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Abstract

Objective – To systematically examine the evidence for interventions after the return of spontaneous circulation
(ROSC) on outcomes from veterinary cardiopulmonary resuscitation and to determine important knowledge
gaps.
Design – Standardized, systematic evaluation of the literature, categorization of relevant articles according to
level of evidence and quality, and development of consensus on conclusions for application of the concepts to
clinical post-cardiac arrest care.
Setting – Academia, referral practice, and general practice.
Results – Fifteen standardized clinical questions important for post-cardiac arrest care were asked and research
articles relevant to answering these questions were identified through structured, explicit literature database
searches. The majority of these articles report research in species other than dogs or cats or consisted of
experimental work in canine cardiac arrest models. Outcome metrics reported in these studies widely varied
and ranged from quantification of mechanistic endpoints, such as elaboration of reactive oxygen species, to
survival, and functional neurologic outcome.
Conclusions – Despite the near complete absence of clinical veterinary studies, the process allowed the formula-
tion of statements for several postcardiac arrest treatments that were either supportive, such as mild therapeutic
hypothermia or controlled reoxygenation, or neutral, such as for mannitol administration or seizure prophylaxis.
Evidence grading allowed transparency in regards to the strength of these recommendations. Moreover, numer-
ous knowledge gaps emerged that will allow generation of a road map for progress in veterinary post-cardiac
arrest care.
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ALS advanced life support
BLS basic life support
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CPA cardiopulmonary arrest
CPP coronary perfusion pressure
CPR cardiopulmonary resuscitation
LOE level of evidence
MTH mild therapeutic hypothermia
OHCA out-of-hospital cardiac arrest
PCA post-cardiac arrest
PEA pulseless electrical activity
PICO population, intervention, control group,

outcome
RECOVER Reassessment Campaign on Veterinary Re-

suscitation
ROS reactive oxygen species
ROSC return of spontaneous circulation
ScvO2 central venous oxygen saturation
VF ventricular fibrillation
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VT ventricular tachycardia

Introduction

A return of spontaneous circulation (ROSC) in a pa-
tient that has undergone a cardiopulmonary arrest (CPA)
is the first but intermediate goal in resuscitation. The
majority of cardiac arrest patients that initially achieve
ROSC will not survive to hospital discharge. In humans,
between 60% and 70% of sudden cardiac arrest victims
and 70% of those suffering from in-hospital cardiac ar-
rest will not survive to hospital discharge despite hav-
ing achieved ROSC initially.1, 2 In veterinary medicine,
reported survival to discharge rates range from 2% to
10% for dogs and cats, despite initial ROSC rates of 35–
45%.3, 4 It is the current view that these patients suc-
cumb to a lethal post-cardiac arrest (PCA) syndrome
that is characterized by a combination of multiorgan fail-
ure, cardiogenic shock, anoxic brain injury, and the se-
quela of preexisting diseases.5 The discrepancy between
rates of ROSC and that of hospital discharge has broad-
ened the focus of attention to include the postresusci-
tation period in an effort to optimize the opportunity
for successful outcomes.6 The degree of involvement of
patients in the PCA syndrome is highly complex and
heterogeneous. It is most likely that successful resuscita-
tion to discharge will require a multifaceted therapeutic
intervention.

Thus, the clinically relevant questions asked in this
RECOVER PCA care domain focused on mitigating the
effects of the PCA syndrome. The role of IV fluids,
cardiovascular active drugs, and blood pressure man-
agement along with hemodynamic optimization strate-
gies with endpoints that allowed the treatment to be
titrated to the needs of each patient were investigated.
Questions regarding the value of carbon dioxide and
oxygen control, as well as mild hypothermia and re-
warming rates were addressed. The value of cortico-
steroids, seizure prophylaxis, hyperosmolar therapy, and
metabolic protection was also examined. And lastly, the
questions of whether combination therapies to achieve
additive or synergistic effects and whether referral cen-
ter management of the PCA patient provided outcome
benefit were asked.

There is a dearth of evidence from which to generate
specific recommendations for PCA care in dogs and cats.
However, based upon the limited available literature, the
key PCA care concepts that emerged from the evidence
evaluation are as follows:

� Based upon human studies that suggest hemody-
namic optimization protocols during the PCA phase
are clinically feasible and potentially useful, in hemo-

dynamically unstable dogs and cats after cardiac ar-
rest, a hemodynamic optimization strategy including
fluid therapy adjusted according to criteria customary
to veterinary small animal emergency and critical care
is reasonable.

� There is good evidence to advocate normoxemia ver-
sus hyperoxemia or hypoxemia in the early PCA pe-
riod.

� The evidence suggests a neurologic benefit of mild
hypothermia (33 ± 1◦C) in the early postresuscitation
period, and that fast rewarming after induced or un-
intended hypothermia may be harmful.

� There is no evidence to support routine administration
of corticosteroids, antiseizure prophylaxis, mannitol,
or metabolic protectants after cardiac arrest.

� Low-dose corticosteroid treatment of patients with
persistent hypotension requiring sympathomimetic
support may be considered.

� Hypertonic saline (HS) may be considered in animals
that are suspected of having cerebral edema as evi-
denced by coma or obtundation after cardiac arrest.

� Bundled therapy including hypothermia, hyperten-
sion, and normocapnia (compared to normother-
mia, normotension, and hypocapnia) and thiopental,
methylprednisolone, phenytoin, and perhaps antioxi-
dants, may have outcome benefit.

� More comprehensive PCA care in a specialty cen-
ter with access to more advanced monitoring equip-
ment and supportive care may have an outcome
benefit.

Cardiovascular Support

Cardiovascular dysfunction after resuscitation from CPA
can be attributed to the underlying precipitating disease,
such as hypovolemia or cardiac dysfunction, or the sub-
sequent reperfusion injury. Myocardial stunning and a
sepsis-like syndrome with increased vascular permeabil-
ity and microvascular dysfunction may result from these
processes.7–10 To establish and maintain adequate organ
perfusion following ROSC, the use of IV fluids and car-
dioactive and vasopressor drugs are often employed to
support circulation to certain resuscitation endpoints.
This section examines the utility of a protocol-driven
hemodynamic optimization strategy (PA02), the general
use of IV fluids (PA01), and the evidence regarding the
use of vasopressors and inotropes (PA03 and PA04).

Goal-directed therapy (PA02)
Population, intervention, control group, outcome (PICO)
Question: In dogs and cats with ROSC after car-
diac arrest that have cardiovascular dysfunction (hy-
potension/hypoperfusion) (P), does early hemodynamic
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optimization (I), as opposed to standard care (C), im-
prove outcome (O) (eg, survival)?

Conclusion

Human studies suggest that a hemodynamic optimiza-
tion protocol applied during the PCA phase is clinically
feasible and useful. However, a survival benefit could
not be clearly established in part because these studies
were bundled with other interventions (eg, mild thera-
peutic hypothermia [MTH]). Interventions included in
these protocols were fluid and pressor administration
guided by central venous oxygen saturation (ScvO2),
blood lactate, and central venous and arterial blood pres-
sure. At this time, the application and benefit of early
hemodynamic optimization in dogs and cats specifically,
in the post resuscitative period, is unknown.

Summary of the evidence

Two human retrospective studies (LOE 6, good and
fair/supporting) demonstrated that arterial hypotension
after resuscitation from cardiac arrest was associated
with decreased survival and neurologic outcome in-
dicating the importance of the avoidance of hypoten-
sion in the PCA period.11, 12 Myocardial stunning (a
phenomenon that arises early after global myocardial
ischemia in which left and right ventricular ejection
fraction decreases and end diastolic pressure increases
reversibly) may contribute to the hemodynamic dys-
function. In a swine model (LOE 6, poor/supporting),
myocardial stunning was identified early after CPA, was
responsive to inotropic agents and resolved over 24–72
hours.13, 14 Adrie et al (LOE 6, fair/supporting) described
in people after CPA an immunologic profile similar to
sepsis and coined the term “sepsis-like syndrome” to
describe PCA disease.7

Early goal-directed hemodynamic optimization
(EGDHO), a therapeutic algorithm aimed at timely
restoration of the balance between oxygen delivery and
demand was effective in significantly improving sur-
vival rates in humans with severe sepsis and septic shock
(LOE 6, good/supporting).15 A second human study
(LOE 6, poor/neutral) examined the feasibility and effect
of a comprehensive bundle of care including hemody-
namic optimization, antibiotics, tight glycemic control,
steroids, activated protein C, and lung-protective venti-
lation in septic adults. The investigators reported a rela-
tive mortality reduction of 31%; however, the change was
not significant.16 A similarly designed study was em-
ployed to test an algorithm for titration of PCA hemody-
namic therapy (LOE 6, fair/neutral) in adult humans.17

The study identified a trend toward improved outcome
in the treatment group, but the study was not powered

sufficiently to definitively show a treatment effect. An-
other human study (LOE 6, good/neutral) examined a
standardized PCA bundle of care that included EGDHO
as well as mild therapeutic hypothermia and early revas-
cularization of coronary occlusions.18 Those treated with
the combination therapy were more likely to survive
than historic controls (odds ratio = 3.6, P = 0.001).
However, EGDHO was coadministered with MTH, thus
the isolated effect of EGDHO on outcome could not be
determined.

As oxygen delivery to the tissues in relation to oxy-
gen demand is a more important reflection of hemody-
namic status than blood pressure alone, the monitoring
of global perfusion metrics such as ScvO2 and blood lac-
tate may be important in the postresuscitation patient. In
an experimental canine study (LOE 3, fair/supporting),
ScvO2 measurements were shown to correlate well with
a variety of low perfusion states.19 Lactate has been re-
ported to be associated with poor survival in system-
ically ill dogs with sepsis (LOE 5, poor/supporting).20

Two human studies (LOE 6, fair/supporting), demon-
strated that lactate level was inversely associated with
the likelihood of survival from CPA.21, 22

Knowledge gaps

While the benefit and feasibility of a bundle of postre-
suscitation care elements is relatively well supported
for humans, no such evidence exists in clinical vet-
erinary medicine. Specific hemodynamic optimization
strategies have neither been proven to be effective in hu-
man medicine, nor even tested in veterinary medicine.
There are insufficient data available to determine optimal
hemodynamic endpoints to be targeted post-CPR, and
currently recommended values (eg, for arterial blood
pressure, ScvO2, lactate) are extrapolated from other dis-
ease processes such as sepsis. Validating these values for
their specific application to PCA care is important.

Administration of intravenous fluids (PA01)

PICO Question

In dogs and cats with ROSC after cardiac arrest that
have cardiovascular dysfunction (hypotension, hypo-
perfusion) (P), does IV fluid administration (I), compared
to no fluids (C), result in improved outcome (O) (survival
to discharge, neurologic function)?

Conclusion

There was no research identified that specifically evalu-
ated the administration versus the withholding of IV flu-
ids after ROSC and the PICO question can therefore not
be answered. However, there were observational data
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provided in humans and experimental studies that a
need for fluids exists, even after primary cardiac arrest,
and that the type of fluids may have an impact on recov-
ery. In the absence of clinical data available to instruct a
fluid therapy strategy specific to the PCA phase in dogs
and cats, it appears reasonable to adjust fluid therapy ac-
cording to criteria customary to veterinary small animal
emergency and critical care.

Summary of the evidence

Two human studies (LOE 6, fair/neutral) used fluids
in addition to therapeutic hypothermia as part of stan-
dardized PCA care protocols.18, 23 Neither study demon-
strated any harmful effects resulting from these proto-
cols, and one18 found significantly improved survival
rates with a favorable neurologic outcome. However,
since other interventions were coadministered, the con-
tribution of IV fluids cannot be elucidated.

Several small clinical studies in people with out-
of-hospital cardiac arrest (OHCA) (LOE 6, fair or
poor/neutral) evaluated rapid infusions of large vol-
umes (2–3 L) of ice-cold fluids shortly after ROSC to
induce therapeutic hypothermia and found that these
volumes were well tolerated.24–29 Jacobshagen et al (LOE
6, poor/neutral) demonstrated hypoxemia after resusci-
tation from OHCA, but it was not associated with the
large volumes of cold fluids.30 These studies in combi-
nation demonstrated the fluid tolerance of sudden car-
diac arrest patients, although they were not designed to
identify a benefit of fluid administration, but rather to
show efficacy for cooling and safety. PCA hypovolemia
despite positive fluid balance in OHCA patients was
identified by transthoracic echocardiography in a small
clinical observational study.29 Heradstveit et al (LOE 6,
fair/neutral) identified transvascular fluid leakage, de-
creased colloid osmotic pressure, and low systemic vas-
cular resistance in the postresuscitation phase as rea-
sons for the need for IV fluid administration in PCA
patients.31 In human studies using standardized resus-
citation protocols (LOE 6, fair or poor/neutral), large
volumes of IV fluids (3-13 L/person) during the first
24 hours after ROSC were required to meet predefined
hemodynamic endpoints.17, 18,31 One human study (LOE
6, fair/neutral) showed that a combination of a colloid
and hypertonic saline (HS) reduced the required total
fluid volume administered during the first 24 hours after
ROSC, but did not examine outcomes.31 Three porcine
studies (LOE 6, good and fair/neutral) using a VF CPA
model (where VF is ventricular fibrillation), found that
hypertonic-hyperoncotic solutions administered shortly
after ROSC provided neurologic and cardiac protection
compared to normal saline.32–34

Two experimental canine studies (LOE 3,
poor/neutral) evaluated the efficacy of cardiopul-
monary bypass for resuscitation and neurologic
recovery and found better survival and increased
cerebral blood flow in those animals that had hemod-
ilution and higher blood pressures, indicating that
fluid administration and resuscitation endpoints can
impact outcomes.35, 36 However, as outlined in PA02,
the resuscitation goals and the optimal interventions to
achieve them have not been clearly identified in either
human or veterinary patients.

Knowledge gaps

Given the heterogeneity of the PCA population in dogs
and cats, and the scarcity of research on fluid bal-
ance during the PCA period, no universal recommen-
dation on IV fluid therapy can be made. In veterinary
PCA patients, observational data are needed to better
understand the fluid deficits and requirements in this
population.

The utility of cardioactive and vasopressor drugs
(PA03)

PICO Question

In dogs and cats with ROSC that are hypotensive
(P), does the use of any particular cardioactive
drug/vasopressor (I), compared to standard care (C),
result in improved outcome (O) (survival to discharge/
neurologic function)?

Conclusion

The evidence for the use of cardioactive/vasopressor
drugs to treat PCA hypotension is either neutral or sup-
portive for improved survival and neurologic outcome;
however, it is insufficient to make definitive conclusions.

Summary of the evidence

In four human studies, either cardioactive drugs were
not the sole intervention17, 18 or cardiovascular param-
eters were the only outcomes investigated.13, 37 In the
study by Sunde et al (LOE 6, fair/supporting), inotropic
support improved survival in bivariant, but not multi-
variant analysis.18 In a small study (n = 18) by Gaieski
et al (LOE 6, fair/neutral), the simultaneous use of hy-
pothermia and vasoactive agents demonstrated outcome
benefit (survival 78% in the treatment group; 50% in
the historic control group) but the difference was not
significant.17

There were 10 experimental studies using rat and
swine CPA models (LOE 6, all supporting) that have

S88 C© Veterinary Emergency and Critical Care Society 2012, doi: 10.1111/j.1476-4431.2012.00754.x



RECOVER post-cardiac arrest care

identified cardioactive drugs/vasopressors as being ben-
eficial for post-ROSC myocardial function14, 38–44 and vis-
ceral perfusion.45, 46 A study by Huang et al. using a ro-
dent VF model of CPA (LOE 6, fair/supporting) also
demonstrated a survival benefit of inotrope use over
control.39

Three human studies (LOE 6) were neutral to
the intervention.13, 17, 37 They were poorly powered,17

noncontrolled,37 or nonrandomized.13, 37

Knowledge gaps

Definitive evidence of a beneficial effect of cardioac-
tive/vasopressor therapy for PCA hypotension on out-
come does not exist, despite association with better out-
comes in some studies. The question has not specifically
been addressed in dogs and cats.

Cardioactive/vasopressor drugs in to induce mild hy-
pertension (PA04)

PICO Question

In dogs and cats with ROSC (P), does the institution
of mild hypertension via the use of any particular car-
dioactive drug/vasopressor (I), compared to standard
care (C), result in improved outcome (O) (survival to
discharge neurologic function)?

Conclusion

The evidence suggests that hypertension following
ROSC may be associated with better neurologic in-
tact survival; however, the nature of the association (ie,
causal versus casual) is not known.

Summary of the evidence

Evidence from one experimental study in dogs
(LOE 3, good/supporting)47 supported indirectly by
two additional experimental studies in dogs (LOE 3,
fair/supporting)48, 49 indicated that after prolonged un-
treated CPA, hypertensive reperfusion with a mean
arterial pressure (MAP) of greater than 150 mm Hg
may be associated with better survival and neurologic
outcome.

A clinical study in humans (LOE 3, poor/neutral) ret-
rospectively evaluated MAP in the first minutes after
ROSC by dividing patients into a high MAP (>100 mm
Hg) or low MAP (≤100 mm Hg) group.50 Interestingly,
what was considered hypertension in this human study
was considered normal control in the canine studies.
There was no statistically significant difference in neu-
rologic outcomes between groups, but 5 of the 6 patients

achieving MAP of at least 150 mm Hg survived with
good neurologic status.

In a primate model of global brain ischemia without
cardiac arrest (LOE 6, poor/opposing), a repetitively
induced increase of the MAP with norepinephrine to
150–190 mm Hg for 3–5 minute periods during the first
48 hours postischemia was associated with a worse neu-
rologic outcome.51 This would not favor the intervention;
however, post hoc analysis revealed if MAP was raised
rapidly to normal levels after reperfusion and then main-
tained at a normal or slightly elevated level, neurological
outcome was better than in animals in which MAP was
raised slowly or was low for prolonged periods after
reperfusion.

In a swine model of OHCA (LOE 6, poor/opposing)
examining the effect of norepinephrine-induced hyper-
tension on myocardial oxygen use, 9 of 10 animals
achieved a spontaneous hypertension bout immedi-
ately after ROSC.52 Induction of hypertension with nore-
pinephrine for 15 minutes (mean aortic pressure 95 mm
Hg versus 73 mm Hg in the control group) significantly
increased oxygen use in the myocardium, increasing the
risk of myocardial hypoxia.

Increased survival was seen in a rat asphyxial ar-
rest model (LOE 6, poor/supportive) when PCA care
included mild hypothermia combined with induced hy-
pertension, compared to controls.53 There was no benefit
in recovery of neurological function in surviving ani-
mals, and the effect of hypothermia versus hypertension
could not be isolated.

Knowledge gaps

Validating that hypertension in dogs and cats in the PCA
period is a causative effector versus positive outcome
marker could lead to establishing the timing, duration,
and level of hypertension to be targeted.

Support of Ventilation and Oxygenation

Rapid normalization of blood oxygen, carbon dioxide,
and pH, and reoxygenation of ischemic tissues is a prime
objective of the PCA period. The partial pressure of car-
bon dioxide in arterial blood (PaCO2) has an important
regulatory influence on cerebral blood flow; alveolar
minute ventilation regulates PaCO2 and control of it may
have survival benefit. In addition, ventilation plays a ma-
jor role in acid-base homeostasis, impacting numerous
cellular and subcellular processes. Arterial oxygenation
is a major determinant of oxygen delivery, and assur-
ing normoxemia may have a survival benefit. Oxygen
is, however, a major source of reactive oxygen species
(ROS) excessive amounts of which could be harmful.54

In this section, the importance of ventilation (PA06) and
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oxygenation (PA08) strategies in the PCA period is ex-
amined.

Ventilation in the PCA period (PA06)

PICO Question

In dogs and cats with ROSC after cardiac arrest (P), does
normocapnia (± via positive pressure ventilation [PPV])
(I), compared to hyper- or hypocapnia (C), result in im-
proved outcome (O) (survival to discharge and neuro-
logic function)?

Conclusion

There are few studies investigating the effect of carbon
dioxide manipulation post-ROSC and the available evi-
dence does not support or refute the benefit of normo-,
hypo-, or hypercapnia after ROSC.

Summary of the evidence

Two studies suggest a potential benefit of hypocapnia
after ROSC. One study in an experimental cat VF car-
diac arrest model (LOE 3, fair/opposing) improvements
in cerebrovascular CO2 responsiveness and decreased
intracranial pressures were reported after 3 hours of
hyperventilation (PaCO2 of 15–20 mm Hg) compared
to normoventilation (40–45 mm Hg); however, EEGs
and cerebral blood flow were not different between the
groups and neurological function was not examined.55

In a dog study of prolonged cardiac arrest (LOE 3,
poor/opposing), histopathological neuronal damage af-
ter ROSC was reduced by maintaining PaCO2 of 15–20
mm Hg compared to normocapnia.56

One study in dogs (LOE 3, poor/supporting) and
one in humans (LOE 6, fair/supporting) support nor-
mocapnia to improve CNS blood flow, neurologic func-
tion, and histopathological neuronal damage; how-
ever, these studies included multiple simultaneous
interventions.18, 49

The incidence of mortality in patients undergoing PPV
after CPA has been described in a human study (LOE 6,
poor/neutral)57 and in a retrospective study in cats (LOE
4, poor/neutral), although the design of these studies
does not allow any conclusion regarding the effect of PPV
on outcomes.58 These studies evaluated a population of
ventilated patients of which a subgroup was PCA. In the
human study, 1.9% of 15,757 cases had been resuscitated
from CPA and had a statistically significant increased
risk of ICU mortality (odds ratio of 1.45) compared to
the overall population. In the feline study, 1 of 9 cats that
were ventilated after CPA survived to hospital discharge.

Knowledge gaps

Additional studies are needed to determine if manipu-
lation of carbon dioxide concentrations has therapeutic
value in dogs and cats in the PCA period.

Oxygen supplementation post-ROSC (PA08)

PICO Question

In dogs and cats with ROSC after cardiac arrest (P), does
the administration of 100% oxygen (I), compared to titra-
tion to normoxia (eg to SpO2 > 94%) (C), result in im-
proved outcome (O) (survival to discharge or neurologic
function)?

Conclusion

There is, in both quantity and quality, good evi-
dence to advocate normoxia/normoxemia versus hyper-
oxia/hypoxemia in the early PCA period.

Summary of the evidence

In a small clinical study including 28 people suc-
cessfully resuscitated from OHCA and randomized to
hyperoxia versus normoxia early post-ROSC (LOE 6,
fair/supporting), significantly higher levels of neurospe-
cific enolase, a marker of neuronal injury, were found
in subjects treated with 100% oxygen.59 In an experi-
mental swine study (LOE 6, fair/supportive), animals
resuscitated with bypass and controlled, slow reoxy-
genation from hypoxia to normoxia versus immedi-
ate normoxia showed lower weaning rates off bypass,
but had lower concentrations of ROS in coronary sinus
blood.60 A study in rats (LOE 6, good/neutral), in which
normoxia during and after CPR was compared with hy-
peroxia showed no effect of treatment group on neuronal
cell death, survival, and neurologic outcome.61 Zwemer
et al conducted a study in a canine CPA model (LOE 3,
good/neutral) in which two different levels of hypoxic
resuscitation were compared with normoxia.62 Hypoxia
resulted in worse neurologic function and lower over-
all survival rate, while plasma ROS concentrations were
elevated in all groups to a similar degree. Overall this
study indicated that normoxic reperfusion is preferable
over a hypoxic strategy.

Several experimental studies of good quality in dogs
(LOE 3, good/supporting) provide strong evidence in
support of a normoxic strategy during or soon after
reperfusion compared to a hyperoxic approach.63–69 In
addition, the findings in four clinical studies in people
(LOE 6, good/supporting or neutral) suggest the superi-
ority of normoxic over hyperoxic reperfusion.70–73 These
studies collectively were comprehensive with respect to
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examining endpoints, making for a strong argument for
normoxia even in the absence of LOE 1 or 2 studies.

Knowledge gaps

Clinical canine and feline trials are needed to strengthen
the conclusion that hyperoxemia during the PCA period
is harmful. Surrogate outcome measures, such as ROS
determination, would be acceptable metrics for such
studies.

Hypothermia after Cardiac Arrest

MTH, the lowering of the patient’s core temperature to
32–34◦C, is widely used in human patients that remain
comatose after ROSC. The widespread clinical applica-
tion of MTH is in response to the successful use of postar-
rest therapeutic hypothermia in two landmark trials.25, 74

Two PICO questions (PA10 and PA11) were evaluated to
examine the evidence for temperature management in
the post-ROSC period in dogs and cats.

Use of hypothermia after cardiac arrest (PA11)

PICO Question

In dogs and cats that remain comatose after resuscita-
tion from cardiac arrest (P), does a specific onset, level,
and duration of therapeutic hypothermia (I), compared
to normothermia (C), improve outcome (O) (neurologic
intact survival)?

Conclusion

The preponderance of evidence from clinical human and
experimental canine studies suggest a beneficial effect
on neurologic intact survival of mild hypothermia (core
temperature of 33 ± 1◦C) instituted as soon as possible
and maintained for >12 hours.

Summary of the evidence

There are a large number of experimental canine stud-
ies examining the benefit of therapeutic hypothermia
for disorders other than cardiac arrest care, but these
were not used to address this PICO question. Two
studies in a canine VF CPA model (LOE 3, good and
fair/supporting),75, 76 a study in a rodent asphyxial CPA
model (LOE 6, good/supporting),77 and several human
studies (LOE 6, good/supporting)25, 74, 78–82 were evalu-
ated, as they most closely resembled the population in
question. All of these studies were in support of the inter-
vention with the one dog75 and rat77 studies considered
to be good evidence. Only one retrospective study in hu-
mans (LOE 6, fair/neutral) showed no benefit or harm

of MTH in subjects in which the first identified rhythm
was asystole or PEA.83

Knowledge gaps

Studies addressing the clinical application of MTH in
veterinary patients are needed. The safety, practicality,
and efficacy of methods of reaching and maintaining
target temperatures should be evaluated, allowing for
the validation of the onset, level, and duration of optimal
hypothermia in dogs and cats.

Rewarming rate after cardiac arrest (PA10)

PICO Question

In dogs and cats with ROSC after cardiac arrest (P), does
rewarming at a certain rate (◦C/hour) (I), compared to
fast rewarming to normal temperature (C), improve out-
come (O) (neurologic intact survival)?

Conclusion

Although the evidence is lacking with respect to spe-
cific rates of rewarming after accidental or therapeutic
hypothermia, slower rewarming rates appear preferred
over faster ones in a number of related populations and
evaluated endpoints.

Summary of the evidence

While there were no studies in dogs during the PCA pe-
riod comparing rates of rewarming, the findings of three
experimental studies (LOE 3, good/supporting)84–86 and
one dog case report (LOE 5, poor/supporting)87 suggest
slow rewarming is indicated. Additionally, studies on re-
warming in rats (LOE 6, good/fair/supporting) provide
evidence for the benefit of a slow rewarming rate.88, 89

Findings in experimental models in dogs (LOE 3, good
to fair/neutral)49,90–101 and other species (LOE 6, good to
poor/neutral)102–104 did not provide evidence of a treat-
ment benefit of slow versus fast rewarming; however,
no studies were found that documented harm associated
with a slow rewarming rate.

Knowledge gaps

Studies directly comparing rewarming rates post-ROSC
are lacking, and these techniques need to be evaluated
in dogs and cats.
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Neuroprotective, Metabolic, and Supportive Strate-
gies

A number of additional supportive strategies have been
employed in an attempt to improve outcomes in PCA, in-
cluding corticosteroids, anticonvulsants, mannitol, and
various metabolic protectants. Additionally, in this re-
view, bundled (combination) therapies and the issue of
specialty care facilities were evaluated.

Corticosteroid use after ROSC (PA13)
In 1964, R.C. Lillehei published a manuscript that
demonstrated improved outcome in hypovolemic and
cardiogenic shock with corticosteroid treatment.105 Early
veterinary106 and human clinical trials107, 108 reported im-
proved survival in sepsis and septic shock; however,
subsequent clinical trials failed to substantiate those
findings.109–112 Given the uncertain role of steroids in
the management of global ischemic diseases, their use in
the PCA period was investigated.

A more focused use of corticosteroids has been de-
scribed for relative adrenal insufficiency. In 1991, Roth-
well reported that patients with adrenal insufficiency
and septic shock faired very poorly.113 Relative adrenal
insufficiency has been identified in PCA patients114

and has been associated with poor outcomes.115 Early
studies116–119 suggested that low-dose corticosteroid
treatment (hydrocortisone) allowed withdrawal of pres-
sors and improved survival from sepsis and hospital dis-
charge rates, but this was not demonstrated in the latest
study.120

PICO Question

In dogs and cats with ROSC after cardiac arrest (P), does
the administration of corticosteroids (I), compared to
standard care (C), result in improved outcome (O) (sur-
vival to discharge, neurologic outcome)?

Conclusion

There is insufficient evidence to answer the question, and
specific recommendations relative to the administration
of corticosteroid post-ROSC cannot be made based on
the available information.

Summary of the evidence

A comprehensive review of the literature found no clin-
ical studies in dogs or cats that were relevant to the
question. One prospective canine laboratory study (LOE
3, poor/neutral) reported that a group that received
methylprednisolone (130 mg/kg) had better neurologic,
overall performance, and brain histopathologic injury

scores than did other groups not receiving methylpred-
nisolone, but this group concurrently received thiopental
(30 mg/kg) and phenytoin (15 mg/kg), and so the ben-
eficial effects could not be attributed specifically to the
methylprednisolone.121

In a prospective rat study (LOE 6, fair/neutral),
comparing preasphyxial cardiac arrest placebo and
methylprednisolone, and PCA placebo and methylpred-
nisolone, only the PCA methylprednisolone group ex-
hibited return of EEG activity 20 minutes post-ROSC
and required no norepinephrine for blood pressure
support. Although the mean cytosolic and lysosomal
enzyme levels were lower in the postarrest methylpred-
nisolone group compared to the other groups, the differ-
ences did not reach statistical significance.122 Since this
was a nonsurvival study, it does not directly address the
outcome measures of this PICO question.

Two cohort, retrospective, human clinical studies
(LOE 6, fair/neutral) reported no beneficial effects of
corticosteroid treatment.123, 124 A prospective, human
clinical study (LOE 6, good/neutral) reported that va-
sopressin and methylprednisolone treatment was asso-
ciated with a significant improvement in ROSC; how-
ever, there was a trend towards a higher incidence of
PCA shock (defined as the need for increased vasopres-
sor/inotropic support) in the treatment group.125 This
study is confounded by the concurrent use of vaso-
pressin. In patients experiencing PCA shock, low-dose
hydrocortisone infusion resulted in improved hemody-
namics and central venous oxygen saturation, more or-
gan failure – free days, and improved survival to hos-
pital discharge. While this study exhibits confounding
issues relative to the question, it suggests that corticos-
teroids, as part of a bundled approach, during resuscita-
tion may improve ROSC and low-dose hydrocortisone
therapy post-ROSC may improve survival.

Knowledge gaps

There are no clinical studies in dogs and cats. The stud-
ies that are available, relevant to the question, are con-
founded by concurrent drug therapy, variable dosing,
and variation in the types of corticosteroids adminis-
tered such that it is not possible to ascertain whether
corticosteroids alone made for significant improvement
in patient outcome. Future studies should address the
question directly and criteria that identify patients who
might be benefited or harmed by corticosteroid therapy
should be developed and validated.

Seizure prophylaxis post-ROSC (PA14)
In humans, seizures and myoclonus occur in 5–15% of
adult patients in the PCA period and in 40% of patients
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who remain comatose after ROSC.5 In people, postanoxic
myoclonus status epilepticus was associated with poor
neurologic outcome.126

PICO Question

In dogs and cats with ROSC (P), does seizure prophy-
laxis (I), compared to standard care (C), result in im-
proved outcome (O) (decreased seizure activity, survival
to discharge, neurologic function)?

Conclusion

There are no clinical studies in animals that document
the incidence of seizures post-ROSC. The effects of an-
ticonvulsants in experimental models of interest are in-
consistent, while use in humans has not demonstrated
long-term benefit.

Summary of the evidence

There are two prospective, clinical studies in human
adults. Thiopental administration to PCA comatose peo-
ple (LOE 6, good/neutral) was associated with reduced
seizure activity, reduced intracranial pressure and edema
formation, reduced brain metabolism, and focal brain
damage, but failed to significantly improve 1-year neu-
rologic outcome.127 The administration of magnesium
and/or diazepam (LOE 6, good/neutral) did not change
neurologic function in PCA, normotensive, comatose
people.128 The incidence of, or reduction in, seizure ac-
tivity was not evaluated.

A therapeutic approach (LOE 6, fair/supporting) that
bundled control and prevention of seizures with other
interventions (therapeutic hypothermia, percutaneous
coronary intervention [PCI], control of hemodynamics,
blood glucose, and ventilation) was associated with im-
proved discharge rate from the hospital, neurologic out-
come, and 1-year survival.18

In severe perinatal asphyxia in children (LOE
6, good/supporting), treatment with phenobarbital
(40 mg/kg) was associated with a 27% reduction in
the incidence of seizures and a significant improve-
ment in neurologic outcome at 3 years of age.129 In
contrast, thiopental (30 mg/kg) in another study of peri-
natal asphyxia (LOE 6, good/opposing) was not associ-
ated with neurologic benefit, but caused significant ar-
terial hypotension.130 In a feline experimental VF CPA
model (LOE 3; good/supporting), thiopental adminis-
tration (60 mg/kg) significantly reduced the incidence of
repetitive, rhythmic bursts of high-frequency electroen-
cephalographic (EEG) activity and improved survival
rates.131 However, among survivors, there was no bene-
fit on neurologic function (neutral).

A bundled therapeutic approach that included
seizure prophylaxis (thiopental, phenytoin, methyl-
prednisolone) in an experimental canine cardiac ar-
rest model (LOE 3; fair/supporting) was associated
with improved neurologic and overall performance and
brain histopathologic damage scores compared to other
groups.121

Knowledge gaps

The frequency of post-ROSC seizures in dogs and cats
needs to be established, as does the efficacy of seizure
prophylaxis.

Mannitol and hypertonic saline after cardiac arrest
(PA15)
Cerebral edema after cardiac arrest has been described
in people, and its occurrence appears to be correlated
with poor outcome.132, 133 Cerebral edema may occur
with or without intracranial hypertension.132 Both man-
nitol and HS have been recommended in dogs and cats
if cerebral edema or elevated intracranial hypertension
are suspected.134, 135

PICO Question

In dogs and cats with ROSC after cardiac arrest (P), does
the administration of mannitol or HS (I), compared to
standard care (C), result in improved outcome (O) (sur-
vival to discharge; neurologic function)?

Conclusion

No controlled clinical or experimental trials in any
species were identified on the use of mannitol after CPR.
A prospective observational veterinary study detected
an association between mannitol administration and im-
proved outcome, when the drug was given during CPR.
No specific recommendation can be made for or against
the routine use of either mannitol or HS after cardiac
arrest.

Summary of the evidence

A retrospective veterinary study (LOE 4, fair/neutral)
mentions mannitol use during CPR in dogs and cats;
however, its effect on outcome was not reported.4

A prospective observational veterinary study (LOE
2, poor/neutral) reported that intra-arrest mannitol
administration was associated with improved sur-
vival; however, the study was not designed to deter-
mine a causal relationship.3 HS was reported to im-
prove myocardial blood flow and myocardial perfusion
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pressure (LOE 6, poor/supporting)136, 137 and to increase
cerebral blood flow (LOE 6, poor/supporting)138 in a
porcine cardiac arrest model. A single small pilot study
in people suggested that the combination of HS and
hydroxyethyl starch may improve short-term survival
(LOE 6, poor/supporting),139 but this was not confirmed
in a subsequent randomized controlled trial (LOE 6,
good/neutral).136 One study in a porcine CPA model
reported that HS administration attenuated myocardial
and cerebral damage (LOE 6, fair/supporting).32

Knowledge gaps

Clinical experience in individual patients suggests that
mannitol can be efficacious in the management of de-
teriorating neurologic status. There have been no con-
trolled clinical or experimental trials in any species re-
garding the efficacy of mannitol after CPR. There are also
no prospective clinical studies in dogs and cats regard-
ing HS; however, experimental evidence in other species
suggests a benefit.

Metabolic protection and post-ROSC (PA17)
Survival or death (apoptosis or necrosis) of the organelle,
organ, and individual, depends upon the balance be-
tween energy production and utilization within individ-
ual, and among all, mitochondria. If ATP depletion is
mild, cells and organelles are capable of a full recov-
ery once spontaneous circulation has been restored. Pro-
gressively more severe magnitudes of ischemia result in
mitochondrial apoptosis or necrosis.

Cells and mitochondria are adversely affected by
the hypoxia of the CPA and subsequently by reperfu-
sion injury. During the period of hypoxia, mitochondria
sequester large amounts of calcium, activating the mi-
tochondrial permeability transition pore (mPTP). Acti-
vation of the mPTP occurs early after reperfusion; how-
ever, its activation during ischemia is inhibited by the
acidosis present during CPA. An intact and imperme-
able inner mitochondrial membrane is vital to regulation
of the accumulation of hydrogen ions in the intermem-
brane space (generated by the electron transport chain).
It is this hydrogen and electrical gradient that drives
the ATP synthase (complex V) phosphorylation of ADP
to ATP. Activation of the mPTP leads to increases in
ROS. These highly unstable oxygen and nitrogen radi-
cals cause lipoperoxidation of all organelle and cell mem-
branes, cause DNA strand breakage, and also activate the
mPTP.

DNA damage activates poly-ADP-ribose polymerase
(PARP), a family of DNA repair enzymes. While it is
important to repair damaged DNA, these enzymes con-
sume a considerable amount of energy at a time when

energy production is severely compromised by mito-
chondrial dysfunction. The goal of metabolic therapeutic
strategies is to reduce some or all of the above described
injurious processes that occur during the reperfusion
process from prolonged CPA.

PICO Question

In dogs and cats with ROSC after cardiac arrest (P), does
the use of metabolic protectants (ethyl pyruvate, PARP
inhibitors, mitochondrial protectants, antioxidants (I), as
opposed to standard care (C), improve outcome (O)?

Conclusion

There are no clinical studies in dogs and cats relative
to this PICO question. Experimental studies in dogs,
cats, piglets, and rodents are short term survival studies,
and therapy is often administered before ROSC. Studies
did not address long-term survival in any manner that
would equate to “hospital discharge.” A heterogeneous
group of therapeutic strategies were studied and no sin-
gle mechanistic target or drug has risen to the top for
serious consideration for clinical trials. There have been
no clinical studies of metabolic protectants in humans.
The evidence, to date, can only be described as sugges-
tive and promising.

Summary of the evidence

Inhibition of the Na+/H+ counter exchanger and of
membrane sodium channels has been reported to re-
duce intracellular and mitochondrial calcium overload
(LOE 6, good/neutral),140 to diminish myocardial (LOE
6, good/supporting)141, 142 and neuronal damage, and
to improve myocardial (LOE 6, good/supporting),141–143

(LOE 6, good/neutral)140 and neuronal function, sec-
ondary to ischemia-reperfusion, and to improve ROSC
(LOE 6, good/supporting).143 The proposed mechanism
of benefit of limiting intracellular sodium accumulation
is via limiting intracellular calcium accumulation. In this
regard, inhibition of the release of the neurotransmitter
glutamate (LOE 6, fair/neutral)144, 145 or inhibition of the
neuronal glutamate receptor145, 146 was also shown to di-
minish secondary neuronal degeneration after traumatic
brain injury or ischemia-reperfusion injury in some but
not all (LOE 3, fair/neutral)147 studies. There were few
studies that evaluated calcium channel blockers PCA145;
one (LOE 6, poor/neutral)148 reported reduced neuronal
degeneration.

There have been several different antioxidants, ad-
ministered during or after resuscitation, which have
been evaluated for their PCA efficacy: alpha-phenyl-
tert-butyl-nitrone (PBN) (LOE 6, good/supporting);149
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nitrite (LOE 6, good/supporting;150 21-aminosteroids
(LOE 3, fair/supporting);69, 151 methylene blue (LOE 3,
fair/neutral).152 In general, antioxidants are associated
with reduced markers of oxidative damage (PBN, Ni-
trite) (LOE 6, good/supporting), improved mitochon-
drial function (PBN, Nitrite) (LOE 6, good/supporting),
improved cardiovascular function (PBN, Nitrite) (LOE
6, good/supporting), reduced neurologic damage (PBN,
Nitrite, [LOE 6, good/supporting] 21-aminosteroids,
[LOE 3, fair/supporting] methylene blue, [LOE 3,
fair/neutral]), and improved survival (PBN, Nitrite,
[LOE 6, good/supporting], 21-aminosteroids [LOE 3,
fair/supporting]). Some antioxidant therapies did not
provide demonstrable post-CPR outcome benefit (N-
acetylcysteine, [LOE 3, fair/neutral],153 superoxide dis-
mutase/catalase [LOE 3, fair/neutral].154)

Therapies that block the mPTP, such as hydrogen
sulfide155 and cyclosporine A,156 were reported to im-
prove survival and neurologic, and myocardial function
(LOE 6, good/supporting).157 A study that combined
the free radical scavenger PBN and the mPTP blocker cy-
closporine (LOE 6, good/supporting)158 resulted in more
rapid ROSC and improved 24-hour neurological scores
in a piglet model of cardiac arrest. The search found no
relevant articles regarding the inhibition of PARP en-
zymes PCA.

A few studies have evaluated preservation of mito-
chondrial function by providing metabolic substrates
such as adenosine159 or pyruvate.160 These therapies gen-
erally were reported to improve survival (adenosine)
(LOE 6, fair/neutral)159, to enhance myocardial func-
tion (pyruvate) (LOE 3, fair/neutral),160 and to decrease
neurological injury (adenosine) (LOE 6, fair/neutral).159

One study of ethyl pyruvate reported no benefit (LOE 6,
fair/neutral).161

Knowledge gaps

There is a need to identify whether one or multiple in-
terventions effectively interfere with the cellular and mi-
tochondrial pathologies that lead to organ dysfunction
following cardiac arrest. Subsequent clinical trials will be
required to determine if these promising intervention(s)
are effective and safe in the treatment of complex clinical
disease following cardiac arrest.

Bundled therapy post-ROSC (PA19)
It is challenging to ascertain outcome benefit of a sin-
gle intervention in a complex disease state with a low
incidence of survival. Studies are criticized when they
incorporate multiple interventions, even if the treatment
is demonstrated to be efficacious, because it is unclear
which component of the combination therapy provided

the benefit. And yet it may well be that individual treat-
ments are ineffective in treating complex disease and
that, in fact, complex (bundled) therapy may be neces-
sary. In addition, there is no standard definition of what
comprises “a comprehensive care protocol” and how it
is different from “standard care” and it is in the context
of this amorphous background that we ask this PICO
question.

PICO Question

In dogs and cats with ROSC after cardiac arrest (P), does
the use of a comprehensive treatment protocol (I), as
opposed to standard care (C), improve outcome (eg, sur-
vival) (O)?

Conclusion

There are no clinical studies that evaluate this PICO
question. Laboratory studies suggest that hypothermia,
hypertension, and normocapnia (compared to normo-
thermia, normotension, and hypocapnia) improve
neurologic outcome in the PCA period, as described pre-
viously in this review. Hemodilution may or may not
contribute to these beneficial effects. Combination thera-
pies such as thiopental, methylprednisolone, and pheny-
toin, and perhaps antioxidants, may enhance neurologic
recovery from cardiac arrest.

Summary of the evidence

Mild therapeutic hypothermia (34.2◦C compared to
37.6◦C), hemodilution (PCV 31% versus 41%), and
normocapnia (36 mm Hg versus 30 mm Hg) were
associated with significantly better overall perfor-
mance, reduced neurologic deficit, and histopatho-
logic damage scores 96 hours after ROSC in a ca-
nine CPA model (LOE 3, good/supporting).162 In a
previous study from the same laboratory (LOE 3,
fair/supporting) norepinephrine-induced hypertension
(initially MAP > 200 mm Hg with a sustained MAP
> 140 mm Hg compared with a MAP of 100 mm
Hg) significantly improved neurologic performance;
hypervolemic hemodilution did not further improve
outcome.47 In a follow-up study (LOE 3, fair/neutral),
hypothermia was again demonstrated to improve neu-
rologic outcome. Neurologic outcome was further im-
proved with the addition of thiopental and thiopen-
tal/methylprednisolone/phenytoin, although only a
few of the improvements were significant.121 In another
follow-up study (LOE 3, fair/neutral), the overall per-
formance score, but not the histopathologic damage
score nor markers of oxidative damage, were improved
with the antioxidant Tempol.163 Canine patients in one
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veterinary study (LOE 2, poor/supporting) were more
likely to survive if they were treated with mannitol, lido-
caine, fluids, dopamine, corticosteroids, or vasopressin.3

A relevant human study (LOE 6, fair/supporting)
demonstrated a strong trend toward a treatment
benefit of hemodynamic optimization in addition
to hypothermia.17 Several human studies (LOE 6,
fair/supporting) demonstrated that failure to adhere to
resuscitation guidelines resulted in a significant decrease
in survival metrics.83, 164,165

Knowledge gaps

With regard to this PICO question, there is no established
comprehensive PCA treatment protocol that has been
shown to be superior. Studies combining interventions
believed to be beneficial (followed by those thought but
not proven to be effective) to search for additive and
even synergistic treatment effects are needed.

Specialty centers and post-ROSC care (PA20)
There is some evidence that intensivist-led human
ICUs have better outcomes (Silverman et al., 2011),
and although cardiac arrest outcomes in a pediatric
intensive care unit were improved with more ex-
perience of the primary care nurse, outcomes were
not statistically improved by the presence of the se-
nior intensive care unit attending physician (Gaies
MG, 2011). With regard to PCA care, the special-
ist should be adept at cardiopulmonary-cerebral-renal-
fluid/electrolyte-metabolic care, in other words, an in-
tensivist. Although perhaps implied, a “specialty center”
does not necessary equate to having the services of an
intensivist (as indeed, many veterinary hospitals in the
United States with this designation do not).

PICO Question

In dogs and cats with ROSC after cardiac arrest (P), does
post-CPR care in a specialty center (I), compared to post-
CPR care in a nonspecialty center (C), provide better out-
comes (O) (eg, survival rates or neurologic outcomes)?

Conclusion

While transfer of post-ROSC patients to a specialty cen-
ter for care seems quite reasonable, there are no clinical
veterinary studies that specifically address this question.
The only veterinary study even remotely relevant to this
PICO question reported that dogs that survived were
more likely to have been treated with multiple drugs
and with more people involved.3 Human studies sug-
gest that PCA patients may have better outcomes when

treated in specialty facilities with more PCA treatment
experience.

Summary of the evidence

The only veterinary study even remotely relevant to this
PICO question (LOE 2, poor/neutral) reported that dogs
that survived were more likely to have been treated with
mannitol, lidocaine, fluids, dopamine, corticosteroids, or
vasopressin and that cats were more likely to survive if
they had more people participate in the resuscitation
efforts.3 Several human studies of in-hospital (LOE 6,
good/supporting),166 (LOE 6 fair/supporting)23, 167 and
OHCA (LOE 6, fair/supporting)168, 169 that were success-
fully resuscitated suggest that centers with more experi-
ence in post-ROSC care and higher care-giver-to-patient
ratio are associated with higher survival rates.

Knowledge gaps

There are no clinical veterinary studies addressing
whether referral to a specialty center has outcome
benefit.

Discussion

There is a large discrepancy between the number of an-
imals in which ROSC is achieved and the number of
animals that are ultimately discharged from the hospi-
tal, suggesting that improved PCA therapeutic strategies
may improve outcomes.3, 4 Such a conclusion must, how-
ever, be tempered by the fact that many cardiac arrests
are associated with a lethal underlying disease processes.

Beyond post hoc analyses of case series, there are no
veterinary clinical studies evaluating post-ROSC inter-
ventions in the dog and cat. There are relatively few
experimental (LOE 3) studies in dogs and cats, and few
experimental studies in other species such as rats and
swine (LOE 6). Taken in total with the modest number of
clinical studies in people (LOE 6), these studies provide
evidence that can be used to support some veterinary
recommendations at this time. They include:

Hypoxemia and hyperoxemia should be avoided; nor-
moxemia is the goal. Mild hypothermia has a positive ef-
fect on outcome, but there is no evidence that suggests a
specific rewarming rate beyond the notion that rewarm-
ing should occur slowly (e.g., less than 1◦C/hour).

Although there is no evidence that corticosteroids ad-
ministered during resuscitation have a survival advan-
tage, there is some suggestion that a relative adrenal in-
sufficiency syndrome exists post-ROSC (in people) and
that in such patients corticosteroid replacement therapy
may improve survival.
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Perhaps surprisingly, there is no consensus on car-
bon dioxide management in the postresuscitation pe-
riod. Some studies support maintenance of normocapnia
while others support hypocapnia. Hypercapnia should
be avoided.

Although intuitively advantageous and somewhat
supported by research in people, there is no clear evi-
dence that hemodynamic optimization has survival ben-
efit in dogs and cats. Also lacking is a definition of
“hemodynamic optimization.” It will be difficult to de-
sign and interpret such studies without a clear target.
Clearly, the issue must be more precisely defined than
“fluids versus no fluids” or “crystalloids versus col-
loids.” Blood pressure might be a starting point for
hemodynamic optimization; studies suggest that hy-
potension and severe hypertension are associated with
worse outcomes and that normal to high-normal blood
pressures may be associated with better outcomes. But
even this conclusion is problematic because the defini-
tion of hypo-, versus normo-, versus hypertension varied
among the studies. And perhaps this concept is misdi-
rected because “appropriate” blood pressure must be
related to intracranial pressure, since cerebral perfusion
pressure (the difference between mean arterial pressure
and intracranial pressure) is the primary determinant of
cerebral perfusion. Studies that evaluate blood pressure
without regard to such relationships may be doomed to
show “no significant difference.” Without this founda-
tion, we are not even close to determining if one drug is
superior to another for blood pressure support or hemo-
dynamic optimization.

There is no evidence that prophylactic antiseizure
therapy is efficacious in dogs and cats, nor has it even
been established that PCA seizures are a problem in
these species. There are no experimental or clinical stud-
ies in any species that evaluate survival benefit of any
metabolic protectant.

Most of this review has focused on the efficacy of sin-
gle interventions. It may well be that single interventions
are not strong enough to overpower the ravages of a
CPA. Therefore, the question of bundled therapy, a shot-
gun approach to many of the suspected problems, may
be what is needed. From a mechanistic point of view, it
is convenient to demonstrate the efficacy of single thera-
pies, but from a patient point of view, survival with good
neurologic function is the only thing that is important.
Intuitively, a bundled, comprehensive resuscitation plan
should have outcome benefit but there is little evidence
to define what that should be.

The last question we asked was whether referral to a
specialty center would result in better outcomes in PCA
patients, and again found minimal literature to support a
recommendation. Experimental animal studies and clin-
ical human trials do suggest that more intensive, goal-

directed therapy has survival benefit, but no studies eval-
uate who might be better at providing that care.

This investigation has identified what we know and
do not know about caring for patients who have suf-
fered a CPA and ROSC. The paucity of information cre-
ates great opportunity for clinical research. Hypothesis-
testing clinical CPR studies in veterinary medicine will
be challenging to accomplish given the small numbers of
animals with which we deal. Studies are perhaps doable
if the objectives are clearly and ethically defined, and
cooperative efforts can be organized.
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103. Silfvast T, Pettilä V. Outcome from severe accidental hypother-
mia in Southern Finland – a 10-year review. Resuscitation 2003;
59(3):285–290.

104. Tortorici MA, Mu Y, Kochanek PM, et al. Moderate hypothermia
prevents cardiac arrest-mediated suppression of drug metabolism
and induction of interleukin-6 in rats. Crit Care Med 2009;
37(1):263–269.

105. Lillehei RC, Longerbeam JK, Bloch JH, et al. The nature of irre-
versible shock: experimental and clinical observations. Ann Surg
1964; 160682–160710.

106. Wilson GL, White GS, Kosanke SD. Therapeutic effects of pred-
nisolone sodium succinate vs dexamethasone in dogs subjected to
E. coli septic shock. J Am Anim Hosp Assoc 1982; 18:639–648.

107. Schumer W. Steroids in the treatment of clinical septic shock. Ann
Surg 1976; 184(3):333–341.

108. Hoffman SL, Punjabi NH, Kumala S, et al. Reduction of mortal-
ity in chloramphenicol-treated severe typhoid fever by high-dose
dexamethasone. N Engl J Med 1984; 310(2):82–88.

109. Effect of high-dose glucocorticoid therapy on mortality in patients
with clinical signs of systemic sepsis. The Veterans Administration
Systemic Sepsis Cooperative Study Group. N Engl J Med. 1987;
317(11):659–665.

110. Lucas CE, Ledgerwood AM. The cardiopulmonary response to
massive doses of steroids in patients with septic shock. Arch Surg
1984; 119(5):537–541.

111. Bone RC, Fisher CJ, Clemmer TP, et al. A controlled clinical trial
of high-dose methylprednisolone in the treatment of severe sepsis
and septic shock. N Engl J Med 1987; 317(11):653–658.

112. Luce JM, Montgomery AB, Marks JD, et al. Ineffectiveness of high-
dose methylprednisolone in preventing parenchymal lung injury

and improving mortality in patients with septic shock. Am Rev
Respir Dis 1988; 138(1):62–68.

113. Rothwell PM, Udwadia ZF, Lawler PG. Cortisol response to corti-
cotropin and survival in septic shock. Lancet 1991; 337(8741):582–
583.

114. Miller JB, Donnino MW, Rogan M, et al. Relative adrenal insuffi-
ciency in postcardiac arrest shock is under-recognized. Resuscita-
tion 2008; 76(2):221–225.

115. Pene F, Hyvernat H, Mallet V, et al. Prognostic value of relative
adrenal insufficiency after out-of-hospital cardiac arrest. Intensive
Care Med 2005; 31(5):627–633.

116. Briegel J, Kellermann W, Forst H, et al. Low-dose hydrocorti-
sone infusion attenuates the systemic inflammatory response syn-
drome. The Phospholipase A2 Study Group. Clin Investig 1994;
72(10):782–787.

117. Briegel J, Forst H, Haller M, et al. Stress doses of hydrocortisone
reverse hyperdynamic septic shock: a prospective, randomized,
double-blind, single-center study. Crit Care Med 1999; 27(4):723–
732.

118. Bollaert PE, Charpentier C, Levy B, et al. Reversal of late septic
shock with supraphysiologic doses of hydrocortisone. Crit Care
Med 1998; 26(4):645–650.
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