

Agenda:

Carbon Neutral Commitment

- Carbon Footprint
- Senior Leaders Climate Action Group Plan 2015

Earth Source Heat (direct use geothermal energy)

- Regional Resource
- System Schematic

Why Cornell?

- Atkinson Center for a Sustainable Future
- Culture of Collaboration Across a Broad Campus
- Living Laboratory
- History of Successful Energy Projects

Cornell aspires to carbon neutrality by 2035

Senior Leaders Climate Action Group (formed Fall 2015 to identify options)

- Committee of the Provost, Vice Provosts, Deans, Faculty, Students and Staff
- Co-Chaired by Dean of Engineering (Lance Collins) and Vice President for Infrastructure Properties and Planning (KyuJung Whang)
- Report entitled, "Options for Achieving a Carbon Neutral Campus by 2035," released yesterday
- Report analyzes the feasibility of several technologies

Cornell aspires to carbon neutrality by 2035

Size of the Problem

- 179,303 metric tons of CO2e (energy produced + purchased from grid)
- 62,142 metric tons of CO2e (transportation)
- 241,445 metric tons of CO2e (total)
- 580,000 metric tons of CO2e from methane leakage

Cornell's Carbon Footprint

Options for Achieving a Carbon Neutral Campus by 2035

Reduce Demand

- New Construction and Renovations LEED Silver or above
- Increase Use of Electric Vehicles and Chargers on Campus
- Behavioral Changes (e.g., modifying temperature set-points)

Options for Renewable, Carbon-Free, Sources

- Air Source Heat Pumps
- Biomass Combustion or Gasification
- Earth Source Heat (direct geothermal energy)
- Ground Source Heat Pumps
- Nuclear
- Wind, Water, Solar

Options for Achieving a Carbon Neutral Campus by 2035

Reduce Demand

- New Construction and Renovations LEED Silver or above
- Increase Use of Electric Vehicles and Chargers on Campus
- Behavioral Changes (e.g., modifying temperature set-points)

Options for Renewable, Carbon-Free, Sources

- Air Source Heat Pumps
- Biomass Combustion or Gasification
- Earth Source Heat (direct geothermal energy)
- Ground Source Heat Pumps
- Nuclear
- Wind, Water, Solar

Geothermal Resource in New York

New York contains a large region of higher geothermal heat flow

Potential of geothermal district heating in NY and PA

Reber et al., "The Transformative Potential of Geothermal Heating in the U.S. Energy Market: A Regional Study of New York and Pennsylvania", Energy Policy, 70, 30-44, (2014)

Renewable Energy Deployment

Campus Energy Systems

To meet its heating demand deep geothermal and biomass are feasible options and land exists for siting a demonstration

The Fair Comparison

Partnerships

Memorandum of Agreement with Iceland

Renewable Energy Education and Research and the creation of Renewable Energy Park

Verizon

Geothermally cooled cell tower and data center energy management

U.S. DOE

Direct use geothermal

NY State

Systems approach to sustainable communities development in Utica NY

- design a multi-block section the city that includes
 - Renewable district energy system
 - Retrofitted energy efficiency improvements
 - Utilizing geothermal heat pumps, solar PV and thermal, and anaerobic digestion of food wastes

WHY CORNELL?

Atkinson Center for a Sustainable Future

To create a world in which people can meet their needs and pursue their dreams without compromising the ability of future generations to do the same...

Energy

Environment

Economic Development

Collaborative Research: Creation of a new industry

- Cornell as a living laboratory to demonstrate the application of low temperature geothermal resources.
- Relevance of geothermal-ESH for district carbon-free heating applications at scale for the U.S.
- Developing partnerships to increase the impact of geothermal in N.Y. State and U.S. as a sustainable energy option.

Energy Research Requires a Multidisciplinary Team

Lake Source Cooling

- Lake Source Cooling
- Combined Heat and Power

- Lake Source Cooling
- Combined Heat and Power
- Hydropower

- Lake Source Cooling
- Combined Heat and Power
- Hydropower
- Solar

- Lake Source Cooling
- Combined Heat and Power
- Hydropower
- Solar
- Black Oak Wind Farm

Phases of Work

- 1. Preparatory Phase (community engagement, design, permits) Cost Estimate: \$3M
- 2. Test Well (single well, no integration with campus) Cost Estimate: \$12-15M
- **3. Demonstration** (one operating well-set, tie-in for use for limited portion of campus)
- **4. Full deployment** (multiple well-sets, campuswide)

Cornell has authorized the project, subject to the availability of funds

Consortium of Stakeholders and Investors

- 1. Cornell (philanthropy)
- 2. Private Industry
- 3. Federal Government (e.g., DOE, NSF)
- 4. State Government
- 5. Foundations

THANK YOU!

