with almost every molecule in the living cell.24 It causes

a chain reaction of lipid peroxidation that leads to loss

of membrane selective permeability, damage to DNA,
and degradation of structural proteins and membrane-

bound enzyme activity.51 The chain reaction will

continue until the hydroxyl radical is scavenged, two

radicals combine to form a non-reactive species, or the

substrate is consumed.

Damage due to ROS includes lipid peroxidation with

increased cell membrane permeability, damage to the

sarcoplasmic reticulum causing negative inotropy,
impaired cell function, and cell death. Since the heart

and lungs receive ROS and products of IR injury first

after portal blood, they appear to be affected quite

commonly.52,53 After reperfusion of ischemic intestine,

acute lung injury has been documented with increased

damage to alveolar cells, infiltration of neutrophils, and

increased microvascular permeability, in an experimen-

tal model.53 Decreased contractility was observed in the
myocardium after 2 hours of IR injury in rats.52 In

experimental IR injury of the cat small intestine, there

was increased mucosal structural damage and in-

creased microvascular permeability.54

Interestingly, the brain appears to be one of the least

protected organs from ROS damage. The brain has a

high concentration of unsaturated fatty acids (i.e.,

perfect media for lipid peroxidation), a large iron store
with low metal binding capacity (i.e., perfect for

generation of hydroxyl radical), low antioxidant capa-

city, and is incapable of neuronal regeneration.5

The endothelium produces both NO and endothelin.

In arteries, NO can reverse the vasoconstrictive effects

of endothelin, but it appears to have the opposite effect

in veins.55,56 During ischemia, endothelial transcription

of endothelin, the most potent vasoconstrictor known,
is upregulated.57 NO is a free radical gas that appears to

have an effect on almost every tissue in the body. NO is

the end product of nitric oxide synthase (NOS), which

occurs in several isoforms; inducible NOS (iNOS),

endothelial NOS (eNOS), and neuronal NOS (nNOS).

Arginine and molecular oxygen are required for NO

synthesis. It is paradoxical in that NO has been shown

to be both beneficial and toxic depending on the
conditions. In health, low doses of NO cause vasodila-

tion via cGMP-mediated vasodilation, decrease platelet

aggregation and leukocyte adhesion, neutralize ROS,

and have anti-microbial and anti-apoptotic effects.58 In

the large concentrations generated by iNOS, however,

NO is believed to have cytotoxic effects, causing severe,

non-responsive vasodilation.58 NO and superoxide

rapidly combine to form a toxic reaction product, peroxy-

nitrite (ONOO� ), which is highly reactive, readily

reacting with proteins, lipids, and DNA during times of

inflammation.59 Hypoxia induces the transcription of

iNOS, but because oxygen is required as a substrate for

NO production, NO may not increase despite signifi-

cant elevations in iNOS.60 Upon reperfusion and re-
introduction of oxygen, there may be sustained

increases in NO.58 During reperfusion, large bursts of

ROS can cause depletion of NO when it binds super-

oxide. The inhibition of NO by ROS is believed to

contribute to increased intestinal mucosal permea-

bility.61 Endothelial dysfunction was improved after

administration of a NO donor in an IR study in cats.62

In animal models of IR injury, increasing endothelial
NO availability significantly improved hemodynamics

and liver function post-reperfusion in pigs and rats.63,64

The beneficial effects may be due to the ability of NO to

block the effects of endothelin, which is released from

endothelial cells and macrophages during IR injury.65

Increasing NO may also decrease anti-inflammatory

cell activity, decrease the expression of adhesion

molecules, or decrease cytokine levels.66–68

Blocking iNOS activity markedly reduced liver injury

in several studies.69–71 NO is increased in graft tissue of

rejected organs, compared with organs that are not

rejected, and NO has been shown to be a mediator of

acute graft rejection in liver transplant patients. It is still

controversial whether the increased NO synthesized

during IR injury in transplant recipients is beneficial or

harmful to tissues.72

Conflicting results showing NO to be both beneficial

and cytotoxic are most likely due to multiple factors

that influence the actions of NO, making it difficult to

design effective IR treatment protocols using NO.

Role of neutrophils in IR injury

Neutrophils play an important role in IR injury. XO,

PAF, and ROS can initiate chemotaxis and subsequent
neutrophil infiltration.73,74 Leukocyte infiltration is a

crucial component in the IR cascade. Cell adhesion

molecules on the leukocyte surface bind to ligands on

endothelial cells, initiating a sequence of events

culminating in extravasation of leukocytes from the

microvasculature. Much of the tissue injury that occurs

upon reperfusion results from the oxidants generated

and proteolytic enzymes released by immense numbers
of either resident or invading neutrophils. Activated

neutrophils can cause tissue injury via ROS synthesis

during the respiratory burst, release of intrinsic

proteolytic enzymes, and by physical obstruction of

capillaries.75,76 Neutrophil infiltration in feline intestinal

mucosa following reperfusion has been prevented by
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prior administration of allopurinol (a XO inhibitor),

SOD, catalase, and deferoxamine, providing additional

evidence of the link between ROS, neutrophil infiltra-

tion, and subsequent tissue injury.77,78 Additionally, the

increase in microvascular permeability that occurs with

IR is attenuated with administration of XO inhibitors,

neutropenia, dimethyl sulfoxide (hydroxyl radical
scavenger), or monoclonal antibodies directed against

the CD18 neutrophil adhesion molecule.79–81 It has

been suggested that neutrophils mediate the majority

of mucosal and microvascular injury subsequent to

IR.42,82,83

The microvasculature is exquisitely sensitive to IR

and the increased adhesiveness of neutrophils to

endothelial cells contributes to the microvascular injury
observed with IR.84 Neutrophil emigration from the

microvasculature involves a multi-step series of events

involving selectins and integrins, and in general

includes tethering/rolling, firm adhesion, transmigra-

tion, and chemotaxis.85 During flow, neutrophils nor-

mally undergo tethering and rolling via interaction of

E and P selectins on activated endothelial cells and

leukocyte L-selectin with various membrane glycopro-
teins. Rolling is initiated principally by activation of the

endothelium. Rolling is mediated early on by constitu-

tively expressed endothelial P-selectin and neutrophil

L-selectin. E-selectin only becomes involved at a later

time because it requires de novo synthesis. Once

neutrophils are tethered to the endothelium by selectin

interactions, neutrophil integrin receptors are activated

by endothelial cell-expressed PAF, chemokines, or
locally secreted chemoattractants. Integrin receptor

activation increases their affinity for their endothelial

cell ligands, ICAM-1 and -2.85 Once neutrophils become

adherent to the endothelium, they move over the

endothelial cell surface and then diapedese through

intercellular endothelial cell junctions and migrate to

the site of inflammation. This migration may be

facilitated by disruption of the intercellular junction
integrity by elastase or other mediators. The recruit-

ment of neutrophils is terminated by several mecha-

nisms, including removal of E and P selectins from

endothelial cells via endocytosis and cleavage of

L-selectin from neutrophils by a membrane protease.

Studies have shown that there is an early phase

(phase 1) and a later phase (phase 2) of neutrophil

adhesion to endothelial cells subsequent to anoxia and
reoxygenation.86–89 The early phase appears to be

mediated by PAF- and XO-derived hydrogen peroxide,

whereas phase 2 neutrophil adhesion appears to be

mediated by PAF as well as oxidants generated

intracellularly within the mitochondria. The pattern of

neutrophil adhesion during phase 1 suggests that it is

due to constitutively expressed ICAM-1 and the rapidly

mobilized preformed pool of P-selectin as well as

upregulation of neutrophilic surface expression of b2-
integrins.86–89 Nuclear transcription factor (NFkB)
seems to play an important role in the upregulation of

endothelial cell adhesion molecules during phase 2

neutrophil adhesion. Unlike many transcription activa-

tors, NFkB is normally present in the cytoplasm and
must be translocated into the nucleus to elicit a

response. The phase 2 E-selectin-dependent pattern of

neutrophil adhesion is consistent with a transcriptional-

dependent upregulation of the adhesion protein

mediated by NFkB. Inhibition of NFkB activation

prevented increased surface expression of E-selectin

that was directly correlated with a decrease in neu-

trophil adhesion to endothelial cell monolayers.90

A vicious cycle occurs during reperfusion, with

continued neutrophil chemotaxis and activation lead-

ing to additional ROS formation, endothelial damage,

and capillary plugging.34 Maximal adherence to venu-

lar endothelium has been demonstrated using intravital

microscopy to occur 10 minutes after reperfusion in

feline mesentery.79 Similar temporal findings have been

reported in other species and organs using other
techniques, including in the large colon of horses 10

minutes after restoration of blood flow following

3 hours of low-flow ischemia.91 In several studies,

increased myeloperoxidase (MPO) activity has been

documented at the site of IR injury, adding to the

evidence that neutrophil accumulation occurs and

likely contributes to this injury. A correlation between

MPO activity and MDA concentrations (i.e., a marker of
lipid peroxidation) suggests that lipid peroxidative

damage occurred subsequent to neutrophil-derived

ROS.92 Alternatively, the increased MPO could occur

subsequent to the increase in phospholipid-derived

mediators (e.g., PAF) released during lipoperoxidation

of cell membrane phospholipids. Inflammatory media-

tors generated during IR include tumor necrosis factor

alpha (TNFa), interleukin-1b (IL-1b), PAF, complement,
and chemokines, all of which are potent chemoattrac-

tants and contribute to increase neutrophil sequestra-

tion.93–96 Although activated neutrophils themselves

can release TNFa and IL-1b, these cytokines are

predominantly released from resident macrophages

and mast cells.97,98 TNFa induces neutrophil adhesion

and degranulation, stimulates NADPH oxidase (result-

ing in ROS synthesis), and enhances the expression of
IL-2 receptors and the expression of ICAM-1 on the

endothelium.99 Neutrophil degranulation increases

oxidative stress, and also increases tissue activity of

elastase and collagenase and augments eicosanoid

synthesis. Elastase is the predominant proteolytic

enzyme released from neutrophils that cause tissue

damage.100 Xanthine oxidase-derived ROS initiate
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recruitment of neutrophils, which then become acti-

vated and release ROS, leading to exacerbation of organ

damage. It appears that circulating leukocytes contri-

bute to increased microvascular permeability and resi-

dent interstitial granulocytes contribute to increased gas-

trointestinal mucosal permeability associated with IR.83

The ‘no-reflow phenomenon’ is a term used to
describe diminished or absent blood flow to an area

of tissue after relief of vascular occlusion. The concept

was first described by Majno et al.101 Rabbits were

subjected to variable periods of brain ischemia and the

authors noted that although blood flow was restored

with brief (2.5 minutes) periods of ischemia, it was not

restored when the ischemia was of longer duration.

This model was repeated in other animal models of
ischemia and in other organs including the skin,

skeletal muscle, and kidney.102–104 Kloner et al.105

studied electron microscopic samples of cardiac vessels

in a dog model of proximal coronary artery occlusion.

Swollen endothelium, endothelial protrusions, and

platelet and fibrin thrombi were observed and were

believed to be responsible for the no-reflow in these

animals. Experimental studies have shown that longer
periods of ischemia are more likely to lead to the no-

reflow phenomenon.106–108

It is likely that neutrophils play a key role in no-

reflow. Neutrophils adhering to the endothelium can

cause damage resulting in endothelial swelling and

additional neutrophil accumulation, which can lead to

further ischemia and a downward spiral in which even

more neutrophils are attracted to the area. In several
studies, no-reflow was attenuated by decreasing either

neutrophils or platelets.109–112 Platelets rapidly adhere

to subendothelium exposed after vascular injury causes

endothelial denudation or retraction. These platelets

may then recruit additional neutrophils by initiating

selectin- and integrin-dependent leukocyte adhesion to

surface-bound platelets.113–115 The accumulated neu-

trophils adhering to the platelets may promote fibrin
deposition and subsequent thrombus formation.116

Since there is often a period of normal flow after

elimination of the occlusion and a subsequent decrease

in flow, the term diminishing reflow has been

suggested.117

Conclusion

IR injury is a complex process involving numerous
mediators and intricate pathways. Key players in the IR

injury cascade include neutrophils, platelets, cytokines,

and ROS. Damage due to ROS is widespread and

extensive, since they can react with all biological

membranes. In dogs, the severity of ischemic injury is

determined by the length of the ischemia,28 and the

reperfusion phase is associated with severe tissue and

endothelial injury. Endogenous antioxidant defense

mechanisms become overwhelmed during reperfusion,

contributing to the damage. In an experimental cat

model of IR injury, significant mucosal injury was seen

in the small intestine upon reperfusion and this

contributes to the vicious cycle of tissue damage.54 In
experimental studies with cats, administration of a NO

donor was shown to be beneficial in IR injury.62 On the

other hand, blocking iNOS activity was shown to

reduce liver injury in several studies in rats. Because

NO requires molecular oxygen for its synthesis,

elevations of iNOS do not necessarily translate into

increased NO during hypoxia.60 Conflicting studies

regarding NOmake designing treatment strategies very
difficult and the timing of treatment appears to be a

very critical element.

Neutrophils contribute significantly to tissue injury

in IR injury. ROS and proteolytic enzymes are released

by both invading and resident neutrophils during the

reperfusion phase. The prevention of neutrophil infil-

tration into feline intestine was accomplished with

prior administration of allopurinol, SOD, catalase, and
deferoxamine.77,78 XO inhibitors have been shown to

decrease the vascular permeability that occurs upon

reperfusion in experimental studies using cats and

rats.79,80 Clinical trials of IR injury in companion

animals are lacking. Due to the enormous complexity

of the disease process and the lack of clinical research, it

is difficult to design effective assessment and treatment

strategies.
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