Endothelial Glycocalyx

April Summers 11/13/18

- Complex gel between flowing blood and endothelial cell wall
- Interacts with plasma proteins and lipids
- Composition and dimensions fluctuate
 - Continuously replaces material sheared by plasma
 - Thickness varies from 0.1um and 1um

- Made of glycoproteins and proteoglycans
- Proteoglycans
 - Have a protein core
 - Attached: Negatively charged glycosaminoglycan (GAG) side chains
 - Some core proteins are firmly bound
 - Membrane spanning domain (syndecans)
 - Phosphatidylinositol anchor (glypicans)
 - Other core proteins are secreted after attachment of GAG sidechains
 - Perlecans
 - Versicans
 - Decorins
 - Biglycans
 - Mimecans

- Five types of GAG side chains
 - Heparan sulfate makes up 50-90%
 - Chondroiton
 - dermatan
 - keratin sulfates
 - Hyaluronic acid: only GAG not usually bound to a protein core and forms viscous solutions with water

- Glycocalyx forms a luminal mesh that provides endothelial cells with a framework to bind plasma proteins and soluble GAGs
- Glycocalyx is inactive but once plasma constituents are bound, it forms a physiologically active endothelial surface layer

Glycoproteins act as adhesion molecules and contribute to coagulation, fibrinolytic and hemostatic systems

- Cell adhesion molecules are divided into
 - Selectins (E and P)
 - Integrins
 - Immunoglobulins
- Histamine and thrombin stimulate P-selectin
- IL-1, TNFalpha, and LPS stimulate E-selectins
- Integrins bind to collagen, fibronectin, and laminin
- Immunoglobulins include ICAM1/2, VCAM, PECAM-1

Glycocalyx

- Net negative charge
 - Dependent on GAG side chain sulphation
 - Changes in sulphation patterns affect protein binding and vascular permeability
- Charged mesh acts as a macromolecular sieve
 - Repelling negatively charged molecules, white and red blood cells and platelets
 - Macromolecules >70kDa are excluded from the glycocalyx
 - Albumin is 67kDa and has a negative charge, but binds tightly to the glycocalyx due to its amphoteric nature
 - Binding reduced the hydraulic conductivity across the vascular barrier
 - Some albumin leaks through

Physiology of the endothelial surface layer

- Starlings forces- oncotic and hydrostatic pressures
 - Reduction in fluid extravasation by the glycocalyx
 - Three key components revised
 - Venous reabsorption
 - Rate of capillary filtration
 - Opposition to capillary filtration
 - Lymphatic flow is much less than capillary filtration rate calculated by Starling
 - Capillary filtration and reabsorption are less than originally thought
 - Why is capillary filtration so much less?
 - Colloid Osmotic Pressure

 Oncotic forces are only set up across the endothelial surface layer on the luminal aspect of the endothelial cell, not across the whole capillary wall

Figure 1 The Starling principle. Jv/A, volume filtered per unit area; Lp, hydraulic conductance; P_o capillary hydrostatic pressure; P_{is}, interstitial hydrostatic pressure; σ , osmotic reflection co-efficient; π_c , capillary oncotic pressure; π_{is} , interstitial oncotic pressure [15].

 $Jv/A = Lp [(Pc - P_{is}) - \sigma (\pi_p - \pi_{sg})]$

Figure 2 The revised Starling principle. Jv/A, volume filtered per unit area; Lp, hydraulic conductance; P_c, capillary hydrostatic pressure; P_{is}, interstitial hydrostatic pressure; σ , osmotic reflection co-efficient; π_p , oncotic pressure on plasma-side of endothelial surface layer; π_{sp} , oncotic pressure in subglycocalyx space [15].

Glycocalyx Model

- Fluid filtration is regulated at the point at which it begins within the capillary lumen by the endothelial surface layer
- Glycocalyx repels red blood cells
- Attenuates the interaction of platelets and leukocytes
 - Negative charge repels the cells and adhesion molecules are hidden within its structure
 - Molecules become more accessible during inflammation

Glycocalyx Model

- Endothelial surface layer protects endothelial cells from the shear stress of blood flow
 - Increased shear increases NO production → dilation of vessels
 - Increased shear can increase hyaluronic acid
- The binding of ligands and enzymes to the glycocalyx facilitates cellular signaling and enzymatic modification
 - Fibroblast growth factor
 - Lipoprotein lipase

Anticoagulant mediators can bind to the glycocalyx

- Antithrombin III- anticoagulant activity is enhanced by binding to heparan sulfate (GAG found in the glycocalyx)
- Heparin cofactor II activated by dermatan sulfate
- Thrombomodulin is produced by endothelial cells and contains chondroitin sulfate, which interacts with thrombin to activate the protein C pathway
- TF pathway inhibitor binds via heparin sulphates

Glycocalyx protects the endothelium

- Bind enzymes that scavenge oxygen radicals
- Enzymes help reduce oxidative stress and maintain NO bioavailability and prevent endothelial dysfunction

Damage to the endothelial surface layer

- Destruction can lead to:
 - Capillary leak
 - Edema
 - Accelerated inflammation
 - Platelet aggregation
 - Hypercoagulability
 - Loss of Vascular responsiveness

Damage to the endothelial surface layer

- Ischemia degrades the endothelial surface later
 - Denuded endothelial cells with shedding and washout of GAGs and increased transudate and permeability to colloids
- Vascular endothelium is one of the earliest sites involved in SIRS
 - Glycocalyx is damaged by TNF and LPS
 - Disruption of the glycocalyx exposes cell adhesion molecules

Damage to the endothelial surface layer

- Atrial stretch releases atrial natriuretic peptide (ANP)
 - Reduces plasma volume by increasing renal excretion
- Hyperglycemia degrades the glycocalyx
 - Mediated by oxygen radicals or the activation of glycocalyx degrading enzymes
- Normal renal function depends upon an intact glycocalyx

Protection and Repair of the endothelial surface layer

- Antioxidants rapidly reversed glycocalyx damage
 - Polyethylene glycol, NO, adenosine agonists, TNF alpha inhibitors, allopurinol, heparin, hyaluronan

Protection and repair of the endothelial surface layer

- Antithrombin III inhibits both coagulation and inflammation
 - Enhancing prostacyclin production
 - Inhibiting protease action
- Glucocorticoids can limit inflammatory damage to the glycocalyx by suppressing cytokine and chemokine production
 - Preventing migration of inflammatory cells and mast cell degranulation

Strategies to protect of repair the glycocalyx

- Suldodexide (commercially available preparation of heparin sulfate and dermatan sulfate) partially restored the glycocalyx in diabetic patients
- Infusion of heparin sulfate reduced glycocalyx damage and subsequent leukocyte adhesion
- Rosuvastatin can partially restore glycocalyx volume in hypercholesterolemia

Strategies to protect of repair the glycocalyx

- Lidoflazine (Ca channel blocker) preserved the glycocalyx in patients undergoing cardiopulmonary bypass
- Hypervolemia damages the glycocalyx and triggers release of ANP
- Loss of albumin accompanies loss of the glycocalyx
- Albumin decreased net fluid extravasation compared with HES
 - Albumin dilates coronary arteries possibly by enhancing NO production in response to shear stress

Avoiding glycocalyx damage

- Avoiding hypervolemia and hyperglycemia
- Maintaining physiological concentration of plasma protein
- Antioxidant therapy, statins, corticosteroids etc