OBSTRUCTIVE UROPATHIES

Sarah Gradilla, DVM ECC Resident, CUVS

OUTLINE

- Urethral obstruction
- Obstructive urolithiasis
- Urinary diversion in the ER
- Reflex dyssynergia
- Feline UO
- Urethral trauma
- Ureteral obstruction
- Urinary neoplasia

URETHRAL OBSTRUCTION

URETHRAL OBSTRUCTION

Etiology/Pathophysiology

- Dogs: urolithiasis, neoplasia, prostatic disease, trauma and stricture
 - CaOx and struvite stones common in dogs
 - TCC of the bladder trigone and prostatic carcinoma
 - Strictures due to chronic urethritis, trauma during catheterization, damage to urethral epithelium due to passage of stone, tear/avulsion secondary to trauma, exuberant healing
- Cats: urolithiasis (CaOx), urethral plugs, functional obstruction from spasm, edema
 - FIC and associated inflammation of the LUT sets stage for obstruction

URETHRAL OBSTRUCTION

Epidemiology/Signalment

- Males > females
- Patients that are predisposed to developing stones are greater risk

History and clinical signs

- LUT signs, vocalizing (cats), stranguria/dysuria, pollakiuria, unproductive attempts to void, discomfort
- Firm distended bladder common at presentation
- Stone palpated in pelvic urethra, prostatomegaly (dogs)
- > 24 hours signs of systemic illness → dullness, bradycardia, hypothermia (cats)

- Formation of uroliths is not a disease but complication of several disorders
 - Oversaturation of urine with I+ crystal precursors → crystals aggregation and lead to formation
 of macroscopic uroliths
 - Struvite, CaOx, urate, cystine
- Patient may present with:
 - Urinary tract obstruction
 - LUT signs w/o obstruction
 - No signs, incidental diagnosis
- If obstructed may have vomiting, anorexia, abdominal pain, large/painful bladder, uroabdomen
- Ureteral obstruction renal pain may be found

Diagnosis

- Imaging most definitive tool
 - AXR,AUS +/- contrast (contrast and double contrast)
 - Determine presence, location, number, size, shape, density
- Urinalysis
 - Crystalluria does not confirm uroliths (concentrated urine, cooled/refrigerated urine)
 - USG, pH can determine chemical environment of urine
 - Alkaline: staph, enterococcus (urease producing bacteria) → struvite (dogs); cats can have sterile struvite uroliths
 - Acidic: E. coli; CaOx, purines, cystine stones

Diagnosis

- Urine C/S
 - UTI may occur secondary to uroliths \rightarrow mucosal damage induced by stones, incomplete urine voiding, micro-organisms entrapped in stone
 - Or may induce uroliths (struvite dogs)
- Blood work
 - Look for underlying diseases (hyperCa, liver disease)
 - Obstructed K, BUN/Cr, phos

Not obstructed: refer to ACVIM Consensus Statement on treatment of canine/feline urolithiasis

Obstruction management

- Azotemia, hyperK, metabolic acidosis, dehydration may occur stabilize accordingly
- Uroabdomen (management discussed elsewhere)
- Ureteral obstruction (more to come...)
- Relief of urethral obstruction from urolithiasis:
 - Ucath
 - Retrograde hydropulsion
 - Repeated cystocentesis
 - Cystostomy tube / pigtail
- Medical management smooth muscle relaxation
 - Alpha I antagonists prazosin, tamsulosin
 - TCA amitriptyline

URINARY DIVERSION IN THE ER...

- Urethral catheterization
 - Indications:
 - Relief of urethral obstruction +/- hydropulsion
 - Contrast imaging cystourethrogram
 - Obtain UA samples
 - Bladder emptying in patients with urinary retention or temporary inability to void
 - Sanitary reasons
 - Aid with monitoring UOP (oligoanuria, severe polyuria)
 - Contraindications:
 - UTI, possible MDR (especially if in conditions were patients are at increased risk of UTI DM, neuro)
 - Diarrhea contamination

- Urethral catheterization
 - Complications
 - Trauma or tearing of the urethra
 - Kinking or knotting of the catheter
 - Catheter associated infection
 - 20% of female dogs catheterized in one study developed UTI; up to 52% in another
 - Infection associated with length of catheterization, age, administration of abx
 - Common isolates: E coli, enterobacter, staph, strep, pseudomonas, serratia, klebsiella +/- fungal infections
 - Prevention is key aseptic technique, performing only if needed, little trauma

- Percutaneous antegrade urethral catheterization
 - If ucath cannot be passed or bladder rupture has occurred
 - Performed under GA
 - Patient placed in lateral recumbency, peripheral catheter inserted into bladder/decompressed \rightarrow contrast urethrogram with fluoro \rightarrow angled hydrophilic guidewire fluoroscopically guided percutaneously through the catheter into the bladder and urethra \rightarrow urinary catheter inserted over the wire for retrograde catheterization + cystotomy tube
 - Complications:
 - Anesthetic complications
 - Inability to pass guidewire
 - Urine leakage

- Cystostomy tubes
 - Temporary or permanent
 - Part of long term management in patients with spinal cord or other neurologic disease, secondary to bladder dysfunction, post surgical diversion, obstructive neoplasia
 - Cystopexy to abdominal wall at time of placement
 - Various types: Foley, mushroom tipper catheters, low-profile gastrotomy tubes
 - Minimally invasive inguinal techniques and laparoscopic technique described for permanent placement
 - Emergency setting percutaneous or suprapubic catheterization can be performed using fluoro or AUS guidance
 - Locking loop or Foley catheters can be placed

Cystotomy tubes

- Complications: as high as 49%
- Inadvertent removal of tube or displacement from bladder most common
- UTI
- Urine leaking/uroabdomen
- Hematuria
- SQ infection
- Fistula formation
- Penetration of viscera/omentum
- Bladder wall rupture
- Case report on US-guided placement of pigtail cystostomy tubes with urethral obstruction (Culler JVECC 2019)

- Percutaneous nephrostomy tube
 - Indications:
 - Ureteral obstruction
 - Urgency depends on degree of metabolic derangements, urine production, cardiovascular stability
 - HyperK, severe metabolic acidosis, fluid overload emergent intervention
 - Mostly placed in animals with bilateral disease
 - Once stabilized definitive treatment may be pursued (stent, SUB, ureterotomy, ureteral reimplantation, ureteronephrectomy)
 - Locking loop pigtail catheters are used via modified Seldinger technique
 - No Ax needed, can be placed with AUS guidance except for cats due to mobility of the kidneys → surgery and fluoro may be needed

- Percutaneous nephrostomy tube
 - Complications:
 - Pain
 - Hemorrhage
 - Hematoma formation
 - Hematuria
 - Infection
 - Urine leakage

- Obstruction of the tube
- Dislodgement
- Intestinal injury
- Septicemia
- Pneumothorax
- Hemothorax

- Peritoneal drainage
 - Locking loop pigtail catheters for uroabdomen
 - MILA chest tube catheter
- Complications:
 - Entrapment of other viscera
 - Penetration of viscera
 - Hemorrhage
 - Infection

BACK TO UROLITHIASIS...

Minimally invasive techniques

- Voiding urohydropulsion
 - Patient is sedated/anesthetized → catheter passed into bladder → bladder filled with sterile saline → urethra occluded → bladder squeezed as catheter is removed as patient is held vertically
 - Uroliths that are 1mm may be retrieved (male cats) and up to 10mm in female dogs
- Cystoscopy
 - Can allow for visualization of bladder pathologies (strictures, masses, calculi)
 - If stones are small enough can be removed via baskets and graspers

Minimally invasive techniques

- Percutaneous cystolithotomy (PCCL)
 - Bladder approached through a small abdominal wall incision and temporarily fastened to incised linea alba
 - Cystoscope passed for stone removal via stab incision or laparoscopic port
- Lithotripsy
 - Laser fiber passed through operating channel of cystoscope
 - Fiber emits infrared light/wavelengths to fragment the calculi

Surgical management

- Indications:
 - Obstruction of urine flow
 - Increase in number or size of stones
 - Persistent clinical signs
 - Lack of response to medical therapy (dissolution diet, antibiotics)
- Types of surgeries considered (for urethral obstruction)
 - PU surgery
 - Urethrotomy
 - Scrotal urethrostomy

- Resembles urinary obstruction but is a functional disorder of the voiding phase of micturition
- Urine voiding involves coordination of
 - Parasympathetic system to produce detrusor muscle contraction
 - Simultaneous relaxation of the internal sphincter (via inhibition of sympathetic tone of hypogastric n.) and external sphincter (inhibition of somatic pudendal n.)
- In dyssynergia –attempt to urinate results in contraction of bladder without relaxation of the internal and/or external sphincters
 - Internal sympathetic dyssynergia most common
 - External somatic dyssynergia

Causes

- Sexual excitement in males; castration may help improve signs
- PU/PD a full bladder, or when not taken out regularly, or if drinking a lot
- UTI spasm of the urethral sphincters due to inflammation
 - UTI cause or consequence?
- Surgery of the area of the bladder neck
- Idiopathic most common

- Clinical signs and diagnosis
 - Young to middle aged, large breed, males may be more prone
 - History important to gather info on pattern of urination, onset of signs and progression
 - Normal initiation of voiding \rightarrow then decreased and sudden interruption of flow
 - Dysuria, stranguria, prolonged attempts to urinate, voiding in small, intermittent spurts which suddenly stop
 - Urinary catheter placement no obstruction
 - UA
 - Radiographs + retrograde urethrocystogram can detect structural or anatomical abnormalities look for stones, structure, neoplasms
 - Abnormal residual urine volumes
 - Often diagnosis of exclusion; urethral pressure profilometry; cystoscopy

• Treatment

- Prazosin selective a l-adrenergic blocker
- Phenoxybenzamine nonselective al and a2 adrenergic blocker
- Tamsulosin ala-adrenergic blocker that is more selective to the urinary tract (ie, prostatic urethra, bladder neck); more limited cardiovascular side effects
- Diazepam, dantrolene, acepromazine can be useful in dogs with somatic dyssynergia
- Bethanechol if overdistension is prolonged, chronic loss of detrusor muscle contractility may occur
- Prognosis with appropriate therapy, can be favorable so long as severe complications such as bladder atony and UTIs are prevented

- Physical obstruction of the lumen of the urethra calculus (20%), urethral plug (20%), stricture, neoplasia; spasm and edema play a role in up to 50% of cases
- Brought about by FIC pathogenesis of FIC unclear
 - Sterile inflammatory process
 - Neurohormonal alterations sympathetic and hypothalamic-pituitary-adrenal imbalance brought about by stressful situations → impairs blood flow and release of inflammatory mediates that cause edema, smooth muscle spasm, pain in LUT
- These conditions +/- physical obstruction from plug or stone are what leads to obstruction

Predisposing factors

- Males long, narrow urethra = more likely to develop obstruction
- Different studies, different risk factors
 - Long hair cats
 - Multi cat household
 - Age
 - Diet
 - Indoor-outdoor status

- Breed
- Weight
- Use of litter plan
- Decreased water intake
- Dry food diet
- Neuter status

Pathophysiology of obstruction

- Complete obstruction leads to accumulation of urine and pressure within the urethra and urinary bladder → can no longer distend → pressure necrosis and mucosal injury
- Pressure in urinary bladder transmitted up the ureters to kidney and Bowmans's capsule \rightarrow reduction in GFR
- Within 24-48 hours the excretory ability ceases → accumulation/increase in BUN, Cr, phos, K, H → leads to clinical signs
- Uremia causes depression, nausea, vomiting, anorexia → decreased water intake + GI losses = dehydration and hypovolemia

Pathophysiology of obstruction

- Retention of organic and inorganic acids \rightarrow profound metabolic acidosis \rightarrow denaturing of proteins, enzymatic dysfunction, catecholamine hyposensitivity
- Severe hyperK most life-threatening due to effects on electrical conduction of heart
 - HyperK raises the resting membrane potential and causes diminished Na conductance → rate of depolarization is significantly diminished → bradycardia, atrial standstill, cardiac arrest
 - K > 10-12 electrical activity can stop all together
- Significant illness within 24-48 hours, mortality in 3-5 days

History and Clinical Signs

- Male cat vocalizing, stranguria, unproductive urination in litter box
 - Difficult to differentiate from FIC
- Vomiting, lethargy, anorexia, abdominal pain, mentation changes, lateral recumbency
- Signs > 24 hours systemically ill vs "healthy" blocked cat if caught early
- Dehydration, bradycardia, hypothermia
 - Hypothermia < 99.6 and bradycardia < 140 are strongly predictive of severe hyperK (>8) in cats with UO

Initial stabilization

- IVC, bloods PCV/TS,VBG, renal values
- IVF to dilute K even if ucath/bladder decompression cannot be performed right away
 - No difference in 0.9% NaCl vs balanced crystalloid
- ECG even if not bradycardic
 - Severe hyperK prolonged P-R, diminished or absent P waves, wide QRS, tented T → atrial standstill, vfib, asystole
 - ECG changes not always associated with degree of hyperK
- HR < 140 CaGluconate, regular inulin (0.5-1 U/kg), dextrose, terbutaline, albuterol. bicarb,
 - Ca does not reduce K but stabilizes electrical conduction

CYSTOCENTESIS - PRO

- Allows for immediate relief of pressure within urinary bladder → rapid restoration of GFR, relieves pain
- If no time to pass ucath temporary relief
- Help with passing if ucath (back pressure relieved)
- Facilitates retrohydropulsion
- Improves bladder wall perfusion

CYSTOCENTESIS - CON

- Rupture of bladder
- Uroabdomen due to distended and friable bladder
- Risk for hemorrhage
- Potential to delay unblocking
- Increased client cost

To cysto or not to cysto...

- Retrospective study (Hall JVECC 2014) no complications in 47 cats that had cysto performed
 - 56% had evidence of abdominal effusion on AXR but not diagnosed with uroabdomen
 - No survival disadvantage or benefit
- Prospective study (Gerken JVECC 2020) 1/3 of cats had US evidence of effusion prior to decompressive cysto, and 7 developed effusion after cysto – but not clinically relevant
- Prospective study (Reineke JAVMA 2021) no evidence for or against cysto; cysto did not result in easier or quicker ucath placement; 93% of cats had pericystic effusion prior to cysto or ucath – cysto did not increase risk of urine leakage
- If cysto is performed extension tubing, flexible collection system, adequate patient compliance needed
Urinary catheter placement

- Heavy sedation/anesthesia needed
- Variety of catheter types Tom Cat, Slippery Sam, red rubbers, MILA
- No set protocols
- Saline and lubricant flush solution used to facilitate passing of catheter
- Complications
 - Urethral trauma/tearing
 - Stricture

Urinary catheter size

- Retrospective study 3.5Fr may be best and have less risk of re-obstruction (Hetrick JAVMA 2013), though another paper did not replicate finding (Eisenberg JAVMA 2013)
- Davidow JVECC 2020 3.5Fr Argyle vs 3.5Fr RR did not have a difference in recurrence however small sample size

Coccygeal blocks

- Simple, quick, may help reduce urethral tone
- Provides anesthesia to perineum, penis, urethra, colon, anus
- Blocks the pudendal, pelvic, and caudal nerves without loss of motor to the pelvic limbs
- Lidocaine in epidural space results in anesthesia within 5 minutes and lasts up to 60 minutes
- Low risk of complications as spinal cord ends around S1 in the cat (more cranial in the dog) – risk of penetrating the subarachnoid space is unlikely

Coccygeal blocks

- Complications include infection, abscessation at site of injection, failure to provide analgesia, systemic absorption of lidocaine (rare)
- Contraindications for LS blocks: coagulation disorders, septicemia, pyoderma at site of injection, severe hypotension, anatomic abnormalities
 - Less of a concern for neurogenic hypotension (sympathetic blockade by anesthesia / increased vagal tone) as cranial spread is not far with coccygeal blocks
- Technique described O'Hearn JVECC 2011

- Bupivacaine / bupivacaine-morphine coccygeal block also investigated (Pratt JVECC 2020)
 - Longer time to administration of rescue analgesia, easy, no complications
 - No difference in urethral spasm, time to catheter placement, or ease of catheterization
 - Time to administer epidural and time to place urinary catheter were recorded separately

Bladder lavage

 Bladder lavage with saline has not been found to make a difference in inhospital RUO, length of catheterization, or LOH (Dorsey JAVMA 2019)

Other Dx:

- CBC unlikely to provide any additional information beyond what PCV/TS offers
- UA: crystalluria, pH, hematuria, pyuria
- Urine culture unlikely to be of benefit initially most cats do not have UTI
 - UTI may develop after catheter placement
 - Cooper JVECC 2019 no cat had UTI diagnosed at time of UO but 13% developed bactiuria (strep and Pasteurella) – unknown if transient vs true UTI
 - NO! to empiric abx
- BP: may not always be an indicator for severity of disease hypotension not identified in 28 cats with UO, though hyperK and hypoCa were present (Malouin JVECC 2007)
- AXR: to check for placement of ucath and uroliths

Histopathology

- Postmortem: in cats with UO 78% did not have an identifiable cause of obstruction (idiopathic) – Mauro JVECC 2020
 - Necrotizing cystitis found in 64% of case with submucosal hemorrhage in 100% and mural necrosis in 64%
 - Moderate-severe urethral lesions found in 21%
 - Moderate to severe renal lesions (tubulointerstitial nephritis) in 35%
 - Lymphocytic inflammation was identified in 11 of 14 (78%) bladders, 5 of 14 (35%) urethras, 8 of 14 (57%) kidneys, and 1 of 14 (7%) ureters
 - 21% had uroliths causing mechanical obstruction
 - Severity of bladder and renal lesions associated with degree of hyperK

Treatment after de-obstruction

- Fluid therapy, monitoring UOP
 - Post obstructive diuresis can be profound (Frohlich JFMS 2015)
 - Occurred in 74% of cats within 4 hours of catheterization and 91% within 8 hours
 - Adjusted for fluid administration 37% have POD
 - Fluid rate does play a role in urine output and may be driving force in diuresis

- POD caused by downregulation of AQP2 in renal medullary collecting duct resistance to ADH → acquired NDI
- Obstructed kidney cannot resorb Na \rightarrow natriuresis occurs
- Secondary to accumulation of osmotically active substances in the blood, pressure necrosis, medullary washout
- POD > 2mL/kg/hr can occur can be driven by fluid administration
 - Adjusting fluid therapy based on urine output may exacerbate post-obstructive diuresis and go beyond actual requirements in some patients
- However some patients can become severely dehydrated and hypovolemic during POD
- Inadequate urine production (<ImL/kg/hr) can be the result of dehydration, collection system, true oliguria from AKI (though very uncommon)

Treatment

- Analgesia, sedation cystitis, obstruction, catheter are all painful and can be associated with risk of re-obstruction
 - Opioids buprenorphine, methadone
 - Acepromazine can decrease stress and agitation in stable patients and provide alpha antagonism, urethral relaxation

Anti-spasmotics / alpha antagonism

- Prazosin selective for al phenoxybenzamine nonselective al and a2
- Male urethra is narrow and consists of smooth muscle proximally and striated muscle distal to prostate \rightarrow most UO obstructions occur within the distal portion
 - AI antagonists work on smooth muscle
- Obstruction in the proximal urethra may occur secondary to irritation, inflammation, spasm post catheterization and can contribute to RUO
- Prazosin works to inhibit al in smooth muscle without sedative effects of acepromazine
- 2 studies have found conflicting results Hetrick 2013 found prazosin worked better than phenoxy but Reineke 2017 did not
 - Reineke prazosin may lead to shortened catherization and LOH however
 - Studies were both flawed Reineke underpowered to detect difference in prazosin vs placebo

Treatment

- Abx? no! UTI occurrence is low and does not prevent catheter associated UTI
 - Can do UA/CS after catheter removal to determine if catheter associated UTI
- NSAIDS
 - No differences in NSAID vs placebo group for client assessed demeanor, food intake, painful behavior or RUO rates (22% vs 26%) (Dorsch JFMS 2016)
- Gabapentin for interstitial cystitis in humans
 - Neuropathic pain
 - Used as adjunctive treatment, may reduce opioids
 - Used alone 48% improvement in pelvic pain (Cox Can Urol Assoc J 2016)
- Steroids lymphocytes seen on histo?
 - Human study steroids in combo with gabapentin, amytypilline and NSAID for transient, fluctuating, worsening pain or flare up (Jeong Int Neurourol 2012)

- Treatment
 - Monitor lytes and renal values \rightarrow significant improvement in 24 hours
 - HypoK can develop during post-obstructive diuresis
 - Leave catheter in place until urine is clear or improvement with major debris, clot, plugs majority of studies document around 24-48 hours
 - Monitor for 12-24 hours to ensure spontaneous urination
- When to remove catheter?
 - Varying results on relationship between RUO and length of time catheterized
 - Some found shorter time led to more RUO (Eisneberg), other reports no association

Other complications

- Severe anemia possibly necessitating a transfusion
 - Suspected to be due to hemorrhage into the bladder (Beer JVECC 2016)
 - Low occurrence rate 0.8%
 - More likely have had a previous obstruction and longer duration of clinical signs (median 3 days), more likely to have a murmur or gallop and lower BP (median 105mmHg), metabolic changes more severe (azotemia, lower pH)
 - Longer catheterization compared to nonanemic UO but LOH not significantly different
 - Possible causes: repeated events may predispose to hemorrhage from already severe, diffuse disease; longer duration of signs may lead to longer pressure necrosis and mucosal injury; more severe uremia/acid-base changes leading to platelet dysfunction
 - Monitor cats with significant hematuria closely

Other complications

- Fluid overload (Ostroski JVECC 2017)
 - Aggressive fluid therapy may be needed to correct electrolytes, restore intravascular volume, flush debris from urinary system, maintain fluid balance during postobstructive diuresis
 - Receiving a fluid bolus (higher cumulative fluid amount), development of a heart murmur, development of gallop sounds, and dysrhythmia at presentation were associated with development of FO
 - Associated with longer hospitalization and cost of care but not mortality

Alternative management protocols

- Severely affected cats hypothermia, bradycardia, lateral recumbency \rightarrow euthanize
- Stable UO and owners cannot afford standard care -- analgesia, sedation, low stress environment, intermittent cysto can result in spontaneous urination without catheter (Cooper JAVMA 2010)
 - Small sample size
 - Treatment successful in 11/15 cats
 - 9/11 spontaneously urinated with 48 hours
 - 2/11 developed RUO within 3 weeks
 - 4/15 had treatment failure 3 developed uroabdomen, 1 hemoabdomen
 - Average 3 cystos performed but 7 times in those failing treatment

Other management protocols

- One time passage of catheter to clear obstruction, no IVF, then discharged with pain medication and prazosin (Seitz JAVMA 2018)
 - Increased recurrence of UO within 30 days compared to standard care with indwelling hospitalization (11% vs 31%) – 3.7x more likely to reobstruct
 - Better short-term results with inpatient care
 - Of the cats that did develop RUO (21% in total) 95% occurred within the first 7 days (both outpatient and inpatient cats)
 - Urine color at time of catheter removal was associated with the development of RUO
 - 69% short term success rate may be of benefit to owners with significant financial limitations
 - However traditional management carries success rate of 91-94%

Home care

- High chance of recurrence immediately or in future
- Continued analgesia, sedation acepromazine, buprenorphine, gabapentin for 5-7 days
- If significant spasming may also give prazosin
- Environmental strategies
 - Increase water intake canned food, running water bowl
 - Diet
 - Environmental enrichment (toys, vertical perches, hiding spaces, litter pan number and hygiene, pheromones, etc)

Prognosis

- Recurrence 15-58%
- 11-24% recurrence within 30 days, and most commonly within the first week
- PU may be considered good long term QOL and minimal risk of recurrence but does not completely resolve signs FIC, UTI, stricture
- Gerber JFMS 2008 91% survival to discharge, 51% had recurrent signs, 36%
 RUO, 21% ultimately euthanized → guarded long term prognosis

- Males more affected than females in dogs (85%) and cats (88.9%)
- Ischiocavernosus and ischiourethralis muscle anchors to the urethra and ischium in the male \rightarrow less tolerant of traumatic traction and shearing forces
- latrogenic injury from ucath placement due to obstruction
- Most common cause of urethral injures in dogs and cats is trauma → 70% of cases in dogs and 55.6% in cats
 - Dogs: associated with pelvic fractures in 85.7% of cases
 - Cats: only 37.1% blunt trauma without pelvic fracture can lead to significant urethral injury in cats

Patient evaluation

- Dysuria, stranguria, anuria, hematuria, abdominal distension, discomfort, anorexia, depression, hind limb, inguinal and perineal swelling or bruising
- Determine whether animal has suffered any trauma, urolithiasis, urethral catheterization or previous surgery near the urethra
- May be azotemic, hyperK, metabolic acidosis
 - Cr of peritoneal fluid > 2:1 of serum and K > 1.4:1 diagnosis of uroabdomen is confirmed

Diagnosis

Contrast radiography – retrograde urethrography for urethral rupture

Treatment

- Conservatively via second intention healing vs surgical repair or permanent urinary diversion
- Urethral healing requires good mucosal continuity and prevention of urine extravasation
- Mucosa heals in 7 days but regeneration of corpus spongiosum can take 3-5 weeks
- If complete transection of urethra /urothelium healing is prevented and fibrosis can occur at urethral ends
- Urine is toxic and can lead to necrosis, increase in periurethral fibrosis ightarrow stricture formation
- Temporary urinary diversion is needed

Figure 100.1 Retrograde urethrogram performed in an 8-week-old kitten with a history of urethral obstruction and catheterization. Notice the extravasation of contrast medium dorsally in the intrapelvic portion of the urethra (*closed arrow*), with contrast medium extending into the retroperitoneal space (*open arrow*). The cranial extension of contrast medium past the urethral disruption and into the bladder is consistent with a partial rupture.

Conservative management

- Temporary urinary diversion while mucosa heals by second intention
- Diversion using cystostomy tube, urethral catheter, both
- Catheter can act as a stent, and aid in alignment and healing
- Disadvantages: mechanical irritation, risk of ascending infection \rightarrow promotes stricture formation
- Duration of diversion: optimum time is unknown 3 to 37 days; minimum 7 days while mucosa regenerates
- Retrograde urethrogram should be performed to assess for ongoing leakage prior to catheter removal another 3-5 days is needed; if persistent need surgery
- Ureteritis may lead to transient hematuria or incontinence due to catheter placement
- UTI occurs in up to 80% of cases; abx may increase risk of resistant infection
- Success rate of 80% reported

Surgical management

- Indicated for complete transection or if conservative management fails
- Urethral anastomosis
 - Stricture formation is possible, or dehiscence due to tension
- Permanent urethrostomy
 - Permanent urinary diversion by creating a stoma to bypass area of injury
 - Higher complication associated with urethrostomies performed at more proximal locations
 - Dogs: scrotal urethrostomy preferred, less caveronous tissue, reduced hemorrhage
 - Cats: PU amputating the penis and prepuce and generating a urethrostomy at the level of the ischium using the pelvic urethra

Complications

- Up to 57% in first 10 days and 27% long term
 - Infections, strictures, stenosis of stoma, dehiscence, incontinence, urine scalding, urine extravasation, development of LUTD
 - UTI can be MDR
- Stricture management
 - R&A, permanent diversion with cystostomy tube placed, medical management in mild cases
 - Balloon dilation, urethral stent placement
 - Stent complications include incontinence (12.5%), tissue ingrowth through stent, compression of the stent

Outcome

- Better outcome if iatrogenic
- Survival to discharge without long term complications 83.3-91.3% for iatrogenic, 50-57.1% after trauma

- Causes of ureteral obstruction: ureteroliths (#1), dried solidified blood clots (8% of cats), ureteral strictures (25-30%), obstructive pyelonephrosis, obstructive neoplasia, severe ureteritis
 - Other causes: ureterotrauma, ureteral edema, accidental ligation, circumcaval ureter in cats
- 98% of feline upper tract stones are CaOx (50% of canine) = will not dissolve → need to pass spontaneously or be removed; urine needs to be diverted in mean time
- Obstruction can be complete or partial
 - Previously thought to allow benign neglect of partial obstruction this has now changed, and immediate treatment is recommended
- Obstruction can be life-threatening when present bilaterally or in patients with preexisting renal insufficiency

Pathophysiology

- Ureteral pressures increase immediately and can take over 24 hours after obstruction relief for the pressures to decrease
- Immediate increase in renal pelvic pressure (proximal ureter \rightarrow renal pelvis \rightarrow renal parenchyma) \rightarrow pelvis dilation
- Increased pressure transmitted from renal pelvis to renal parenchyma (nephron and Bowman's capsule) \rightarrow impaired or cessation of GFR
- Decrease in GFR also due to concurrent vasoactive mediator release, leukocyte influx, subsequent fibrosis
- Renal blood flow diminishes 60% over first 24 hours; 80% within 2 weeks

Pathophysiology

- Contralateral kidney will increase its GFR in response as long as that kidney is normal and has the potential for hypertrophic compensation
- The longer the obstruction \rightarrow the more progressive and permanent the injury \rightarrow may be irreversible
- Assume in cats that they are already renally compromised (most cats are azotemic – 25% renal function at time of diagnosis – suggesting compromised renal function of contralateral kidney)
- Partial obstruction results in less severe and slower nephron destruction most cats are considered partial obstructions (based on ureteropyelography)
- After decompression GFR returned to normal after 4 weeks after partial obstruction

Epidemiology / signalment

- Large scale studies lacking mostly due to ureterolithiasis
- Breed predisposition in dogs with upper urinary tract calculi Lhasa apsos, Mini Schnauzers, Shi Tzus, Yorkies; no difference in cats
- Urothelial malignancy Scotties, Shelties, Beagles, Wire Haired Fox terriers, Westies

History and clinical signs

- Nonspecific vomiting, lethargy, inappetence, weight loss, pollakiuria, polydipsia, hematuria, stranguria (though uncommon)
- Dogs: dysuria (incontinence, hematuria, polyuria, pollakiuria), signs of systemic illness
 - 77% associated with pyelonephritis and cystitis
- Ureteral colic waves of sharp pain
- Abdominal pain more common in acute obstructions; more common in dogs (capsule inflammation, stretch)

- PE may reveal asymmetric kidneys
 - Chronic obstruction reduction in GFR and renal blood flow, progressive nephron loss, renal fibrosis, compensatory hypertrophy of unobstructed big kidney
- Pallor, anemia, murmur common in cats

Diagnostics

- CBC, chem, UA, culture, AUS, AXR
 - Cats often anemic (48%) CKD
 - Dogs moderate to severe neutrophilia; thrombocytopenia sepsis, immune mediated
 - Azotemia common
 - If other kidney is functioning no azotemia
 - HyperPhos, hyperK, hyper/hypoCa common
 - UA: UTI 8-30% of cats, 77% dogs
 - AUS: renal pelvic dilation, ureteral dilation, presence of uroliths, free fluid
 - Bilateral obstructions 19% cats, 12.5% dogs

Diagnostics

- Ideal to use AXR and AUS AXR can count number and see size of stones, location, and see if nephrolithiasis is present; AUS – hydroureter, hydronephrosis, location of lesion; determine diameter of renal pelvis – planning interventional options
 - AXR 81% sensitivity in detecting ureteroliths in cats, 88% dogs
 - AUS 77% cats, 100% dogs
 - Combined 90% in cats
- Cats: 76% had nephrolith, 24% cystic calculi, median 2 calculi in affected ureter
- Cats with single stone 44% were in proximal ureter and 41% in midureter
- Multiple stones 61% hat stone in proximal ureter and 70% midureter
- Stones at UVJ more common in male cats
- L4 most commonly marked stone location in cats with 1 stone and most distal stone in cats with multiple stones
- Larger stones were caught more proximally (Nesser JFMS 2018)
Diagnostics

- Percutaneous antegrade pyelography
 - Helps determine localization of constriction and determining if partial vs complete
 - AUS guided intrarenal injection of contrast \rightarrow images taken immediately, 5 min, 15 min with fluoro
 - Use has declined
- Retrograde urteropyelography
 - Via cystoscope and fluoro by cannulating UVJ and injecting contrast
 - Preserves nephrons / contrast induced nephropathy
- CT
 - Preoperatively when traditional surgical options are anticipated and if stone number and location are not clear in AXR and AUS
- GFR/scintigraphy

Treatment

- Medical management to stabilize prior to Ax
 - Stone passage has occurred in 8-17% of cases may not move out of ureter but into different position to allow urine to pass
 - High risk of re-obstruction
 - <10% chance of complete passage
 - IVF, mannitol (0.25g/kg bolus then Img/kg/min CRI for 24 hours), ureteral muscle relaxer as long as patient is not overhydrated, hyperK, oliguric, having progressive renal pelvic dilation)
 - IVF maintenance rate of fluids using 0.45% NaCl + 2.5% dextrose (low Na)
- PAIN MANAGEMENT stretch of ureteral wall and renal capsule activating mechanoreceptors → painful!

Treatment

- If no stone and there is clear pyuria/bacteriuria start abx
 - Purulent plugs can cause obstruction in proximal ureter and medical management can be successful
- Ureteral muscle relaxants
 - Tamsulosin or prazosin for al blockade
 - Tamsulosin used in humans
 - Study in dogs comparing tamsulosin, prazosin, experimental B2 agonist, and verapamil showed the beta2 agonist was best and tamsulosin was second best
 - Amitriptyline smooth muscle relaxer by opening of voltage gated K channels
 - Glucagon not recommended
- If medical management fails at 24-48 hours intervention needed; relieve hydrostatic pressure and stop permanent damage to renal parenchyma
- Blood transfusion 19% of cats pre SUB, 14% after procedure (Berent JAVMA 2018)

Traditional surgical options

- Ureterotomy, neouretero-cystotomy, ureteronephrectomy, renal transplant
- High complications (>30%), high mortality (18-30%) depending on procedure performed (cats)
- Ureteronephrectomy not recommended especially as >30% of cats will develop CKD and may develop a stone in the other kidney/ureter – removal of the kidney instead of treating the underlying ureteral disease is not recommended
- Uretotomy or ureteral reimplantation are most commonly performed
 - Complications due to edema, recurrence of obstruction, stricture formation, tube leakage
 - I0% of cats that survived these complications needed to have a second procedure and 40% had recurrence of ureteral obstruction
 - Mortality rate of 25% in dogs; 17% of those that were followed needed additional surgery within 4 months due to stricture or recurrence of ureteroliths

Interventional options

- Percutaneous nephrostomy tube placement
 - Quickly relieve obstruction and determine is adequate renal function remains before prolonged anesthesia for ureteral surgery, stent, SUB
 - Short term solution
 - Locking loop pigtail catheter can be used
 - High risk of postplacement complications (50%) premature removal, dislodgement, urine leakage, poor drainage historically
 - Placed with US and fluoro guidance; percutaneously in dogs and surgically in cats
 - Renal pelvis >10mm needed to fit the locking loop

Interventional options

- Ureteral stenting
 - Indwelling double pigtail ureteral stent most common; can remain in place for months to years
 - Can be placed by cystoscopy and fluoro in dogs and surgical assistance and fluoro in cats
 - Success rate 98% in dogs, 94% in cats

Ureteral stents

- Complications
 - Procedural urine leakage, not common; can be very difficult to place in some patients; ureteral tear or perforation
 - Peri-operative (within first week) mostly not related to procedure (CHF, pancreatitis)
 - Short term (Iwk to I mo) dysuria that may improve with steroids
 - Long term (>1mo) pollakiuria, stent migration, ureteritis, tissue in-growth into the stent, chronic mid hematuria, UTI
 - Mortality rate <8% cats and <1% dogs

Interventional options

- Subcutaneous ureteral bypass (SUB) device
 - Created as an alterative to ureteral stents when a stricture was present or a stent could not be placed
 - Less complications than nephrostomy tube, ureteral stents
 - Placed with fluoro and surgery locking loop nephrostomy catheter and cystostomy catheter connected to a subcutaneous shunting port
 - Lower mortality and long-term complications
 - Perioperative mortality rate was 6.6%; MST was 827 days with only 28% dying of suspected renal disease (cats)

SUB

- Post op complications include: leakage of urine, kinking of the catheter, blockage due to clots/purulent debris, stone deposition / mineralization, migration into GIT
- Blood clots in catheter usually occurred within 3.5 days and catheter exchange was needed in >50% of cases
- Mineralization 463 days after procedure
 - High postoperative iCa was significantly associated with SUB occlusion
- Ureteral patency can recur after placement
- Dysuria seen in 8% (compared to 38% in stents); chronic hematuria similar to stenting (12% vs 18%)
- UTIs though many were enterococcus, asymptomatic and did not need treatment
- Placed more frequently in cats than dogs dogs more amenable to surgery, stenting
- NO CYSTO on the side the SUB was placed and should only be done with AUS guidance
- Median hospitalization 4 days

Interventional options

- Extracorporeal shockwave lithotripsy
 - External shockwaves through water medium directed under fluoroscopic guidance in 2 planes
 - Ureteroliths must be < 3mm in cats and <5mm in dogs
 - Shocked at different energy levels to allow for implosion and powdering
 - Effective is creating passable stones in 85% of dogs
 - Effective only a small number of feline cases stones are too small, embedded in mucosa

Post-operative/interventional management

- Substantial post-obstructive diuresis (>100mL/hr) \rightarrow high fluid rates needed to maintain hydration
 - CHF (usually 2-5 days later), fluid overload also common
- Maintenance rate of enteral hydration (Pedialyte) at 60-120mL/day and if urine production is above this rate, also give low sodium maintenance fluids (0.45% NaCl + 2.5% dextrose) at 60mL/kg/day
 - Monitor lytes to prevent hyponatremia
- If patient is cardiovascularly stable and Cr is declining rec to try to keep patient fluid intake slightly less than estimated or quantified urine production to prevent overhydration
- Pain management

Follow up management

- Monitor BUN/Cr
 - Persistent azotemia common in 40-50% of cats and 25-50% dogs; usually within IRIS stages I-2 CKD
- Initial re-evaluation after SUB intervention is every 1-2 weeks, then at 1 month, then at 2-3 months for 1-2 years, then every 6 months
 - CBC, chem, UA/culture, T4, BP, AXR/AUS
 - Tetra-EDTA SUB flushes to prevent mineralization (and can also restore patency)
- Treat CKD diet, phos binders, antacids, potassium citrate, ACEi for proteinuria, etc

Prognosis

- Prognosis variable for renal recovery and persistence of patency after obstruction is relieved – depends on chronicity of obstruction, specie, cause of obstruction, post-op care
- Recovery can take weeks to months so patience is needed

TUMORS OF THE URINARY TRACT

Etiology/Pathophysiology

- Common in dogs, rare in cats
- TCC most common tumor of the urinary bladder in both species
 - Other neoplasms: SCC, leiomyosarcoma, leiomyoma, undifferentiated carcinoma, lymphoma, HSA, rhabdomyosarcoma, fibroma, other mesenchymal cell
- TCC mostly located at trigone in dogs and apex in cats
- Mass lesions can lead to thickening of the bladder wall and lead to partial or complete obstruction
- Urethral and prostatic involvement reported in 56% and 29%
- Overall metastatic rate is 50%

Epidemiology

- Primary malignancies of the LUT are rare in dogs (0.5-1% of all neoplasms)
 - TCC accounts for up to 75% of primary LUT tumors
- Aggressive neoplasm with moderate risk of mets to lungs and lymph nodes
 - Mets to skin reported in 10% of dogs (direct extension, hematogenous/lymphatic spread, iatrogenic – surgery, cysto)
- Higher risk in females
- Westies, Beagles, Dachshunds, Shelties, Scotties have 21x risk
- Mostly older 11-13yo
- Other risk factors: older flea products, lawn chemicals, obesity

History and clinical signs

- Stranguria, pollakiuria, hematuria, dysuria, incontinence
- Signs mat be present weeks to months prior to diagnosis
- Abdominal mass may be palpable, urethral thickening, sublumbar lymphadenopathy
- Rare paraneoplastic syndrome: HOD lameness from bone metastasis

Diagnostics

- CBC, chem, UA
 - 30% cases malignant cells on urine sediment
 - Avoid cysto to prevent seeding
 - Concurrent infection possible culture; can become increasingly resistant to treatment
- AXR: unrewarding unless lesion is mineralized; prostatomegaly, sublumbar LN enlargement, boney metastasis
- CXR: 17% pulmonary metastasis at time of diagnosis
- AUS: thickened bladder wall or mass lesion ddx: other neoplasia, chronic cystitis, polypoid cystitis, granulomatous cystitis, calculi

TCC

- Histopathology gold standard
 - Traumatic u-cath, cystoscopy, cystotomy
- BRAF genetic mutation highly sensitive for detecting TCC → voided urine samples
 - I5% do not have mutation
 - 5% false negative with Cadet BRAF plus; 0% false positive

Treatment

- Complete removal not possible due to location (unless completely at apex)
 - Dogs may develop multifocal tumor locations in bladder
- Obstruction cystotomy tube, stents, SUB (if luminal obstruction due to infiltration)
 - 58/61 stent placement successful in relieving urethral obstruction
 - Can lead to incontinence
 - MST 78 days
 - JAVMA 2021 Merickel et al case report cutaneous seeding after SUB placement

Treatment

- Radiation therapy limited
 - Incontinence, pollakiuria, stranguria affect QOL
 - Results with RT not better than medical therapy alone
- Chemo COX inhibitor (piroxicam) alone or in combo with chemo
 - Can lead to remission or stable disease
 - Piroxicam 21% remission rate (complete and partial), 59% stable disease, MST 240 day
 - Mitoxantrone + piroxicam remission rate 35%, 46% stable disease, MST 291 days
 - Monitor response at 4-8 week intervals
 - Deramaxx has also worked
 - Other chemo vinblastine, doxo, toceranib, metronomic oral chlorambucil

Prognosis

- Dependent on tumor size, location, mets
- MST are <1 year regardless of treatment
- Most have excellent QOL while on treatment
- Prognostic factors for survival: tumor stage at diagnosis, younger age, prostate involvement

URETHRAL TUMORS

Urethral tumors

- TCC, SCC are most common
- Granulomatous urethritis (benign) must be differentiated

RENAL TUMORS

Renal tumors

- Primary renal tumors are uncommon in cats and dogs
- Majority are malignant and more than half are epithelial in origin
- Cats: LSA most common and can affect both kidneys
 - 3.6% of all cats diagnosed with lymphoma and 22.3% of cats with large cell lymphoma
 - FeLV associated with the development of renal lymphoma
 - Mean age 7.7yo
 - Weight loss, pu/pd, pollakiuria, lethargy, hyporexia, dyspnea, hematuria
 - MST steroids along 42 days; LCHOP 203 days
 - 60% can achieve complete remission
 - Azotemia or anemia at diagnosis not associated with survival
 - Previously also associated with CNS lymphoma but not found in more recent studies

RENAL TUMORS

Renal tumors

- Dog: renal cell carcinoma; TCC, nephroblastoma, HSA, LSA other sarcomas possible
 - GSD female slow growing dermal fibrosis, fibromas, cystadenoma and uterine tumors → Birt-Hogg-Dube syndrome in humans, rare – due to missense mutation
- Pulmonary mets in 16-34% dogs with primary renal tumors at time of diagnosis
- Nephroblastoma may occur at any age, other neoplasms older dogs
- Signs: weight loss, polyuria, lethargy, hematuria, abdominal pain, signs of renal failure, possible renal enlargement on PE

RENAL TUMORS

Diagnostics

- Mild anemia, marked neutrophilia, renal azotemia
- Paraneoplastic syndromes may include polycythemia, neutrophilia, HOD
- AUS can be highly suggestive, can consider FNA, renal biopsy, surgical biopsy

Treatment

- Nephrectomy for unilateral tumors or distant metastasis
 - MST for renal carcinoma with nephrectomy 8mo

Negative prognostic factors – involvement of other organ, FeLV, renal failure

REFERENCES

- Drobatz Chap 97, 98, 99, 100, 106, 187
- <u>https://pubmed.ncbi.nlm.nih.gov/31989774/</u> Postmortem urinary tract changes in cats with urethral obstruction (Mauro JVECC 2020)
- <u>https://pubmed.ncbi.nlm.nih.gov/21288294/</u> Coccygeal epidural with local anesthetic for catheterization and pain management in the treatment of feline urethral obstruction (O'Hearn JVECC 2011)
- <u>https://pubmed.ncbi.nlm.nih.gov/26748857/</u> Severe anemia in cats with urethral obstruction: 17 cases (2002-2011) (Santoro Beer JVECC 2016)
- <u>https://pubmed.ncbi.nlm.nih.gov/9673901/</u> Idiopathic detrusor-urethral dyssynergia in dogs: A retrospective analysis of 22 cases (JSAP 1998)

REFERENCES

- <u>https://pubmed.ncbi.nlm.nih.gov/28752928/</u> Retrospective evaluation of and risk factor analysis for presumed fluid overload in cats with urethral obstruction: 11 cases (2002-2012) (Ostroski JVECC 2017)
- <u>https://pubmed.ncbi.nlm.nih.gov/29889636/</u> Evaluation for association between indwelling urethral catheter placement and risk of recurrent urethral obstruction in cats (Seitz JAVMA 2018)
- <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7236633/</u> In-hospital medical management of feline urethral obstruction: A review of recent clinical research (Casford Can Vet J 2020)
- <u>https://pubmed.ncbi.nlm.nih.gov/21463437/</u> Ureteral obstructions in dogs and cats: a review of traditional and new interventional diagnostic and therapeutic options (Berent JVECC 2011)
- <u>https://pubmed.ncbi.nlm.nih.gov/30398425/</u> Use of a subcutaneous ureteral bypass device for treatment of benign ureteral obstruction in cats: 174 ureters in 134 cats (2009-2015). (Berent JAVMA 2018)