Endothelial Glycocalyx

April Summers

11/13/18
Structure of the Endothelial Glycocalyx

• Complex gel between flowing blood and endothelial cell wall
• Interacts with plasma proteins and lipids
• Composition and dimensions fluctuate
 – Continuously replaces material sheared by plasma
 • Thickness varies from 0.1μm and 1μm
Structure of the Endothelial Glycocalyx

- Made of glycoproteins and proteoglycans
- Proteoglycans
 - Have a protein core
 - Attached: Negatively charged glycosaminoglycan (GAG) side chains
 - Some core proteins are firmly bound
 - Membrane spanning domain (syndecans)
 - Phosphatidylinositol anchor (glypicans)
 - Other core proteins are secreted after attachment of GAG sidechains
 - Perlecans
 - Versicans
 - Decorins
 - Biglycans
 - Mimecans
Structure of the Endothelial Glycocalyx

• Five types of GAG side chains
 – Heparan sulfate makes up 50-90%
 – Chondroitin
 – dermatan
 – keratin sulfates
 – Hyaluronic acid: only GAG not usually bound to a protein core and forms viscous solutions with water
Structure of the Endothelial Glycocalyx

• Glycocalyx forms a luminal mesh that provides endothelial cells with a framework to bind plasma proteins and soluble GAGs

• Glycocalyx is inactive but once plasma constituents are bound, it forms a physiologically active endothelial surface layer
Glycoproteins act as adhesion molecules and contribute to coagulation, fibrinolytic and hemostatic systems

• Cell adhesion molecules are divided into
 – Selectins (E and P)
 – Integrins
 – Immunoglobulins

• Histamine and thrombin stimulate P-selectin
• IL-1, TNFalpha, and LPS stimulate E-selectins
• Integrins bind to collagen, fibronectin, and laminin
• Immunoglobulins include ICAM1/2, VCAM, PECAM-1
Glycocalyx

• Net negative charge
 – Dependent on GAG side chain sulphation
 – Changes in sulphation patterns affect protein binding and vascular permeability

• Charged mesh acts as a macromolecular sieve
 – Repelling negatively charged molecules, white and red blood cells and platelets
 – Macromolecules >70kDa are excluded from the glycocalyx
 – Albumin is 67kDa and has a negative charge, but binds tightly to the glycocalyx due to its amphoteric nature
 • Binding reduced the hydraulic conductivity across the vascular barrier
 • Some albumin leaks through
Physiology of the endothelial surface layer

- Starlings forces- oncotic and hydrostatic pressures
 - Reduction in fluid extravasation by the glycocalyx
 - Three key components revised
 - Venous reabsorption
 - Rate of capillary filtration
 - Opposition to capillary filtration
 - Lymphatic flow is much less than capillary filtration rate calculated by Starling
 - Capillary filtration and reabsorption are less than originally thought
 - Why is capillary filtration so much less?
 - Colloid Osmotic Pressure
• Oncotic forces are only set up across the endothelial surface layer on the luminal aspect of the endothelial cell, not across the whole capillary wall.
Glycocalyx Model

- Fluid filtration is regulated at the point at which it begins within the capillary lumen by the endothelial surface layer
- Glycocalyx repels red blood cells
- Attenuates the interaction of platelets and leukocytes
 - Negative charge repels the cells and adhesion molecules are hidden within its structure
 - Molecules become more accessible during inflammation
Glycocalyx Model

• Endothelial surface layer protects endothelial cells from the shear stress of blood flow
 – Increased shear increases NO production \rightarrow dilation of vessels
 – Increased shear can increase hyaluronic acid

• The binding of ligands and enzymes to the glycocalyx facilitates cellular signaling and enzymatic modification
 – Fibroblast growth factor
 – Lipoprotein lipase
Anticoagulant mediators can bind to the glycocalyx

- Antithrombin III- anticoagulant activity is enhanced by binding to heparan sulfate (GAG found in the glycocalyx)
- Heparin cofactor II activated by dermatan sulfate
- Thrombomodulin is produced by endothelial cells and contains chondroitin sulfate, which interacts with thrombin to activate the protein C pathway
- TF pathway inhibitor binds via heparin sulphates
Glycocalyx protects the endothelium

- Bind enzymes that scavenge oxygen radicals
- Enzymes help reduce oxidative stress and maintain NO bioavailability and prevent endothelial dysfunction
Damage to the endothelial surface layer

- Destruction can lead to:
 - Capillary leak
 - Edema
 - Accelerated inflammation
 - Platelet aggregation
 - Hypercoagulability
 - Loss of Vascular responsiveness
Damage to the endothelial surface layer

- Ischemia degrades the endothelial surface later
 - Denuded endothelial cells with shedding and washout of GAGs and increased transudate and permeability to colloids

- Vascular endothelium is one of the earliest sites involved in SIRS
 - Glycocalyx is damaged by TNF and LPS
 - Disruption of the glycocalyx exposes cell adhesion molecules
Damage to the endothelial surface layer

• Atrial stretch releases atrial natriuretic peptide (ANP)
 – Reduces plasma volume by increasing renal excretion

• Hyperglycemia degrades the glycocalyx
 – Mediated by oxygen radicals or the activation of glycocalyx degrading enzymes

• Normal renal function depends upon an intact glycocalyx
Protection and Repair of the endothelial surface layer

- Antioxidants rapidly reversed glycocalyx damage
 - Polyethylene glycol, NO, adenosine agonists, TNF alpha inhibitors, allopurinol, heparin, hyaluronan
Protection and repair of the endothelial surface layer

• Antithrombin III inhibits both coagulation and inflammation
 – Enhancing prostacyclin production
 – Inhibiting protease action

• Glucocorticoids can limit inflammatory damage to the glycocalyx by suppressing cytokine and chemokine production
 – Preventing migration of inflammatory cells and mast cell degranulation
Strategies to protect or repair the glycocalyx

• Suldodexide (commercially available preparation of heparin sulfate and dermatan sulfate) partially restored the glycocalyx in diabetic patients

• Infusion of heparin sulfate reduced glycocalyx damage and subsequent leukocyte adhesion

• Rosuvastatin can partially restore glycocalyx volume in hypercholesterolemia
Strategies to protect of repair the glycocalyx

- Lidoflazine (Ca channel blocker) preserved the glycocalyx in patients undergoing cardiopulmonary bypass
- Hypervolemia damages the glycocalyx and triggers release of ANP
- Loss of albumin accompanies loss of the glycocalyx
- Albumin decreased net fluid extravasation compared with HES
 - Albumin dilates coronary arteries possibly by enhancing NO production in response to shear stress
Avoiding glycocalyx damage

- Avoiding hypervolemia and hyperglycemia
- Maintaining physiological concentration of plasma protein
- Antioxidant therapy, statins, corticosteroids etc