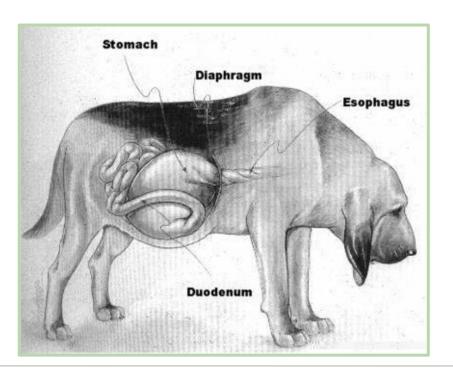

Gastric Dilatation - Volvulus

Gretchen Lee Schoeffler, DVM, DACVECC

Chief, Companion Animal Emergency and Critical Care Director, Medical Specialties III Cornell University College of Veterinary Medicine



What is GDV?

♦ A very serious condition that occurs in susceptible dogs when the stomach becomes distended with air, and then while dilated, twists on itself

Why is It Important to Recognize?

♦ This is an acute, life-threatening situation which requires immediate medical and surgical intervention

Signalment

 \diamond Adult

- \diamond Large to giant breed dogs
- \diamond Deep chest conformation

Breed and GDV Risk Ratio Glickman - JAVMA 217(10), 2000

1	Great Dane	41.4	14	Alaskan Malamute	4.1
2	St. Bernard	21.8	15	Chesapeake Bay Ret	3.7
3	Weimaraner	19.3	16	Boxer	3.7
4	Irish Setter	14.2	17	Collie	2.8
5	Gordon Setter	12.3	18	Labrador Ret	2.0
6	Standard Poodle	8.8	19	Eng Spring Span	2.0
7	Basset Hound	5.9	20	Samoyed	1.6
8	Doberman Pinscher	5.5	21	Dachshund	1.6
9	Old Eng Sheepdog	4.8	22	Golden Ret	1.2
10	Ger Shorthair Pointer	4.6	23	Rottweiler	1.1
11	Newfoundland	4.4	24	Mixed	1.0
12	Ger Shepherd	4.2	25	Miniature Poodle	0.3
13	Airedale	4.1			

Host Risk Factors Raghavan – JAAHA 42 (1), 2006

- \diamond Large breed size
- ♦ 170% increase in risk for each unit increase in chest depth/width ratio
- \diamond 63% increase in risk assoc with having a first degree relative GDV
- 20% increase in risk for each year increase in age

♦ 15% increase in risk for each unit increase in speed of eating score
♦ Nervous temperament

Management Risk Factors Raghavan – JAAHA 42 (1), 2006

- \Rightarrow 110% increase in risk associated with using a raised food bowl
- \diamond Feeding once daily
- \diamond Feeding a large volume of food per meal
- ♦ Feeding dry foods containing fats or oils among the first four label ingredients

Prognostic Indicators

- Published mortality rates range from 10-90%: Mackenzie (10%) JAAHA 2010; Glickman (24.3%) - JAAHA 1998
- ♦ Reported risk factors for increased mortality include...
 - Increased lactate and minimal decrease serially: de Papp JAVMA 215 (1), 1999; Zacher JAVMA 236 (8), 2010; Green JVECC 21 (1), 2011; Beer JAVMA 242 (1), 2013

 - Splenectomy: Brourman JAVMA 208(11), 1996; Zatloukal ACTA VET. BRNO 74, 2005; Mackenzie JAAHA 46, 2010
 - Partial gastrectomy and splenectomy: Brourman JAVMA 208(11), 1996; Mackenzie JAAHA 46, 2010
 - Pre- and post-operative arrhythmia: Brourman JAVMA 208(11), 1996; Mackenzie JAAHA 46, 2010
 - ♦ Increased duration of clinical signs: Zatloukal ACTA VET. BRNO 74, 2005
 - Increased high mobility group box 1 and procalcitonin?: Uhrikova JVECC 25(4), 2015; Troija – Frontiers (5), 2018

Pathophysiology

Gastric Distension

 \diamond Caused by swallowing air, fluid, or food

 \diamond Results in

Decreased venous return to the heart because of compression of the caudal vena cava and portal vein

♦ Congestion of splanchnic vessels

 \diamond Increased gastric wall pressure

Sequelae of Gastric Distension

- ♦ Decreased venous return ♦ Shock
- ♦ Congestion of splanchnic vessels
 ♦ Breakdown of the gut mucosal barrier
 ♦ Bacterial translocation (sepsis)
 ♦ Activation of systemic inflammatory mediators (SIRS)
 - ♦ Disseminated intravascular coagulation (DIC)
- \diamond Increased gastric wall pressure
 - \diamond Gastric mucosa ischemia
 - Infarction, ulceration, necrosis, perforation and peritonitis (especially along the greater curvature)

Gastric Volvulus

- When the distended stomach twists on its long axis and occludes the esophageal hiatus and pylorus
- ♦ Clockwise rotation is most common (viewed from caudal to cranial with the dog in dorsal recumbency)
- ♦ The pylorus and duodenum are displaced ventrally and to the left, across the midline and ending dorsal to the cardia on the left side

Splenic Involvement

♦ The spleen commonly rotates with the stomach to the right ventral abdomen

 \diamond Gastrosplenic ligaments

 \diamond Short gastric blood vessels

 \diamond May lead to

 \diamond Congestion and splenomegaly

 \diamond Splenic infarction and thrombosis

 \diamond Splenic torsion

Avulsed gastric branches of the splenic arteries resulting in significant hemoperitoneum

Clinical Signs

\diamond Classic presentation

- \diamond Large, deep-chested dog
- \diamond Acute history agitation and non-productive retching

\diamond Physical exam

- ♦ Distended, tympanic abdomen♦ Ptyalism with thick, ropey saliva
- ♦Shock

Less Obvious....

 \diamond Can occur in atypical breeds and species

♦ Distended stomach can be hidden under ribs! (Don't be fooled!)

♦ Can present in various stages of shock
 ♦ May walk in or present moribund

Diagnosis and Therapy

♦ Immediate and aggressive stabilization
 ♦ Emergency database
 ♦ Hypovolemic shock

 \diamond Confirm diagnosis with radiographs

 \diamond Gastric decompression

 \diamond Surgery for definitive therapy

 \diamondsuit Post-operative monitoring and intensive care

Emergency Database

 \diamond QAT's

- \diamond Venous blood gas
- \diamond Lactate
- \diamond Coagulation status

QAT's

\diamond Measures

◇Packed cell volume (PCV)
◇Total protein (TS)
◇Blood glucose (BG)
◇Azotemia estimate (AZO)

\diamond Why?

♦ To establish baseline values♦ To aid in monitoring trends

Venous Blood Gas

\diamond Measures

- \diamond Acid base status
- ♦ Electrolyte concentration (Na+, K+, Cl-, Ca2+)

♦ Why?

- Decreased venous return results in vascular stasis, lactic acid accumulation, and ultimately metabolic acidosis
- \diamond Compression of the respiratory tract may result in respiratory acidosis
- Correction of any acid base or electrolyte abnormalities is important prior to induction of general anesthesia

Lactate

 \diamond Used to evaluate the adequacy of perfusion

- ♦ Produced when anaerobic metabolism occurs and is considered an early indicator of tissue hypoxia
- ♦ It should be interpreted in conjunction with clinical perfusion parameters
 - \diamond Pulse quality
 - \diamond Mucus membrane color
 - \diamond Capillary refill time
 - ♦Temperature

Lactate de Papp - JAVMA 215 (1), 1999

- \diamond Retrospective 102 dogs overall survival 85%
- ♦ 99% of dogs with lactate <6.0 mmol/L survived compared with 58% of dogs with lactate >6.0*
- ♦ Low lactate was a better predictor of survival than high lactate was a predictor of death
- \diamond Serial measurements are far more useful than a single measurement

Lactate

Zacher – JAVMA 236 (8), 2010

 \diamond Retrospective - 64 dogs – overall survival of 77%

 \diamond Change in lactate before and after initial IVF and decompression

 \diamond Percentage change in lactate concentration was calculated as:

[initial lactate – postresuscitation lactate] X 100 initial lactate

 \diamond Exercise caution in applying these results to individual patients....

	Optimal cutoff	Sensitivity	Specificity	Survival rate (%)	
Variable				Value > cutoff	$\frac{\text{Value}}{\leq \text{cutoff}}$
Initial lactate concentration (mmol/L) Final lactate concentration (mmol/L) Percentage change in lactate concentration (%)	9.0 5.6 42.2	0.735 0.837 0.612	0.733 0.800 1.000	54 (13/24)* 40 (8/20)* 100 (30/30)*	90 (36/40) 93 (41/44) 56 (19/34)

Lactate Green – JVECC 21 (1), 2011

 \diamond Retrospective - 84 dogs – overall survival 88%

- ✤ Initial plasma lactate > 6.0 mmol/L was not predictive of gastric wall necrosis or survival to discharge
- ♦ 70% of dogs whose plasma decreased by ≥ 50% in the initial 12 hours survived to discharge

Lactate / BE Beer – JAVMA 242 (1), 2013

♦ Retrospective - 78 dogs, overall survival 83%

- ☆ Initial plasma lactate >7.4 mmol/L associated with an increased risk of gastric necrosis and death, however the sensitivity and specificity was relatively poor
 - \diamond Gastric necrosis: Sn=50% and Sp=88%

 \diamond Death: Sn=75% and Sp=89%

♦ Base excess was not useful in predicting either gastric necrosis or outcome

Cell-Free DNA / HMG-B1 / Procalcitonin Troija – Frontiers in Vet. Science (5), 2018

- ♦ Prospective 29 GDV dogs, 24 healthy controls; 76% survival
- ♦ GDV dogs had significantly greater median plasma concentrations of cfDNA, HMGB1, and PCT
- ♦ A moderate positive correlation was identified between plasma PCT and blood lactate concentrations
- ♦ Lactate was predictive of gastric necrosis, unfortunately the degree of overlap between groups precluded identification of a useful cut-off
- PCT was prognostic of non-survival and may offer useful information in these dogs, unfortunately there is currently no commercial POC test

Lactate and GDV Conclusion

- ♦ There remains debate about the ideal cutoff for lactate to predict gastric necrosis and survival
- Difficulty prognosticating for the individual patient as there is wide overlap in lactate ranges among survivors and non-survivors, across multiple studies
- ♦ The most promising data appears to be in looking at the change in lactate after initial resuscitation

Coagulation Profile Mills – VSURG 22 (2), 1993

♦ Prospective – 20 dogs, overall survival 75%

\diamond Parameters evaluated

 \diamond Platelet count

 \diamond PT and PTT (or at the very least an ACT)

∻Fibrinogen

 \diamond Antithrombin

♦ Fibrin degradation products or d-dimers

♦ Findings

♦7 of 10 dogs with 2 or more abnormal hemostatic test results had gastric necrosis

None of the 10 dogs with < 2 abnormal hemostatic test results had gastric necrosis</p>

Shock

♦ Treat immediately – before diagnostic tests or decompression

 \diamond Two large bore, short length, intravenous catheters

Cephalic or jugular veins are preferred as they empty into the anterior vena cava

 \diamond Venous return from the caudal portion of the body is impeded

 \diamond Bolus to effect

♦ Start with 30 ml/kg of isotonic crystalloid

♦Consider

♦7% Hypertonic saline (4 mL/kg)

♦Starch (e.g. Hespan, Vetstarch) (10-20 mL/kg)

Intravenous Fluid Therapy

- Allen VRES 52 (1), 1991
 Schertel JAVMA 210 (2), 1997
 Beck JAVMA 229 (12), 2006
- ♦ Compared fluid resuscitation with hypertonic saline and synthetic colloids as compared to crystalloids
- ♦ Found that hypertonic saline and synthetic colloids
 ♦ Reduced hypotension
 - Improved cardiovascular stability faster, with lesser volumes, and improved oxygen delivery to tissues

Intravenous Fluid Therapy Haak – JVECC 22 (2), 2012

- ♦ Prospective (not blinded) 20 dogs, overall survival 90%
- ♦ Compared polymerized stroma-free Hgb (Hb-200) to 6% hetastarch 450/0.7 in 0.9% saline
 - \diamond Patients rec'd 15 mL/kg crystalloid, then randomized into HBOC or HES group
 - Each patient rec'd 5 mL/kg of either HBOC or HES q 10 minutes until resuscitation endpoints were achieved

A			Hb-200	HES
\diamond	Results	Volume of colloid (mL/kg)	4.2	18.4
		Volume of crystalloid (mL/kg)	31.3	48.1
		Time for resuscitation (minutes)	12.5	52.5
		Adverse effects – mild hypertension	1	1
		Mortality	No diffe	erence

♦ Unfortunately, HBOC's are not currently available

There continues to be a role for colloids and hypertonic solutions

A Role for Lidocaine? Bruchim – JVECCS 22 (4), 2012

♦ Prospective – 130 total dogs, 84.6% overall survival

♦83 lidocaine treated compared to 47 untreated historical controls♦Non-controlled

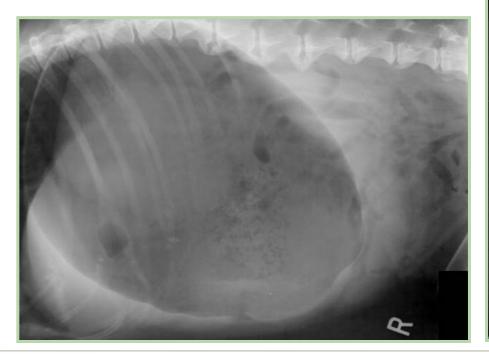
\diamond Lidocaine treatment

2 mg/kg IV loading dose (prior to decompression) followed by 0.05 mg/kg/min x 24 hours

Results		Lidocaine	None
	Arrhythmia (%)	12	38.3
	Creatinine > 2 mg/dL @ 24 hrs (%)	0	3.6
	Hospitalization (hours)	48	72

♦ Lidocaine was safe and might be considered to reduce reperfusion injury and cardiac arrhythmia

Abdominal Radiographs

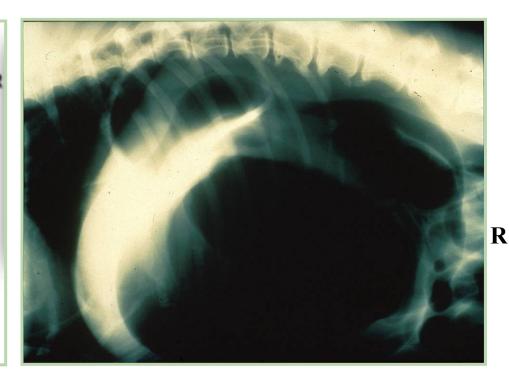

♦ Indicated to differentiate between GDV and gastric distension without torsion

♦ Views of choice
♦ Right lateral
♦ DV or VD

Gastric Dilation

♦ The stomach is distended with air and may occupy nearly the entire abdominal cavity

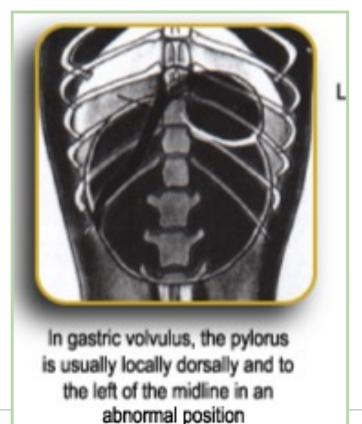
GDV


♦ Right lateral frequently reveals double bubble gas pattern with compartmentalization signs

♦ A soft tissue fold can be seen separating the displaced pylorus from the distended fundus with volvulus

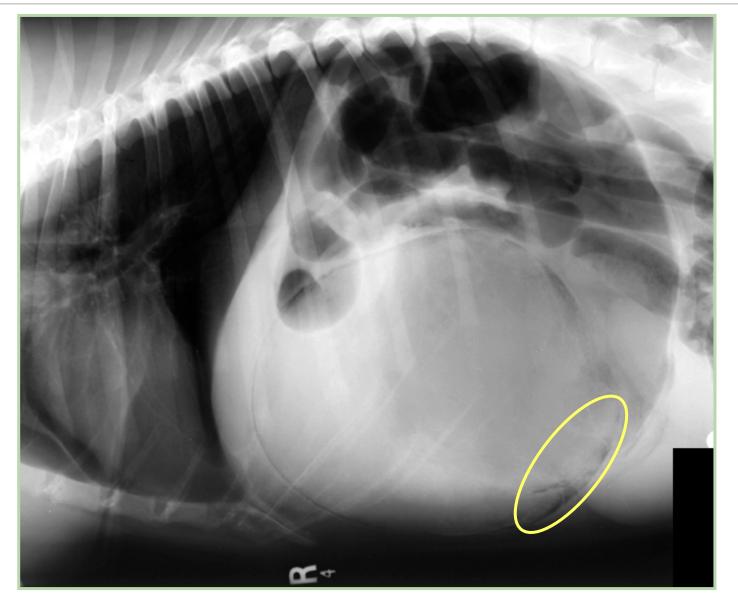
Right Lateral Radiograph - GDV

The position of the pylorus aids in differentiating gastric dilatation from gastric volvulus.



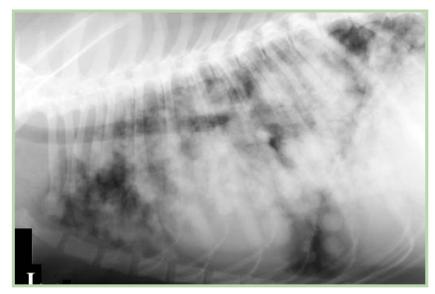
Taylor - 9 yr MI English Setter

DV or VD View


\diamond GDV - pylorus will be displaced

Other Radiographic Findings Fischetti – VRAD & US 45 (3), 2004

- \diamond Free air in the abdominal cavity
 - \diamond Most readily seen between the liver and the diaphragm
 - \diamond May indicate gastric necrosis and or stomach rupture
- \diamond Gastric pneumotosis
 - \diamond Gas dissection of the gastric mucosa
 - \diamond May represent gastric necrosis
 - \$\delta 41\% chance dog will require gastric resection as compared to 25\% of dogs without gastric pneumotosis



Dickie 7 yr CM German Shepherd

Thoracic Radiographs Green – JAVMA 22 (5), 2012

- ♦ Retrospective 101 dogs, overall survival 84%
- ♦ To determine the incidence of clinically significant findings on TXR in dogs with GDV

\diamond Results	Significant Finding on TXR	%
	Small vena cava	40
	Esophageal dilation	39
	Microcardia	34
	Aspiration pneumonia	14
	Cardiomegaly*	5
	Pulmonary nodule	4
	Pulmonary edema	2
	Sternal lymphadenopathy	1
	Pulmonary bullae	1

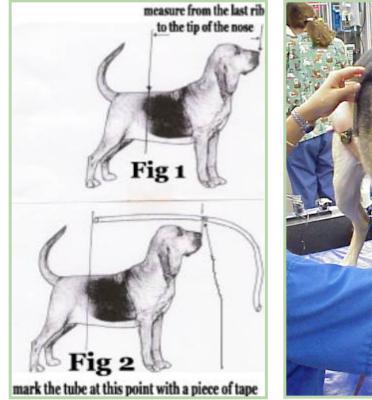
Results support the notion of taking TXR in dogs with GDV, prior to surgery

Gastric Decompression Goodrich – JSAP 54, 2013

- \diamond Retrospective 116 surgical dogs survival 95.7%
- ♦ Method of decompression (clinician's preference)
 ♦ Orogastric only (sedated) 31 dogs
 ♦ Trocharization (14g catheter) only 39
 ♦ Both orogastric and trocharization 46
- ♦ One trocharized dog did have a splenic laceration but did not require splenectomy
- No significant difference between trocharization and orogastric decompression
- \diamond Both can be attempted if the previous method fails

Gastric Decompression

- Should not be attempted until after fluid therapy is begun
- \diamond Methods
 - \diamond Orogastric tube
 - ♦Gastric tube
 - \diamond 2 buckets (warm water and efflux)
 - \diamond Pump or funnel and water jug
 - 2" role of tape to act as mouth gag Trocharization
 - \diamond 14-18g needles or catheters



Orogastric Tube

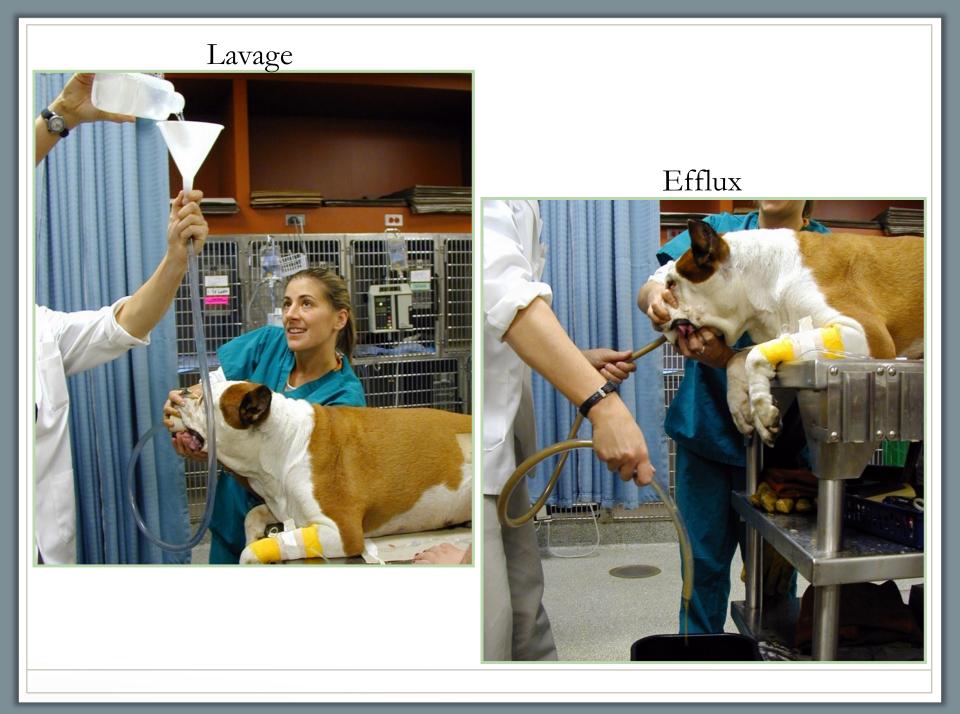
\diamond Measure from the tip of the nose to the last rib

Orogastric Tube

 \diamond Generously lubricate tube

- \diamondsuit Introduce into mouth and advance into esophagus
- \diamond Palpate tube to ensure it is in the esophagus!

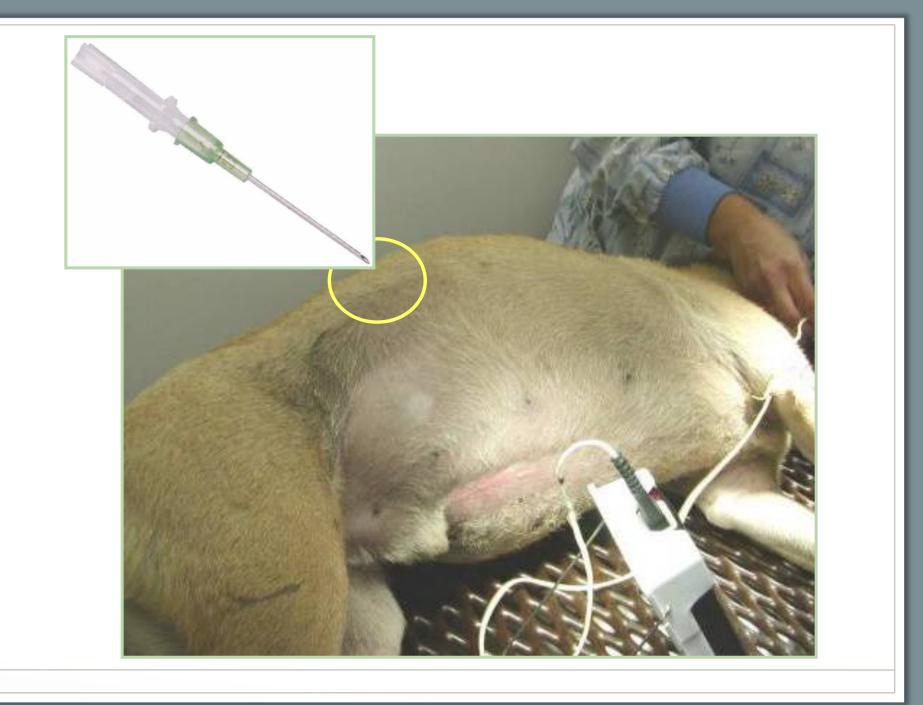
Having Difficulty?

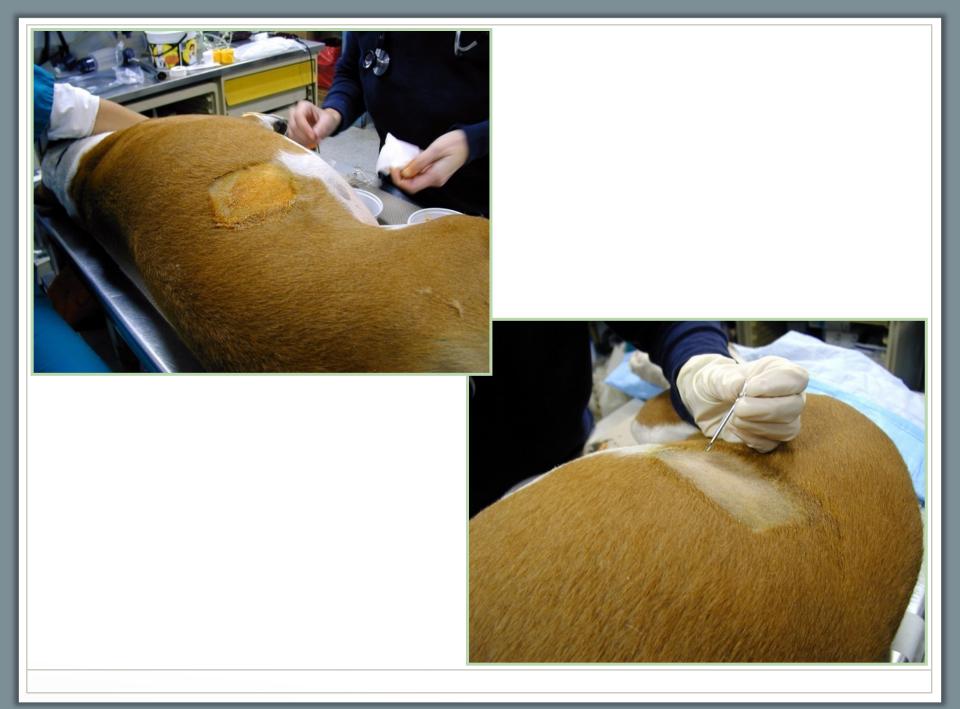

- \diamond Avoid excessive force to reduce the risk of perforation
- \diamond Gently rotate the tube
- ♦ Reposition the patient
 ♦ Elevate the front ¹/₂ of the body
 ♦ Place in lateral recumbency
- \diamond Trocharize the stomach

Orogastric Tube

♦ Confirm placement within stomach
 ♦ Rush of sour smelling gastric gas
 ♦ Gastric efflux

Multiple warm water gastric lavage infusions can be administered to evacuate the stomach







Gastrocentesis / Trocarization

- ♦ Clip and aseptically prepare an area behind the last rib at the site of greatest tympany
- \diamond Confirm the location by ausculting a "ping" and avoid the spleen
- \diamond Use a 16 or 18g needle or catheter as the trocar
- ♦ An orogastric tube can usually be passed after a decompression has been achieved

Surgery

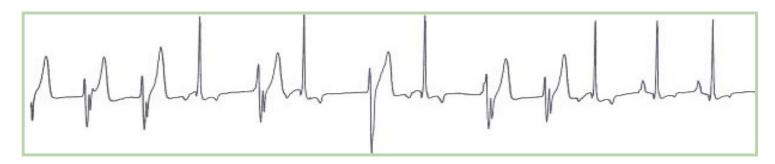
 \diamond Ideally performed as soon as the patient is hemodynamically stable

- ♦ Consider anesthetic protocols that minimize arrhythmogenic potential and hypotension
- Prompt surgery may minimize gastric necrosis and or splenic congestion or thrombosis

Goals of Surgery

- \diamond Correct gastric malposition
- \diamond Evaluate stomach and spleen for viability
 - \diamond Resection of necrotic stomach may be necessary

- Splenectomy should be performed if perfusion does not return after the stomach is decompressed and repositioned
- \diamond Perform gastropexy
 - ♦ Multiple techniques are acceptable
 - \diamond Reduces recurrence rates from as high as 80% to as low as 3-5%
- \diamond Perform a complete exploration of the abdomen


Post-Operative Monitoring

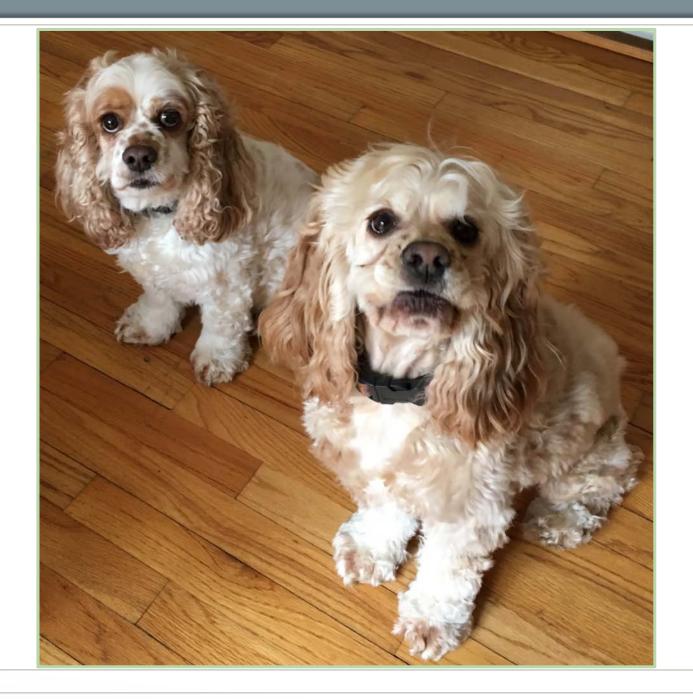
- ♦ Vital signs and blood pressure are monitored q 1-4 hours postoperatively
- ♦ QAT's, electrolytes and acid-base status should be evaluated 1-4 times daily until the animal is stable
- ♦ BUN/creatinine, blood glucose, platelet count and other coagulation parameters are monitored to permit early detection of complications such as sepsis, oliguria (usu due to inadequate fluid therapy), or DIC

Post-Operative Arrhythmia

- ♦ Continuous ECG
- Ventricular arrhythmias are common especially 12-36 hours postoperatively
 - Subendocardial necrosis results from decreased cardiac output, mean arterial pressure, and coronary blood flow

 \diamond Usually resolve within 72 hours

Post-Operative Care


 \diamond Identify and treat life-threatening complications

- ♦ Broad spectrum antibiotics are indicated if sepsis is suspected or gut mucosal barrier is compromised
- \diamond Provide analgesia!
- ♦ Refeed

 \diamond Food and water are reintroduced 12-24 hours post-operatively

Conclusion

- ♦ Gastric dilatation-volvulus is a common surgical emergency and reported mortality rates have decreased significantly over the last twenty years
- ♦ Glickman (JAAHA 1998) reported a mortality rate of 24.3%, while today it is closer to 10% (Mackenzie, JAAHA 2010)
- ♦ Improved pre-operative stabilization with aggressive and early goal directed therapy is likely the most significant contributing factor to the decrease in mortality
- \diamond Continue to watch for peer-reviewed articles!

