Biomarkers for differentiation of causes of respiratory distress in dogs and cats: Part 1 – Cardiac diseases and pulmonary hypertension

Katherine F. Smith, DVM, DACVECC; Rebecca L. Quinn, DVM, DACVIM and Louisa J. Rahilly, DVM, DACVECC

Abstract

Objective – To review the current veterinary and relevant human literature regarding biomarkers of cardiac disease leading to respiratory compromise.

Data Sources – Veterinary and human medical literature: original research articles, scientific reviews, consensus statements, and recent textbooks.

Human Data Synthesis – Cardiac troponins (cTn) and natriuretic peptides are routinely used in human medicine.

Veterinary Data Synthesis – Although biomarkers should not be accepted in lieu of gold standard diagnostics, they may be useful in directing care in the stabilization process. Biomarkers of congestive heart failure (CHF) include natriuretic peptides, cTn, and endothelin. cTnI is useful in differentiating causes of pericardial effusion, but is unlikely to be useful in differentiating CHF from other causes of respiratory distress. The most extensively studied and promising cardiac biomarker is amino-terminal probrain natriuretic peptide, although a bedside test is not currently available. Other natriuretic peptides have also proven useful, but have lower availability. Endothelin is unlikely to be clinically useful. Although critically evaluated for their use in cardiac diseases, many of the biomarkers are affected by more than one type of respiratory or systemic disease. Several cardiac biomarkers are increased in cases of pulmonary hypertension (PH), but discerning CHF alone from PH or a combination of heart disease and PH is challenging when evaluating biomarkers alone.

Conclusion – At this time, there are no point-of-care tests for biomarkers that can reliably differentiate among causes of dyspnea of cardiac origin in dogs and cats, although there are reference laboratory tests that show promise and future development of point-of-care tests that may be useful in certain situations.

Keywords: dyspnea, heart disease, natriuretic peptides, point-of-care tests, troponins

Abbreviations

ANP atrial natriuretic peptide
ARDs acute respiratory distress syndrome
AUC area under the curve
BNP brain natriuretic peptide
C-ANP C-terminal atrial natriuretic peptide
C-BNP C-terminal brain natriuretic peptide
CHF congestive heart failure
CNP C-type natriuretic peptide
cTn cardiac troponin
cTnI cardiac troponin I
DCM dilated cardiomyopathy
DNP dendroaspis natriuretic peptide
ET-1 endothelin 1
HCM hypertrophic cardiomyopathy
MVD mitral valvular disease
NT-proANP amino-terminal pro-atrial natriuretic peptide
NT-proBNP amino-terminal pro-brain natriuretic peptide
PH pulmonary hypertension
ROC receiver operating curve
Tn troponin
VNP ventricular natriuretic peptide
Introduction

Respiratory distress is a common presenting complaint to the emergency practitioner.1–4 If left untreated, respiratory distress may lead to exhaustion, respiratory failure, and death.1 Therefore, early recognition of respiratory compromise, diagnosis of the underlying cause, and treatment are imperative.1 Dyspneic patients are fragile and any intervention, such as handling and routine diagnostics, will increase cardiovascular and respiratory demands and may result in rapid decompensation.2 The purpose of this review is to present and appraise the current literature exploring the utility of biomarkers in disease processes that result in respiratory distress.

In 2001, the Biomarkers Definition Working Group defined a biomarker as “a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention.”5 Traditionally, in veterinary and human medicine, a biomarker is a protein or molecule that is easily obtained, quantitatively assessed, and helps to guide diagnostic decisions and patient therapy. For the purposes of this review, the definition of a biomarker will be limited to a protein or molecule that is objectively measured from an available sampling medium such as exhaled breath or blood components.

Several characteristics of a biomarker must be considered when evaluating it for clinical utility in practice. Ideally, a biomarker should be measurable in an in-house laboratory utilizing accessible equipment and minimal technical procedures.4 The results should have a rapid turnaround time.4 Additionally, a clinically useful biomarker should have a high-positive and/or negative predictive value.4 This enables the results to succinctly rule a disease process in or out.4 The test results should also be relatively easy to interpret, allowing for minimal clinical error when evaluating findings.4 The biomarkers discussed in this review will be evaluated in light of these characteristics.

Respiratory distress caused by upper respiratory diseases, pleural space diseases, and other extrapulmonary conditions have not been thoroughly investigated for associated changes in biomarkers or are beyond the scope of this discussion. There is evidence that many biomarkers can be affected by multiple disease states. The grouping throughout this review, therefore, is reflective of the majority of the research for each biomarker, and these generalizations should not be interpreted as indication that the biomarker is exclusive to that particular disease category. This review has been divided into 2 sections: this first section will focus on biomarkers of cardiac diseases and pulmonary hypertension (PH) and part 2 will focus on biomarkers of lower airway, inflammatory and pulmonary thromboembolic diseases.6

Cardiac diseases

The most common cause of respiratory distress from cardiac disease is congestive heart failure (CHF). CHF describes a clinical syndrome that is characterized by cardiac, hemodynamic, renal, neurohormonal, and cytokine abnormalities.7 In dogs, there are several causes of heart disease, but 2 of the most common are dilated cardiomyopathy (DCM) and mitral valvular disease (MVD).7,8 Although other types of cardiomyopathies occur, hypertrophic cardiomyopathy (HCM) is the most common cause of heart disease in cats.9 In dogs, thoracic radiographs often give valuable information about the underlying disease process leading to CHF, but in cats, radiographs alone may be insufficient to diagnose underlying heart disease.10 Furthermore, the presence of a heart murmur does not necessarily indicate the presence of heart disease.11 Conversely, the absence of a murmur does preclude the presence of cardiac disease.9 Although echocardiography is the gold standard for the antemortem diagnosis of heart disease, this diagnostic test may not be readily available to emergency practitioners and the distressed patient may not tolerate the procedure. Ultimately, the use of a biomarker to identify heart disease may aid the clinician in the immediate, as well as long-term management of patients.

Cardiac troponin

Troponins (Tns) are proteins that are part of the contractile apparatus in cardiac and skeletal muscle.10 There are 3 individual proteins, troponin C (TnC), troponin I (TnI), and troponin T (TnT), that interact to assist in the regulation of muscle contraction.12 Cardiac TnC is not clinically useful as it has high homology with noncardiac TnC and cannot be readily distinguished.13 The majority of tropions (Tn) are bound to the contractile apparatus of the cell, but a very small proportion remain free within the cytosol (2–8%).14,15 With the onset of myocardial injury and resulting damage to cardiomyocyte cell membrane, the release of the cytosolic component causes an early but small rise in Tn concentrations.14,15 This initial mild increase is followed by a greater and more sustained rise from the bound component.14,15

Cardiac Tn (cTn) has been used for many years as biomarkers of cardiac cellular injury and are currently part of the criteria to diagnose an acute myocardial infarction in people.16 Cardiac Tn are sensitive markers of myocardial injury, even an ischemic episode as short as 3 minutes lead to increases in cTnI.17 They do not, however, identify the cause of the injury and ultimately if the increase arises from primary cardiac disease or cardiac damage secondary to systemic disease.17–24

It has been documented that people with CHF have increases of cTn, and concentrations positively correlate with the risk of mortality.25,26 It is believed that
cTn is released secondary to severe left ventricular wall strain encountered in CHF.27 Even in the absence of ischemia, cTn has been documented to increase in people with aortic valve disease,28 precapillary PH,29 tachyarrhythmias,30,31 pericarditis,32 and those with left ventricular hypertrophy.33 Pulmonary diseases that have resulted in increases in cTn include acute respiratory distress syndrome (ARDS),34 chronic obstructive pulmonary disease,35 and pneumonia.36 Other disease processes that can result in increases in cTn in people include ultra-endurance exercise,18,19 scorpion envenomation,20 trauma,21 and kidney disease.22 In critically ill human patients with sepsis, cTn increases in 31%–85% of patients and this appears to be correlated with increased morbidity.37–42

C TnI has been evaluated in several disease processes in large animals including horses and cows. Similar to people, these processes include both cardiac-specific disease processes and those which are more pulmonary or systemic in nature.43–57

In small animal veterinary medicine, the use of cTn has been evaluated in a number of pathologic conditions as an aid for diagnosis and has shown applicability in numerous conditions (see Table 1).38–89 Although each analyzer has its own reported reference interval, typically these values are very low (<0.2 ng/mL).38–89 In dogs, concentrations of cTn have been found to rise within hours after the cardiac insult and reach a peak value 10–16 hours later.88 Concentrations keep on increasing for 7–10 (cTnI) and 10–14 days (cTnT).14,15 The reported half-life of cTnI in dogs is approximately 2 hours.89 Although both cTnI and cTnT have been evaluated in veterinary medicine, cTnT has shown to be less sensitive as a marker than cTnI and is therefore much less studied.58–89

There have been 2 studies in dogs evaluating the use of cTnI as a diagnostic tool to differentiate respiratory distress caused by cardiac or noncardiac etiologies (see Table 1).60,61 The first study did not find a statistical difference in cTnI concentrations in dogs with cardiac compared to noncardiac etiologies of respiratory distress.60 In this study the investigators evaluated dogs with CHF secondary to DCM, MVD, patent ductus arteriosus, and subaortic stenosis and compared them to dogs with interstitial pneumonia, pulmonary neoplasia, neoplastic pleural effusion, laryngeal paralysis, and chronic bronchitis.60 A second study by Payne et al61 did identify a statistical difference in cTnI concentration in dogs with cardiogenic respiratory distress compared to noncardiogenic causes of respiratory distress.61 In this study, the investigators expanded the cardiac disease group to include pericardial effusion, PH, and ventricular tachycardia.61 The discrepancy in the results between the studies likely relates to differences in the populations evaluated; noncardiac causes were fairly similar between the two studies, but the underlying heart disease in the cardiac groups were different. Both investigators determined, however, that patients with respiratory distress of any etiology had a higher cTnI concentration than healthy controls.50,61

Occult MVD,62–65 DCM,65–67 arrhythmogenic right ventricular cardiomyopathy,68 bradyarrhythmias,69 doxorubicin-induced DCM,70 and subarotic stenosis45 all cause increases in cTnI concentration in dogs. Via the use of multiple regression analysis, cTnI concentrations positively correlated with age, C-reactive protein concentration, and heart rate in dogs with MVD.63 Furthermore, increase in cTnI concentration was negatively correlated with survival in dogs with MVD with a shorter median survival time (67.5 days, range 1–390 days) compared to those with a normal cTnI concentration (390 days, range 20–912 days).52,63

C TnI has been evaluated in dogs with pericardial effusion due to various causes. Studies demonstrate that peripheral cTnI concentrations are significantly higher in dogs with pericardial effusion compared to healthy controls.71–73 Moreover, those that were diagnosed with cardiac hemangiosarcoma had significantly higher concentrations of cTnI than those with other causes of pericardial effusion.71,72 Measurement of the cTnI concentrations in the pericardial effusion fluid did not improve the sensitivity of the test in distinguishing hemangiosarcoma from other neoplastic or nonneoplastic causes.73 Splenic and dermal hemangiosarcoma were not associated with increased cTnI concentrations.72

Noncardiac causes of increased cTnI concentrations have been studied in dogs. Normal Greyhounds and Boxers have higher baseline cTn concentrations than other breeds,68,74 Blunt trauma,75,76 gastric dilatation volvulus (GDV),76,77 and high intensity exercise78 have all been shown to cause increases in cTnI (see Table 1). Dogs with kidney failure were found to have a slightly, but statistically significant, higher cTnI concentrations than controls.79 Inflammatory processes may lead to increases in cTn concentrations and specific populations in which this has been shown include pyometra,80 ehrlichiosis,81 and babesiosis.82 A recent study found that dogs with critical illness requiring admission into ICU and evidence of systemic inflammation (characterized by an increased C reactive protein concentration) had a significantly higher cTnI and cTnT concentration. Furthermore, an increased cTnI and cTnT were significantly correlated with higher risk of mortality.83

The use of cTnI to distinguish cardiac from noncardiac causes of dyspnea in cats that present for respiratory distress has been evaluated.84,85 Separate studies found that cats with CHF had a higher median cTnI concentration
Table 1: Reportable cardiac troponin I by analyzer and disease evaluated

<table>
<thead>
<tr>
<th>Analyzer</th>
<th>Disease condition</th>
<th>Results</th>
<th>How reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access AccuTnI</td>
<td>Respiratory distress in dogs</td>
<td>CHF: 0.42 (0.02–10.90)</td>
<td>Mean, range (ng/mL)</td>
</tr>
<tr>
<td></td>
<td>CHF versus pulmonary disease</td>
<td>Pulmonary disease: 0.29 (0.02–8.13)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DCM in dogs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal: 0.06, 0.01*</td>
<td>Mean, SEM (ng/mL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asymptomatic DCM: 0.21, 0.1*</td>
<td>Median, range (ng/mL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Heart disease in dogs</td>
<td>Normal: 0.03 (0.01–0.15)^*</td>
<td>Median, range (ng/mL)</td>
</tr>
<tr>
<td></td>
<td>DCM: 0.14 (0.03–1.88)^*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MVD: 0.11 (0.01–9.53)^§</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SAS 0.08 (0.01–0.94)^§</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mitral valve disease in dogs</td>
<td>Normal: 0.001 (0.001–0.004)^*</td>
<td>Median, IQR (ng/mL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mild MVD: 0.003 (0.001–0.024)^*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moderate MVD: 0.014 (0.008–0.029)^*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Severe MVD: 0.043 (0.031–0.087)</td>
<td></td>
</tr>
<tr>
<td>OPUS Troponin I</td>
<td>Blunt trauma in dogs</td>
<td>Normal: 0 (0–1.37)^*</td>
<td>Mean, range (ng/mL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trauma: 0.97 (0–31.84)^*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GDV in dogs</td>
<td>GDV: median not reported (0.5–381)</td>
<td>Median, range (ng/mL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mild ECG changes: 0.53 (~0.5–104)^§</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moderate ECG changes: 3.29 (~0.5–63.4)^§</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Severe ECG changes: 35 (1.2–81)^§</td>
<td></td>
</tr>
<tr>
<td>Stratus CS Stat</td>
<td>Pericardial effusion in dogs</td>
<td>Normal: 0.02 (0–0.03)^*</td>
<td>Median, range (ng/mL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pericardial effusion: 0.64 (0.03–47.18)^*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PE, hemangiosarcoma: 2.77 (0.09–47.18)^§</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PE, nonhemangiosarcoma: 0.05 (0.03–0.09)^§</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pericardial effusion in dogs</td>
<td>Normal: 0.03 (0.03–0.08)^*</td>
<td>Median, range (ng/mL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pericardial effusion: 0.19 (0.04–69.89)^*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pericardial effusion in dogs</td>
<td>PE, hemangiosarcoma: 10.7 (0–101)^*</td>
<td>Mean, range (ng/mL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PE, nonhemangiosarcoma: 0.1 (0–0.2)^§</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Noncardiac hemangiosarcoma: 0.6 (0–2.4)^§</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bradycardia in dogs</td>
<td>Preparing: 1.99, 2.86^*</td>
<td>Mean, SD (mg/dL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Postpacing: 0.24, 0.29^*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HCM in cats</td>
<td>Healthy: <0.03 (~0.03–0.16)^*</td>
<td>Median, range (ng/mL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HCM: 0.66 (0.05–10.93)^*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Respiratory distress in cats</td>
<td>CHF: 1.59 (0.2–30.24)^*</td>
<td>Median, range (ng/mL)</td>
</tr>
<tr>
<td></td>
<td>CHF versus pulmonary disease</td>
<td>Pulmonary disease: 0.165 (0.01–1.42)^*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DCM in Doberman Pinschers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Healthy: 0.07 (0.05–0.08)^*</td>
<td>Mean, 95% CI (ng/mL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Occult with VPC: 0.36 (0.29–0.43)^*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Occult, echo changes: 0.33 (0.22–0.44)^*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Occult, VPC, and echo changes: 0.45 (0.39–0.51)^</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHF: 1.04 (0.82–1.27)^*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GDV and blunt trauma in dogs</td>
<td>Healthy: 0 (0–1.1)^*</td>
<td>Median, range (µg/L)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GDV: median not reported (0.3–369)^*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trauma: median not reported (0–82.4)^§</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Renal failure in dogs</td>
<td>Healthy: 0.2 (0.2–0.4)^*</td>
<td>Median, range (ng/mL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Renal failure: 0.35 (0.2–25.95)^*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DCM in Doberman Pinschers</td>
<td>Healthy: 0.12 (0.1–0.17)^*</td>
<td>Mean, 95% CI (ng/mL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MVD: 0.12 (0.10–1.00)^*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PH-MVD: 0.21 (0.1–2.1)^*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pulmonary hypertension in dogs</td>
<td>Healthy: 0.25 (0.1–1.9)^*</td>
<td>Median, range (ng/mL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-capillary PH: 0.25 (0.1–1.9)^*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHF, PH-MVD: 0.38 (0.1–2.1)^*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CHF, MVD: 0.45 (0.1–1.00)^*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pulmonary hypertension in dogs</td>
<td>Healthy: 0.2 (0.19–0.82)</td>
<td>Median, range (ng/mL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-capillary PH: 0.285 (0.19–1.13)</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
Table 1: Continued

<table>
<thead>
<tr>
<th>Analyzer</th>
<th>Disease condition</th>
<th>Results</th>
<th>How reported</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Healthy: -0.2 (-0.2–0.25)§</td>
<td>Median, range (ng/mL)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypertrophic obstructive CM: 1.3 (0.2–1.7)§</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Respiratory distress in cats</td>
<td>CHF: 0.94 (0.54–4.0)</td>
<td>Median, IQR (ng/mL)</td>
</tr>
<tr>
<td></td>
<td>CHF versus pulmonary disease</td>
<td>Pulmonary disease: -0.2 (-0.2–0.33)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Healthy Greyhound dogs</td>
<td>Healthy non-Boxer: 0.023, 0.01§</td>
<td>Mean, SD (ng/mL)</td>
</tr>
<tr>
<td></td>
<td>ARVC: 0.142, 0.05§</td>
<td>Healthy Boxer: 0.079, 0.03§</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Healthy non-Boxer: 0.023, 0.01§</td>
<td>ARVC: 0.142, 0.05§</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Healthy Greyhound dogs</td>
<td>Non-Greyhound: 0.02 (0.01–0.05)§</td>
<td>Median, range (ng/mL)</td>
</tr>
<tr>
<td></td>
<td>Greyhound: 0.1 (0.03–0.57)§</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reagent Flex cTnI</td>
<td>Healthy: 0.04 (0.04–0.1)§</td>
<td>Median, range (ng/dL)</td>
</tr>
<tr>
<td></td>
<td>E. canis in dogs</td>
<td>E. canis: 0.4 (0.04–9.12)§</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Respiratory distress in</td>
<td>Healthy: 0.03 (0.00–0.11)§</td>
<td>Median, range (ng/mL)</td>
</tr>
<tr>
<td></td>
<td>dogs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHF versus pulmonary disease</td>
<td>CHF: 1.74 (0.05–17.11)§</td>
<td>Median, range (ng/mL)</td>
</tr>
<tr>
<td></td>
<td>Pulmonary disease: 0.14 (0.01–4.31)§</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High intensity exercise in sled</td>
<td>Resting: 0.02 (0.0–0.12)§</td>
<td>Median, range (ng/mL)</td>
</tr>
<tr>
<td></td>
<td>dogs</td>
<td>48 hours: 0.07 (0.02–0.21)§</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

§, ¶, †, ‡ Paired values are statistically different from one another.

CHF, congestive heart failure; DCM, dilated cardiomyopathy; MVD, mitral valve disease; SAS, subaortic stenosis; IQR, interquartile range; GDV, gastric dilatation and volvulus; PE, pericardial effusion; HCM, hypertrophic cardiomyopathy; CI, confidence interval; VPC, ventricular premature contractions; Echo, echocardiographic changes; PH, pulmonary hypertension; PH-MVD, postcapillary pulmonary hypertension secondary to mitral valve disease; ARVC, arrhythmogenic right ventricular cardiomyopathy.

than cats with pulmonary disease with an area under the curve (AUC) of the receiver operator curve (ROC) of approximately 0.84. However, both of those studies found considerable overlap between the groups and were unable to identify a cut-off point at which a clinician could relatively reliably diagnose cardiac-related dyspnea.

There is a discrepancy in the literature as to whether cTnI can be used to differentiate cats with nonclinical HCM from cats with CHF secondary to HCM. Herndon et al. found that cats with HCM and associated CHF had significantly higher cTnI concentrations compared to cats with asymptomatic HCM. This study also found that cats with HCM and untreated CHF had higher cTnI concentrations than those cats with HCM and medically well-controlled CHF. However, a study by Connolly et al. did not find a significant difference between HCM cats with CHF and asymptomatic HCM cats. These groups, however, were utilizing different assays. Herndon et al. used a more sensitive assay with a lower level of detection of 0.03 ng/mL while Connolly et al. used an assay with a lower level of detection of 0.2 ng/mL. These differences in assays and their lower levels of detection likely created a discrepancy in results when the 2 studies are compared. Cats with untreated hyperthyroidism had increased cTnI concentrations that decreased after treatment with radioactive iodine.

There are multiple veterinary cTnI analyzers available (see Table 1), some of which are cost effective point-of-care assays. One of the major drawbacks of the available cTnI assays is the lack of standardization; each company uses a different target on the cTnI protein for their assay. Values obtained on one analyzer cannot be directly compared to values obtained on a different analyzer, making it impossible to accurately compare cTnI concentrations. Until assays are standardized, each individual assay must have a specific reference interval determined. A cTnI value that is used as a cut-off point in a certain study will only have meaning if that same assay is used in clinical practice.

cTnI has shown promise as a prognostic indicator in several disease processes and in its ability to identify neoplastic pericardial effusions in dogs. Unfortunately, while increased concentration of cTnI may indicate myocardial damage, the damage can be due to a variety of underlying causes. Due to the discrepancies in the literature and considerable overlap in values, it seems unlikely that cTnI will be useful in determining the origin of dyspnea on presentation. Furthermore, the inability to compare values from different analyzers limits the utility of using cTnI in clinical situations.
Natriuretic peptides
Natriuretic peptides are a group of structurally related proteins, which include atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP), dendroaspsi natriuretic peptide (DNP), and ventricular natriuretic peptide (VNP). All natriuretic peptides are synthesized as prohormones and are rapidly processed to form prohormones. Prohormones are further cleaved into 2 parts creating the biologically inert amino-terminal prohormone (ie, amino-terminal probrain natriuretic peptide [NT-proBNP]) and the biologically active C-terminal hormone (ie, [C-terminal brain natriuretic peptide], C-BNP). Once in circulation, the active hormone is degraded into fragments.

ANP and BNP function in plasma volume control. Volume overload increases and hypovolemia decreases the concentration of these proteins in the blood. Additionally, catecholamines and other hormones can modify natriuretic peptide release and in the face of hypovolemia can cause a paradoxical rise in their concentrations. In the kidney, these hormones induce diuresis and natriuresis to modulate blood volume and blood pressure, and to antagonize the renin-angiotensin-aldosterone system. CNP is produced by the vascular endothelium. CNP has diminished diuretic and natriuretic effects compared to ANP and BNP. In general, CNP has autocrine and paracrine effects and is thought to have a role in vascular tone. While a DNP-like peptide, originally discovered in the venom of Dendroaspsi angusticeps, has been identified in the human and canine heart and has natriuretic effects, the exact role of DNP in mammals has yet to be determined. VNP is important in primitive fishes, but is not present in mammals. As potential physiologic markers of diseases involving the cardiovascular system, many of these peptides have been evaluated in human medicine, but research has been limited to ANP, BNP, and CNP and the respective amino-terminal prohormones in veterinary medicine.

Natriuretic peptides are partially cleared by the kidneys; cats with severe CKD have higher concentrations of amino-terminal pro-atrial natriuretic peptide (NT-proANP) and NT-proBNP, and dogs with CKD and acute kidney injury have increases in NT-proBNP concentrations. The median NT-proBNP of severely affected animals was up to 5× higher than the median of control animals in dogs and up to 35× higher in cats with hypertensive azotemia. Thus, natriuretic peptides should be interpreted with caution in patients with advanced kidney disease.

C-terminal atrial natriuretic peptide
ANP was first isolated in the atrium, but has also been found in other tissues. PreproANP is released primarily by the cardiac atria in response to atrial stretch and is cleaved into the amino-terminal proANP and the active form C-terminal atrial natriuretic peptide (C-ANP).

In people, C-ANP is increased in CHF and tachyarrhythmias. Although mostly considered a cardiac biomarker, C-ANP has also been evaluated in other conditions in people and has been shown to be increased in female patients, pregnancy, advanced liver disease, kidney failure, systemic hypertension, pneumonia, lung cancer, sepsis, and pulmonary embolism.

Concentrations of C-ANP have been shown to be increased in cows and horses with cardiac stresses from various causes. Concentrations of ANP decreased significantly after fluid resuscitation in hypovolemic adult horses, which was thought to be due to secondary catecholamine induced ANP production.

There is sufficient homology between canine and human C-ANP to use a human assay for measuring canine C-ANP. ANP has been shown to be increased in experimentally induced compensated aortic stenosis and experimentally induced volume overload in dogs. C-ANP was found to have a low positive predictive value in diagnosing occult cardiomyopathy in Doberman Pinschers.

Dogs with CHF secondary to MVD and other forms of spontaneous heart disease have been found to have higher concentrations of C-ANP compared with healthy controls. Dogs with CHF had significantly higher C-ANP concentrations than dogs with MVD that were not yet clinical for their disease. Furthermore, increases in C-ANP concentration were significantly correlated with vertebral heart score, fractional shortening, and the left atrial to aortic root diameter ratio (LA:Ao ratio). While this study found too much overlap in C-ANP concentrations between dogs with and without CHF to determine a clinically useful cut-off value, another study found that the mean concentration of C-ANP was 7× higher in dogs with CHF secondary to MVD than normal dogs.

Similar to dogs, the physiologically active C terminal of ANP in cats is nearly identical to that of people, and human assays for C-ANP can be used to measure this protein in cats. Experimental fluid overload in cats showed that C-ANP concentrations positively correlated with directly measured left atrial pressures. Cats with various cardiomyopathies have increased C-ANP concentrations compared to healthy controls. Furthermore, cats with systemic thromboembolism or with symptoms of CHF had higher
C-ANP concentrations than normal healthy cats. A comparison of 8 cats with cardiomyopathy and concurrent CHF to 6 cats with asymptomatic cardiomyopathy failed to find significant differences in C-ANP (see Table 2); however, the median concentration of C-ANP in the CHF group was higher than the non-CHF group.145

The limitation of using C-ANP to aid in the diagnosis of heart disease is that it is less stable than other natriuretic peptides.142 The half-life in dogs is approximately 10 minutes.146,147 Measurement of C-ANP requires radioimmunoassay, which is not readily available in most veterinary practices.116–118,141–145 Due to the lack of studies evaluating C-ANP to differentiate cause of dyspnea in animals that present with respiratory distress and inconsistent findings for animals with CHF, use of C-ANP as a biomarker for respiratory distress cannot be advised at this time. Theoretically, if measurement of C-ANP did become more readily available, an increase in the concentration of this protein, as seen in experimental volume overload of dogs and cats, could help to monitor for increased left atrial pressures and risk of volume overload in patients on aggressive fluid support.

Amino-terminal proANP

Amino-terminal proANP is the nonactive portion of the ANP prohormone that is formed in equimolar concentrations to C-ANP.148 The half-life is considerably longer than that of C-ANP, and therefore theoretically easier to accurately measure at peak concentrations.148,149 It has been shown to be increased in people with CHF,150 myocardial infarction,151 tachyarrhythmias,123 sepsis,133 hypertension,127 and during pregnancy.125

Amino-terminal proANP has been evaluated as a tool to differentiate dyspnea of cardiac origin from noncardiac origin in dogs.60,118 Both of the studies looking at NT-proANP in dyspneic dogs were able to demonstrate an increase in NT-proANP in cases with CHF over those with other causes of dyspnea.60,118 The groups found variable accuracy, however, with Prosek et al60 demonstrating an excellent sensitivity and specificity with an AUC of the ROC of 0.946 while Boswood et al118 found an AUC of 0.793.60,118 If serum was evaluated rather than plasma, Boswood et al found that it increased sensitivity and specificity with an AUC of 0.852.118

Studies have demonstrated that cats with respiratory distress secondary to CHF had a higher concentration of NT-proANP than those that had respiratory distress CHF versus pulmonary disease.151

Table 2: Natriuretic peptides evaluated in disease that can lead to respiratory distress in cats

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Disease condition</th>
<th>Results</th>
<th>How reported</th>
</tr>
</thead>
</table>
| ANP | Cardiomyopathy ± CHF144 | Healthy: 18.5 (10–57),§
CM – CHF: 111 (78–300)*
CM + CHF: 228 (95–585)§ | Mean, range (pg/mL) |
| NT-proANP | Respiratory distress CHF versus pulmonary disease151 | CHF: 1,690 (556–4,987)*
Pulmonary disease: 614 (208–3,109)* | Median, range (fmol/mL) |
| Cardiomyopathy ± CHF152 | Healthy: 682 (530–834),§
CM – CHF: 1,176 (810–1,543),†
CM + CHF: 1,865 (1,499–2,231),† | Median, 95% CI (fmol/mL) |
| Cardiomyopathy ± CHF153 | Healthy: 381 (52–450),§
CM – CHF: 1,254 (167–2,818),†
CM + CHF: 2,443 (1,189–15,462),† | Median, range (fmol/mL) |
| Cardiomyopathy ± CHF154 | Healthy: 413 (52–940),§
CM – CHF: 1,254 (167–2,818),†
CM + CHF: 2,443 (1,189–15,462),† | Median, range (fmol/mL) |
| NT-proBNP | Respiratory distress CHF versus pulmonary disease301 | CHF: 754 (437–1,035)*
Pulmonary disease: 76.5 (24–180)* | Mean, IQR (pmol/L) |
| Respiratory distress CHF versus pulmonary disease151 | CHF: 523 (95–982)*
Pulmonary disease: 45 (6–394)* | Median, range (fmol/mL) |
| Cardiomyopathy ± CHF152 | Healthy: 33.6 (11.2–56.1),§
CM – CHF: 184 (111–257),†
CM + CHF: 525 (437–612),† | Median, 95% CI (fmol/mL) |

*§, † Paired values are statistically different from one another.
ANP, atrial natriuretic peptide; NT-proANP, amino-terminal pro-atrial natriuretic peptide; NT-proBNP, amino-terminal probrain natriuretic peptide; CM, cardiomyopathy; CHF, congestive heart failure; CI, confidence interval; IQR, interquartile range.
Table 3: Natriuretic peptides evaluated in disease that can lead to respiratory distress in dogs

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Disease condition</th>
<th>Results</th>
<th>How reported</th>
</tr>
</thead>
</table>
| NT-proANP | Respiratory distress CHF versus pulmonary disease⁵⁹ | Pulmonary disease: 0.26 (0.01–2.11)⁺
CHF: 1.38 (0.33–4.41)⁺
Heart disease – CHF: 1.645 (731–3,320)⁺
Heart disease + CHF: 2.785 (760–4,100)⁺
Precapillary PH: 1.747 (894–2,884) | Mean, range (nmol/L) |
| BNP | Respiratory distress CHF versus pulmonary disease⁵⁹ | Pulmonary disease: 12.18 (5.18–28.1)⁺
CHF: 34.97 (4.45–245.9)⁺
Heart disease – CHF: 3.3 (1.2–5.4)⁺
Heart disease + CHF: 24.6 (12.3–40.0)⁺
Precapillary PH: 1.9 (0.5–3.9)⁺
Pulmonary + heart disease: 3.3 (1.2–5.4)⁺
Precapillary PH: 1.747 (894–2,884) | Mean, range (pg/mL) |
| NT-proBNP | Respiratory distress CHF versus pulmonary disease¹⁰⁰ | Pulmonary disease: 357 (192–565)⁺
CHF: 2,544 (1,652–3,476)⁺
Heart disease – CHF: 478 (323–1,158)⁺
Heart disease + CHF: 2,445 (1,499–3,134)⁺
Precapillary PH: 113 (<42–362)⁺
Pulmonary + heart disease: 744 (531–2,710)⁺
Precapillary PH: 2,011 (274–7,713) | Median, IQR (pmol/L) |
| Doberman DCM¹⁹³ | Healthy: 303 (22–1,325)⁺ | CHF: 2,980 (386–3,000)⁺ | Median, range (pmol/L) |

⁺, §, † Paired values are statistically different from one another.
NT-proANP, amino-terminal pro-atrial natriuretic peptide; BNP, brain natriuretic peptide; NT-proBNP, amino-terminal probrain natriuretic peptide; CHF, congestive heart failure; HD, heart disease; PH, pulmonary hypertension; IQR, interquartile range; DCM, dilated cardiomyopathy.

It was less precise than NT-proBNP, which was simultaneously evaluated in this study and had an AUC of 0.96. Other studies have shown that cats with occult cardiomyopathies have higher median NT-proANP concentrations than normal cats. Furthermore, cats with CHF have been found to have higher NT-proANP concentrations compared to normal cats and cats with occult cardiomyopathy. However, there is overlap in NT-proANP values between groups and although sometimes the overlap was minimal, a distinct line between healthy cats, those with occult cardiomyopathy and those with CHF has not been convincingly demonstrated. This is unfortunate as a clear cutoff would more easily categorize cats with respiratory distress due to noncardiac disease with underlying heart disease versus those with CHF.

The NT-proANP assay utilized in recent veterinary studies was a commercially available human sandwich ELISA. Similar to C-ANP evaluation, the assays require equipment not readily available in most veterinary hospitals. The half-life of canine NT-proANP is approximately 45 minutes. The longer half-life compared with that of C-ANP gives researchers and clinicians a longer window to document abnormalities. If NT-proANP were available as a bedside test, it appears that it would be a valuable tool to rule in or out CHF in both dogs and cats.

C-terminal BNP

BNP was first identified in the brain, but it is actually produced in larger amounts in the heart. BNP's are rapidly produced by the ventricular myocytes in response to stretch and hypoxia. In people, CHF is associated with significant increase in C-BNP concentration. Noncardiac factors that have been found to be associated with increases in C-BNP concentration in people include advanced age, female gender, presence of pneumonia, systemic inflammatory response syndrome, sepsis, pulmonary embolism, PH, systemic hypertension, hyperthyroidism, lung tumors, stroke and
Numerous point of care, see Table 1

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>cTnI<sup>a</sup></td>
<td>Numerous point of care, see Table 1</td>
</tr>
<tr>
<td>C-ANP</td>
<td>No practical point-of-care or commercial send-out test available</td>
</tr>
<tr>
<td>NT-proANP<sup>b</sup></td>
<td>No practical point-of-care or commercial send-out test available</td>
</tr>
<tr>
<td>C-BNP<sup>c</sup></td>
<td>No practical point-of-care or commercial send-out test available</td>
</tr>
<tr>
<td>NT-proBNP<sup>d</sup></td>
<td>Requires special media for outside lab, 1–2 days turnaround time, point-of-care test currently in development</td>
</tr>
<tr>
<td>Endothelin<sup>e</sup></td>
<td>No practical point-of-care or commercial send-out test available</td>
</tr>
</tbody>
</table>

Table 4: Cardiac biomarkers currently available

Liver disease. Obesity is linked to lower concentrations of C-BNP. A close inverse relationship between increased plasma C-BNP concentrations and left ventricular function has been documented in people with sepsis-induced impaired left ventricular function.

There are 2 studies in the veterinary literature evaluating C-BNP as a biomarker to differentiate dogs with CHF from those with noncardiac causes of dyspnea. Dogs with CHF had a significantly higher median C-BNP concentrations with an AUC of the ROC between 0.89 and 0.91, and the magnitude of elevation increased as the severity of the heart disease increased. Although it appeared as though dogs with concurrent heart disease and a noncardiac etiology of cough or dyspnea had higher C-BNP concentrations than those with dyspnea without evidence of concurrent heart disease, this was not statistically significant (P = 0.20). A cutoff of 6 pg/mL had a sensitivity of 90% and specificity of 78% for differentiating CHF from other causes of cough or dyspnea, while a cutoff of 25 pg/mL had a sensitivity of only 50%, but a specificity of 96%. In the same study, when dogs were divided into groups based on underlying condition, median C-BNP concentrations were as follows: DCM 36.9 pg/mL, pre- and postcapillary PH 14.8 pg/mL, chronic degenerative valvular disease 5.0 pg/mL, and pericardial effusion 1.24 pg/mL (see Table 3). Despite these findings, both studies found a large amount of overlap between dogs with dyspnea from cardiac origin and dogs with dyspnea from non-cardiac origin.

An additional study evaluated C-BNP in dogs with heart disease with or without CHF and compared them to other diseases that did not result in dyspnea (eg, trauma, toxicity, neurological, gastrointestinal, renal, neoplastic, or metabolic diseases). The median C-BNP was significantly increased in dogs with CHF compared to all other groups, and a cut-off value of >6.0 pg/mL was found to have a sensitivity of 93% and a specificity of 87% for diagnosis of dyspnea secondary to cardiac disease. However, there were several individuals with various systemic diseases that had C-BNP concentrations that were as increased or even higher than dogs with CHF, underscoring the problem of comorbidities confounding the diagnosis of CHF using a single C-BNP measurement.

Numerous investigators have looked at C-BNP in dogs with naturally occurring and experimentally induced heart disease. C-terminal BNP is increased in Doberman Pinschers with occult cardiomyopathy and may be a valuable screening tool in this breed. Concentrations are increased in experimentally induced myocardial failure from long term pacing, but were not shown to be increased in Boxer dogs that are clinically affected by arrhythmogenic right ventricular cardiomyopathy. Dogs with naturally acquired mitral valve disease have also been found to have higher concentrations of C-BNP, but elevations occur only when clinical signs of CHF appear. This study found that increases in NT-proANP (AUC of 0.99) and C-ANP (AUC of 0.97) concentrations more accurately correlated with decompensated heart failure as compared to C-BNP (AUC of 0.80). In a retrospective study evaluating canine patients with chronic degenerative valvular disease, C-BNP concentrations increased with increasing severity of heart disease, and correlated with the International Small Animal Cardiac Health Council Heart Failure Classification groups. Additionally, this group also found that every 10 pg/mL rise in plasma C-BNP concentration was associated with a 44% increase in mortality.

C-terminal BNP concentrations have been found to be increased in cats with asymptomatic cardiomyopathy and concentrations increase further with the onset of CHF or arterial thromboembolism. However, overlap between groups exists. Use of angiotensin converting enzyme inhibitor did not change C-BNP concentrations in Maine Coon cats with asymptomatic familial HCM.

Point-of-care C-BNP analyzers are available for people, but currently are not available or validated for veterinary species. All assays from the studies mentioned above either required equipment that is not readily available or were sent as batched samples to a reference laboratory, limiting their current use in the emergency setting. The half-life of C-BNP in dogs is very short at approximately 90 seconds, making it difficult to capture the peak level. However, this biomarker could ultimately prove useful in determining the presence of CHF in dogs. In cats, there appears to be insufficient data to recommend routine use of C-BNP as a biomarker.
Amino-terminal proBNP

As discussed previously, NT-proBNP is the nonactive amino-terminal portion of the BNP preprohormone and is increased in people with CHF, tachyarrhythmias, and bradyarrhythmias. Other disease processes, which have been shown to cause NT-proBNP increases in people, include pneumonia, sepsis, pulmonary embolism, PH, systemic hypertension, stroke, ARDS, and liver disease. Obesity and insulin resistance is linked with lower concentrations of NT-proBNP.

Amino-terminal proBNP is the most widely studied biomarker of cardiac disease in veterinary medicine. When NT-proBNP was evaluated as a biomarker to differentiate CHF from other causes of respiratory distress, it was found to be significantly higher in dogs with respiratory distress from CHF compared to dogs with respiratory distress from noncardiac diseases including pneumonia, pulmonary neoplasia, neoplastic pleural effusion, laryngeal paralysis, chronic bronchitis, collapsing trachea, lung lobe torsion, noncardiogenic pulmonary edema, and eosinophilic bronchopneumopathy. In addition, NT-proBNP was significantly higher in dogs with CHF compared to those with primary pulmonary disease and concurrent asymptomatic heart disease. The AUC of the ROC ranged from 0.89 to 0.91 when using NT-proBNP to differentiate dyspnea of cardiac origin from noncardiac origin. Oyama et al. found that a value >158 pmol/L was 85.5% sensitive and 81.3% specific for the diagnosis of CHF.

There are a multitude of studies evaluating the use of NT-proBNP in dogs with different heart diseases at different stages of disease. In an experimental model of compensated aortic stenosis, NT-proBNP not only significantly rose compared to baseline, but was also positively correlated with left ventricular end-diastolic pressure and end-diastolic intraventricular septal wall thickness. The use of pimobendan has been shown to significantly reduce concentrations of NT-proBNP in dogs with postcapillary PH and CHF from MVD. However, despite continued improvement in quantitative and qualitative parameters (tricuspid regurgitant flow velocity, quality of life scores, heart rate, and echocardiographic parameters of systolic function) NT-proBNP did not persistently improve. This differs from what is seen in human studies, and the authors attributed this species discrepancy to day-to-day variation, small sample size, or progression of disease. In Doberman Pinschers, median NT-proBNP concentration were increased in occult DCM, but significantly increased when patients developed CHF or clinically significant arrhythmias. Furthermore, dogs with CHF secondary to DCM had lower NT-proBNP concentrations after therapy was initiated and the CHF had resolved. In dogs with mitral valve disease, animals with increased NT-proBNP concentrations have more severe disease, develop CHF sooner, and have a shorter overall life span.

When using NT-proBNP to determine if the cause of feline respiratory distress is secondary to CHF versus a noncardiac cause, NT-proBNP was significantly higher in cats with CHF with an AUC of 0.94–0.96 Connolly et al. found that a value >220 pmol/L diagnosed CHF in cats with a sensitivity of 93.9% and a specificity of 87.8%. Similarly, Fox et al. found that a value >265 pmol/L had a 90.2% sensitivity and 87.9% specificity for the diagnosis of CHF. Use of NT-proBNP in combination with thoracic radiographs has been shown to improve diagnostic accuracy of CHF in cats that present for respiratory distress over thoracic radiographs alone. Furthermore, clinician confidence in diagnosing CHF significantly improved when NT-proBNP was increased. While this study demonstrated significance, one cat with pulmonary disease had an NT-proBNP that fell into the intermediate range and clinician interpretation of radiographic findings did not improve with the NT-proBNP information. This stresses the importance that interpretation of NT-proBNP should still be in light of clinical signs and other diagnostic tests.

Amino-terminal proBNP has been found to be increased in any degree of severity of occult feline cardiomyopathy, but other studies have found that NT-proBNP was only significantly increased if there were severe echocardiographic changes. Given the discrepancy in the data reported, it is concerning that there may not be accurate or consistent correlations between the NT-proBNP concentration and the echocardiographic findings in feline patients with occult heart disease. However, concentrations of NT-proBNP are significantly higher in cats with CHF when compared to healthy controls (AUC = 0.99) or cats with compensated heart disease (AUC = 0.90). Finally, NT-proBNP was found to be higher in azotemic cats with systemic hypertension compared to azotemic cats with normal systemic blood pressure.

The half-life of NT-proBNP in dogs is not known, but the molecule is much more stable than C-BNP and in some animal models the half-life is 6- to 15-fold longer than C-BNP. Amino-terminal proBNP is not maintained at a static concentration in the body and a normal dog may have more than a 200 pmol/L change from 1 week to the next. Due to normal variation, some normal dogs may actually have values that are worrisome for heart disease, and NT-proBNP values must be interpreted in light of physical exam findings and other biochemical and radiographic abnormalities.
Additionally, echocardiograms are recommended in cases in which heart disease cannot be completely ruled out and in patients with increased NT-proBNP concentrations.

Amino-terminal proBNP is a commercially available diagnostic test with a turnaround time of 1–2 business days. This test has been validated in dogs and cats and no spurious changes were seen with the introduction of lipids, hemoglobin, or bilirubin to the plasma.1,118 Sample type and handling are vital for accurate measurement of NT-proBNP.5,210 Special sampling tubes that contain a protease inhibitor to minimize NT-proBNP degradation in plasma are recommended and should be maintained at room temperature.2111 A recently completed pilot study by the commercial laboratory evaluated a point-of-care test for NT-proBNP in cats and found that the test had a sensitivity of 87% and a specificity of 78% to identify cats with moderate to severe occult heart disease.m The authors concluded that this test is useful in ruling out heart disease,n but has not been evaluated specifically in cats that present with respiratory distress. The sensitivity, specificity, and the availability of this test to most individuals (especially if and when the point-of-care test becomes available) makes NT-proBNP probably one of the most promising biomarkers that will be useful in the emergency setting. Although NT-proBNP appears to be the most useful biomarker in determining if cardiac failure is the underlying cause of respiratory distress, this test still has various limitations.

Endothelin – 1

Endothelin-1 (ET-1) is a protein that is produced by numerous cells including vascular endothelial cells, vascular smooth muscles cells, airway epithelial cells, macrophages, fibrocytes, cardiac myocytes, and others.215–221 It is produced as the large preproendothelin, then is cleaved into an inactive intermediate termed big ET-1.222 Big ET-1 is then cleaved into the biologically active ET-1.222 In the vasculature, this protein is made in response to shear stress,219 hypoxia,223 angiotensin II,224 and vasopressin.225 ET-1 affects the cardiovascular system in a complex manner through a variety of receptors, inducing intense and sustained vasoconstriction, vasodilation, and increased inotropy in various situations.222,226–229 It is most commonly measured in circulation, but also has been measured in exhaled breath condensate in people.230,231

ET-1 has been shown to be increased and may play a role in the progression of a variety of human diseases including pulmonary fibrosis,232 systemic hypertension,233 PH,234 atherosclerosis,235 myocardial remodeling following CHF,236 and disseminated intravascular coagulation.237 ET-1 has been shown to be increased in multiple causes of dyspnea in people including lung cancer,238 pneumonia,239 ARDS,240 and asthma.241 It is unclear if increases in endothelin concentrations are involved in the pathogenesis of certain diseases or are a sequela of them.244

ET-1 appears to play an important role in the pathophysiology of equine laminitis,242,243 and lower airway inflammation,244,245 and is increased in horses after exercise246 and those with obstructive pulmonary disease.247,248 Investigations on ET-1 concentrations in cows have been limited to reproduction.249,250

ET-1 has been evaluated as a marker of heart disease in dogs that present for dyspnea, and it was found that dogs with CHF had significantly higher ET-1 concentrations compared to dogs with other causes of dyspnea with an AUC of the ROC of 0.85.60 A cut-off value of 0.478 fmol/mL yielded a sensitivity of 85.7% and a specificity of 80.8%.60

There has been some research on dogs evaluating the use of ET-1 and big ET-1 as markers for CHF.251–254 Experimentally induced heart failure secondary to over-pacing resulted in ET-1 overexpression in dogs.251,254 Doberman Pinschers with DCM and CHF had significantly increased big ET-1 concentration.252 Furthermore, increased big ET-1 concentrations were associated with shorter survival times.252 An additional study evaluating dogs with CHF caused by acquired heart disease found that the dogs with CHF had increased ET-1 concentration compared to healthy controls and dogs with compensated heart disease.253

ET-1 is increased in cats with asymptomatic cardiomyopathy compared to healthy controls.255 There was an even greater difference when comparing cats with CHF or thromboembolic sequelae from their heart disease compared to healthy controls.255 However, there was not a significant difference between cats with CHF and those with compensated heart disease.255

Although ET-1 and big ET-1 have shown some promise as indicators of heart disease, there are other pathological conditions that have been shown to cause ET-1 and big ET-1 elevations, decreasing the specificity of ET-1 as a marker of heart disease in critically ill animals. Experimental canine studies performed in vitro and in vivo have shown that ET-1 may have a role in the pathogenesis and disease progression in arrhythmogenesis,256,257 ischemia-reperfusion injury,258,259 systemic hypertension,260 PH,261 and myocardial mitral valve disease.262 A study evaluating dogs with CHF, kidney failure, diabetes mellitus, and hyperadrenocorticism found that big ET-1 was significantly increased in the dogs with illness compared to healthy
controls, but there was no significant difference between groups.263 Serum ET-1 concentrations were significantly increased in dogs with idiopathic pulmonary fibrosis compared to healthy Beagles, healthy age-matched West Highland White Terriers, dogs with chronic bronchitis, and dogs with eosinophilic bronchopneumopathy.264 Although ET-1 has some promise as a biomarker for cardiogenic dyspnea in dogs, it was confirmed to be less accurate than either NT-proANP or C-BNP.265 Endothelin measurements are not routinely performed and there is not a point-of-care test available for use that has been validated in dogs or cats. Commercial tests are available,9 but these require equipment that is typically not available in most practices and may be time prohibitive as a diagnostic tool as it requires overnight incubation.253 Due to clinical, canine experimental, and human studies showing that ET-1 may play a role in disease progression and the fact that it is increased in a variety of disease processes, future studies are warranted to determine its role in clinical situation.

Pulmonary Hypertension

Precapillary PH can be caused by idiopathic primary arterial hypertension, heart worm disease, cardiovascular shunts, vascular occlusive disease, or chronic hypoxemia from various pulmonary diseases.265 Postcapillary PH is often the result of left-sided heart disease, and most commonly occurs in dogs secondary to MVD.266 However, without other diagnostic tools such as echocardiography and cardiac catheterization, it is often difficult to determine if PH is the cause of respiratory distress. Many of the biomarkers evaluated in dogs with cardiac disease have also been evaluated as tools in diagnosing PH.176,193,265,266

In people, PH has been associated with increased concentrations of exhaled nitric oxide,267 and blood cTnI,29 C-ANP,128 C-BNP,168 NT-proBNP,186 and D-dimers.268 Dogs with precapillary PH have been shown to have increased cTnI compared to healthy control dogs and dogs with varying stages of MVD (see Table 1).266 Decompensation of postcapillary PH was found to result in increased cTnI concentration compared to dogs with compensated MVD with or without concurrent PH.266 However, there was a good deal of overlap in all groups.265,266 Dogs with CHF and concomitant PH have increases in C-BNP concentration.176 Dogs with both precapillary and postcapillary PH have been shown to have increased NT-proBNP concentration.193,265 Amino-terminal proANP concentrations were not different between healthy dogs and those with precapillary PH.265 Although several biomarkers have been shown to be increased in dogs with PH, there does not appear to be a single test that can differentiate PH from CHF at this time.

Conclusion

Numerous cardiac biomarkers have been evaluated and some may prove useful in clarifying the cause of respiratory distress. cTnI can be measured with point-of-care analyzers and has been shown to be increased in patients with CHF. One of the biggest drawbacks to its use, however, is the lack of standardization that would allow a clinician to interpret values obtained from different analyzers than used in published reports. Furthermore, most of the conditions evaluated for cTnI levels had significant amounts of overlap, which complicate clinical decision making. To date, NT-proBNP is regarded as the most useful cardiac biomarker, and several studies have provided some evidence that NT-proBNP concentrations are different in healthy veterinary patients compared to those with respiratory disease, occult heart disease, and CHF. An area requiring further investigation is the development and validation of a point-of-care test for NT-proBNP. It should be stressed that this test should be interpreted in light of other diagnostic findings. Other natriuretic peptide tests may also be of benefit, but due to availability of testing and limited clinical data on these biomarkers, their use is at this time is limited to research settings. ET-1 may be useful in suspected cases of idiopathic pulmonary fibrosis, but its role in other disease processes is unclear and unlikely to be clinically appropriate. Unfortunately, there is currently no biomarker that can reliably distinguish CHF from PH as the cause of dyspnea. Further research in this area is warranted.

Footnotes

b VetSign Canine CardioSCREEN Guildhay Limited, Guildford, Surrey, UK. Biosite Incorporated, San Diego, CA.

c Cardiopet proBNP, IDEXX Laboratories, Westbrook, ME.

f Big endothelin-1 ELA kit, Immuno-Biological Laboratories Co, Ltd, Gunma, Japan. Endothelin ELA, ALPCO Diagnostics, Windham, NH.

g Access ActivTnI, Beckman Coulter, Inc., Fullerton, CA.

h OPUS Immunoassay System, OPUS Troponin I, Behring Diagnostics Inc., Westwood, MA.

i Abbott AxSYM System, Abbott AG, Diagnostics Division, Baar, Switzerland.

j Immulite 1000 Troponin I kit, Siemens, Los Angeles, CA.

k Unicel DXI, Beckman Coulter.

l Reagent Flex CTNI (RF421C), Dade Behring Inc., Deerfield, IL.

m I-STAT cTnI test, Heska Corporation, Loveland, CO.
References

45. Kraus MS, Jesty SA, Gelzer AR, et al. Measurement of plasma cardiac troponin I concentration by use of a point-of-care analyzer

K.F. Smith et al.

229. Goldberg AT, Bond BR, Mukherjee R, et al. Early increase in pulmonary vas-}

