Computed tomographic findings in canine pyothorax and correlation with findings at exploratory thoracotomy

F. Swinbourne, E. A. Baines, S. J. Baines and Z. J. Halfacree

Department of Veterinary Clinical Sciences, The Royal Veterinary College, North Mymms, Hatfield, Hertfordshire AL9 7TA

OBJECTIVES: To describe computed tomographic (CT) findings in canine spontaneous pyothorax and compare them to surgical findings and to assess the utility of CT in guiding case management.

METHODS: Records from 2003 to 2010 were reviewed to identify dogs, with spontaneous pyothorax, which had undergone CT. Cases were managed medically or surgically. CT images and surgery reports were reviewed and compared for surgical cases.

RESULTS: Twelve dogs were included. Eight were managed surgically, three were managed medically and one died before management. Pleural fluid was present in all dogs on CT (n=12) and at surgery (n=8). Pleural gas was identified in five dogs on CT. Pleural thickening was detected in eight dogs on CT (seven visceral, one parietal and six mediastinal) and eight dogs at surgery (seven visceral, eight parietal and six mediastinal), six of which were identified by CT. Abnormal pulmonary parenchyma was detected in 10 dogs on CT and 5 dogs at surgery, all of which were identified by CT. Mediastinal involvement was detected in 10 dogs on CT and 6 dogs at surgery, 5 of which were identified by CT.

CONCLUSIONS: CT and surgical findings are similar in most cases of canine spontaneous pyothorax. CT may be a useful diagnostic tool for guiding case management.

INTRODUCTION

Pyothorax is a septic inflammation of the pleural space. Canine spontaneous pyothorax, defined as pyothorax in the absence of an external thoracic wound, is a relatively uncommon condition and the underlying aetiology is poorly understood (Hawkins and Fossum 2009). Inhalation and migration of plant material in working dogs have been postulated as a possible cause (Frendin 1997); however, this theory has been disputed due to the lack of foreign material recovered from the majority of reported cases (Robertson and others 1983, Piek and Robben 2000, Demetriou and others 2002, Mellonby and others 2002, Rooney and Monnet 2002, Boothe and others 2010). Necrotic pulmonary neoplasia and focal or haematogenous spread are also potential sources of bacterial contamination. Definitive diagnosis is based on cytological evaluation and bacteriological culture of pleural fluid.

The appropriate management of canine pyothorax is widely debated. Medical management options include single, unilateral needle thoracocentesis (Robertson and others 1983, Johnson and Martin 2007) and unilateral or bilateral indwelling thoracostomy tubes with intermittent or continuous (Turner and Breznock 1988) suction and thoracic lavage (Piek and Robben 2000) in combination with systemic antibiotic therapy and supportive care. Surgical management involves resection of affected tissues and thorough pleural space lavage via thoracotomy, followed by placement of thoracostomy tubes, systemic antibiotic therapy and supportive care (Rooney and Monnet 2002). The outcomes reported for these options are variable and broadly comparable, such that it is not possible to recommend one option over another on the basis of the available evidence.

Prompt instigation of an appropriate management protocol maximises the potential for a successful outcome. The presence of an underlying lesion, such as a parenchymal abscess or foreign body, on initial diagnostic imaging, a poor response to medical management after several days or the presence of a granular effusion suggestive of Actinomyces have been proposed as indicators for early surgical intervention (Rooney and Monnet 2002, Boothe and others 2010). Consequently, diagnostic imaging on initial presentation plays an important role in guiding case
management. Thoracic radiography and ultrasonography have been used widely in this manner (Reichle and Wisner 2000, Demetriou and others 2002, Johnson and Martin 2007, Boothe and others 2010). However, the presence of residual pleural fluid following thoracocentesis often obscures thoracic structures and limits the use of radiography.

More advanced imaging modalities, such as computed tomography (CT), have been used in the diagnosis and management of human empyema. When compared to radiography and ultrasonography, CT can provide more accurate information regarding the extent and nature of thoracic pathology (Burk 1991, Prather and others 2005). CT evaluation of the normal (Smallwood and George 1993, De Rycke and others 2005) and diseased (Burk 1991, Johnson and others 2004, Prather and others 2005, Au and others 2006, Scherrer and others 2008, Joly and others 2009, Otoni and others 2010) canine thorax has been reported; however, the use of CT in canine pyothorax has not yet been described.

The aims of this study were to describe the CT findings in 12 dogs with canine spontaneous pyothorax and to correlate these findings with the surgical findings at exploratory thoracotomy in the 8 dogs managed surgically in order to assess the utility of CT in guiding appropriate management.

MATERIALS AND METHODS

The medical records, CT images and surgery reports from dogs with spontaneous pyothorax, presenting between January 2003 and January 2010, were reviewed retrospectively. Criteria for inclusion were use of thoracic CT as part of the initial investigation and either pleural fluid or tissue analysis positive for any of the following: intracellular bacteria identified on pleural fluid cytology, bacterial growth on culture or pyogranulomatous inflammation identified on histopathology. Cases with a history of surgery or trauma to the thoracic cavity were excluded.

Animals were sedated (n=3) or anaesthetised (n=9) and positioned in sternal recumbency for the CT scan. CT scans were performed using a Picker PQ5000 single slice spiral CT scanner (Universal Medical Systems, OH, USA) (cases 1 to 9), GE Lightspeed 16 slice spiral scanner (case 10) or Philips MX8000IDT 16 slice spiral scanner (cases 11 and 12). Postcontrast scans were performed after manual intravenous administration of 600 mg iodine/kg iohexol (Omnipaque, GE, Buckinghamshire, UK; 300 mg iodine/mL). Images were acquired in the transverse plane and reformatted for dorsal and sagittal planes.

Management of individual cases was determined by the attending clinician. Medical management consisted of unilateral or bilateral intermittent thoracic drainage via indwelling chest drains and systemic antibiotic therapy. Empirical therapy most frequently comprised 20 mg/kg intravenous potentiated amoxicillin-clavulanic acid (Augmentin; GlaxoSmithKline, Middlesex, UK) every 8 hours and 10 mg/kg metronidazole (Metronidazole intravenous infusion; Baxter, Norfolk, UK) every 12 hours, with adjustments made when pleural fluid culture and sensitivity results became available. Surgical management consisted of resection of abnormal tissues and thoracic lavage via a median sternotomy, with postoperative management as described for the cases managed medically.

Information collected from the medical records included age, breed, gender, management type and histopathology results. CT images were reviewed digitally on a computer work station (Image viewer, Visbion, Surrey, UK) by a board certified radiologist, blinded to all previous reports, for the presence of pleural fluid and gas, pleural thickening, pulmonary parenchymal abnormalities and mediastinal involvement (to include pleuritis, fluid accumulation or lymphadenopathy). Pleural fluid volume was graded subjectively as small, moderate or large. The extent of the abnormalities and a proposed underlying aetiology were also stated based on the CT findings. Surgery reports were reviewed by the author and surgical findings and procedures performed were recorded. Finally, CT and surgical findings were compared for the eight surgical cases.

RESULTS

Thirty-four dogs with spontaneous pyothorax were presented during the study period. In 22 cases, of which 13 were managed surgically and 9 were managed medically, a CT scan was not performed. Twelve dogs met the inclusion criteria during the study period (Table 1). Age at presentation ranged from 9 months to 8 years 4 months. Seven males (four entire and three neutered) and five females (three entire and two neutered) were included. Breeds represented were Labrador retriever (4), English springer spaniel (2), bassett hound (1), Neopolitan mastiff (1), lurcher (1), German shepherd (1), Hungarian vizla (1) and bichon frise (1).

All dogs underwent a plain CT scan and 10 underwent a postcontrast scan. Eight cases were managed surgically, three cases were managed medically and one case suffered a cardiopulmonary arrest immediately after CT, whilst under general anaesthesia.

Pleural fluid

Pleural fluid (Fig 1) was present in all 12 cases on CT and volume was graded as small (n=6), moderate (n=4) or large (n=2). Pleural fluid was present bilaterally in all 12 cases and the distribution between hemithoraces was asymmetric in 6 cases. Of these six cases, two of the four managed surgically had a pathological lesion detected at surgery in the hemithorax with the larger volume of fluid.

At surgery pleural fluid was present in all eight cases and volume was graded as small (n=0), moderate (n=2), large (n=1) or unstated (n=5). Distribution was bilateral in four cases, unilateral in three cases and unstated in one case. CT correctly identified the presence of pleural fluid and noted of pleural fluid noted at surgery in all cases.

Pleural gas

Gas within the pleural space (Fig 2) was identified in 5 of 12 dogs on CT. The gas was present unilaterally in one case and bilaterally in four cases, of which two had an asymmetric distribution. All five cases with pleural gas had ipsilateral thoracocentesis or chest...
Pleural involvement

CT identified pleural thickening (Fig 3) in 8 of 12 dogs, representing seven cases of visceral, one case of parietal and six cases of mediastinal pleural thickening.

At surgery, pleural thickening was detected in all eight cases representing seven cases of visceral, eight cases of parietal and six cases of mediastinal pleural thickening. Six of eight cases of pleural thickening detected surgically were identified by CT. Of the eight cases with pleural thickening identified on CT, six were managed surgically and all of these were found to have pleural thickening at surgery. Thickening of specific pleurae was detected by both CT and surgery in five of seven visceral cases, five of seven mediastinal cases and one of eight parietal cases.

Table 1. Case details, CT and surgical findings and overview of management

<table>
<thead>
<tr>
<th>Case</th>
<th>Sig.</th>
<th>Postcontrast CT?</th>
<th>Pleural fluid</th>
<th>Pleural gas</th>
<th>Pleural thickening</th>
<th>Pulmonary parenchymal abnormality</th>
<th>Mediastinal involvement</th>
<th>Proposed cause</th>
<th>Case management</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1y5m ME basset hound</td>
<td>No</td>
<td>Small Bilat L>R</td>
<td>None</td>
<td>V</td>
<td>Single focus Lcau</td>
<td>Fluid</td>
<td>Ab</td>
<td>Medical (antibiotic)</td>
</tr>
<tr>
<td>2</td>
<td>8y4m FN Labrador</td>
<td>No</td>
<td>Small Bilat R=L</td>
<td>Uni(R)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>NU</td>
<td>Medical (bilat TT, antibiotic)</td>
</tr>
<tr>
<td>3</td>
<td>4y4m ME Neopol. mastiff</td>
<td>Yes</td>
<td>Large Bilat R=L</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Fluid</td>
<td>NU</td>
<td>CPA before treatment</td>
</tr>
<tr>
<td>4</td>
<td>6y1m ME lurcher</td>
<td>Yes</td>
<td>Mod Bilat R=L</td>
<td>Mod Unilat</td>
<td>None</td>
<td>M M V P</td>
<td>Single focus Acc 1 cm</td>
<td>Pleura</td>
<td>Ab</td>
</tr>
<tr>
<td>5</td>
<td>3y0m ME springer spaniel</td>
<td>Yes</td>
<td>Small Bilat R=L</td>
<td>US Unilat</td>
<td>None</td>
<td>M M V P</td>
<td>Multiple foci Lcau/Lcr/Rmid</td>
<td>Pleura</td>
<td>Pleura FB</td>
</tr>
<tr>
<td>6</td>
<td>7y6m MN Labrador</td>
<td>Yes</td>
<td>Large Bilat R=L</td>
<td>Bilat</td>
<td>None</td>
<td>M M V P</td>
<td>Single focus Lcau 1.8 cm</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>7</td>
<td>9m FE GSD</td>
<td>Yes</td>
<td>Small Bilat R=L</td>
<td>None</td>
<td>None</td>
<td>P</td>
<td>Single focus Acc</td>
<td>LN</td>
<td>None</td>
</tr>
<tr>
<td>8</td>
<td>3y7m FE Labrador</td>
<td>Yes</td>
<td>Mod Bilat R=L</td>
<td>Bilat</td>
<td>V</td>
<td>V</td>
<td>Multiple foci Lcau/Rcau/Rcr</td>
<td>LN</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>4y0m MN H. vizla</td>
<td>Yes</td>
<td>Mod Bilat R=L</td>
<td>Mod Unilat</td>
<td>None</td>
<td>M M V P</td>
<td>Multiple foci Rcr/Lcau/Rcau/acc</td>
<td>Fluid</td>
<td>Pleura</td>
</tr>
<tr>
<td>10</td>
<td>1y1m FE springer spaniel</td>
<td>Yes</td>
<td>Mod US Bilat R=L</td>
<td>None</td>
<td>M M V P</td>
<td>Single focus Rcau 0-8 cm</td>
<td>LN</td>
<td>None</td>
<td>GP</td>
</tr>
<tr>
<td>11</td>
<td>4y6m FN Labrador</td>
<td>Yes</td>
<td>Small US Bilat R=L</td>
<td>Bilat</td>
<td>M M V P</td>
<td>Multiple foci Rmid/Lcr/Lcau/acc</td>
<td>None</td>
<td>Pleura</td>
<td>LF</td>
</tr>
<tr>
<td>12</td>
<td>2y0m MN bichon frise</td>
<td>Yes</td>
<td>Small US Bilat R=L</td>
<td>Bilat</td>
<td>M M V P</td>
<td>Multiple foci Lcr/Lcau/Lcr</td>
<td>None</td>
<td>Pleura</td>
<td>GP</td>
</tr>
</tbody>
</table>

Ab Normalities of the pulmonary parenchyma (Fig 4), defined as one or more focal soft tissue densities, were identified on CT in 10 of 12 dogs. Parenchymal abnormalities were detected on the precontrast scan in all 10 dogs and the postcontrast scan in 9 of these dogs that received contrast. The abnormality consisted of a single focus in five cases and multiple foci in five cases. Abnormalities were detected in the right cranial lung lobe in two dogs, the right middle lung lobe in three dogs, the right caudal lung lobe in three dogs, the accessory lung lobe in four dogs, the left cranial lung lobe in four dogs and the left caudal lung lobe in seven dogs.

Parenchymal abnormalities were detected in five of eight surgical cases, all of which were a single focus. The location of the single focus detected surgically in all five of these cases was correctly identified by CT. Of the eight surgical cases, CT identified...
extra lesions not reported at surgery in seven cases and surgery detected extra lesions not reported on CT in one case.

Mediastinal involvement
Mediastinal involvement (Fig 5) was identified on CT in 10 of 12 dogs, including six cases of mediastinal pleuritis, five cases of lymphadenopathy and four cases with mediastinal fluid present.

Six of eight surgical cases had mediastinal involvement, including six cases of mediastinal pleuritis, one case of lymphadenopathy and no cases of mediastinal fluid. CT correctly identified mediastinal involvement present at surgery in five of six cases. Of the eight surgical cases, CT identified mediastinal involvement not reported at surgery in two cases and surgery detected mediastinal involvement not reported on CT in one case. Both CT and surgery detected mediastinal pleuritis in five of seven cases, lymphadenopathy in one of four cases and mediastinal fluid in zero of two cases.

Proposed aetiology
On the basis of CT evaluation, no evident underlying cause was found in two cases, chronic and generalised pleuritis was suspected in four cases and a focal lesion was suspected in six cases (solitary abscess in three cases and migrating foreign body in three cases).

Surgical and histopathological findings combined concluded that five cases had evidence of chronic, generalised pleuritis and three cases had evidence of a focal lesion (solitary abscess in one case and migrating foreign body in two cases). Foreign material, consistent with a black thorn, was recovered from one dog at surgery.

Of the eight surgical cases, CT correctly predicted the extent of the pathological changes in five cases (generalised process in one case). Of the two cases with a focal lesion, surgery confirmed this and CT had correctly identified it in these cases.
Computed tomographic findings in canine pyothorax

Three of five cases and a focal process in two of three cases) and the correct underlying cause in four cases (chronic pleuritis in three cases and a migrating foreign body in one case).

DISCUSSION

The results of this study provide a guide to the CT findings that can be expected in canine pyothorax, an assessment of how these compare to the surgical findings and enable the utility of CT in the management of these cases to be assessed.

Bilateral pleural fluid evident on CT in all cases is comparable to the previously reported high incidence of bilateral effusion in canine pyothorax using radiography and ultrasonography (Piek and Robben 2000, Demetriou and others 2002, Johnson and Martin 2007, Boothe and others 2010). The lower incidence of bilateral effusion reported at surgery may be explained by the lack of detail recorded in surgical reports. CT correctly identified the presence and volume (if stated) of pleural fluid in all eight surgical cases and therefore can be used to reliably predict the presence of fluid. However, asymmetric fluid distribution on CT correlated with lesion location at surgery in only two of four cases; hence, pleural fluid distribution on CT may not reliably predict lesion location.

Pleural gas presence could always be explained by pre-CT thoracocentesis or chest drain placement ipsilaterally. Pleural gas was not present in any case which did not undergo preimaging thoracocentesis, confirming the presence of gas as iatrogenic rather than secondary to the pyothorax or its aetiology.

Thickening of the pleura was present on CT in the majority of cases with visceral and mediastinal thickening being the most common and parietal thickening being the least common. If CT identified any form of pleural thickening, then it was always present at surgery. However, CT did not identify pleural thickening in two of eight cases where it was detected at surgery and therefore CT does not identify the presence of pleural thickening reliably in every case. The agreement between CT and surgical findings was higher for visceral and mediastinal pleura than it was for parietal pleura.

Pulmonary parenchymal abnormalities were identified by CT in the majority of dogs. All lung lobes were variably involved with the left caudal lung lobe being involved most commonly, as has been previously reported (Rooney and Monnet 2002). If a single focal lesion was present at surgery, CT correctly identified the location of the lesion in all cases and may be reliably used to guide the surgeon to the location of pathology. CT also detected lesions which were not reported at surgery in seven cases. These lesions consisted of one or more focal soft tissue densities and were 1 cm or greater in diameter in three cases. It is difficult to determine the significance of these lesions. They might not have been detected at surgery due to a deep parenchymal position or may have been observed but deemed insignificant and therefore not recorded. Preoperative CT can be used to identify lesions that may otherwise go undetected at surgery and their significance can then be determined. In one case, a tract through the right caudal lung lobe was detected at surgery but not reported on CT. This suggests that a median sternotomy and thorough exploration of the thoracic cavity should be performed in all surgical cases, rather than relying on CT findings to guide a more localised approach. All cases of parenchymal abnormality were
identified on precontrast CT but were enhanced following con-
trast administration, supporting the use of contrast to further
characterise lesions.

Mediastinal involvement was commonly identified on CT.
CT identified mediastinal involvement present at surgery in
most cases. The agreement between CT and surgical findings
was higher for mediastinal thickening than it was for lymphadenopa-
thy and mediastinal fluid. All cases of lymphadenopathy were
identified on precontrast CT but were better characterised fol-
lowing the administration of contrast.

CT correctly predicted the extent of the pathological changes
in five of eight cases. CT predicted generalised disease when
focal disease was found at surgery in one case and focal disease
when generalised disease was found at surgery in two cases. As focal
disease is an indicator for early surgical intervention, the error
in categorising these three cases is potentially of significance. CT
correctly predicted the underlying cause in four of eight cases.
No underlying cause was detected on CT in two cases and as
these were managed medically it was not possible to identify any
lesions missed by CT. Foreign material was recovered in one of
eight surgical cases and this incidence is comparable to previous
reports (Frendin 1997, Pick and Robben 2000, Demetriou and
others 2002, Mellanby and others 2002, Rooney and Monnet
2002).

Limitations of the study include its retrospective nature.
This made objective interpretation of clinical data difficult
and resulted in differences between cases including type of CT
scanner used, use of contrast, timing between CT and surgery
and extent of tissue analysed histologically. It was not possible
to determine the attending clinician’s criteria for opting for CT
or radiography and medical or surgical management. The three
cases managed medically were influenced by financial constraints
and early response to medical management but it is not possible
to determine the impact that the CT findings had on case man-
agement. Only the eight cases managed surgically could be used
to determine the impact of the CT findings on case man-
agement. In conclusion, CT findings are similar to surgical findings
in most cases of canine spontaneous pyothorax. Consequently,
CT may be a useful diagnostic tool for evaluating the nature and
extent of the intra-thoracic pathological changes and guiding the
management of these cases. Preoperative CT may identify lesions
that would otherwise not be detected at surgery, aiding selection
of the most appropriate surgical technique, but not eliminating
the necessity to explore the entire thorax.

Conflict of interest
None of the authors of this article has a financial or personal
relationship with other people or organisations that could inap-
propriately influence or bias the content of the paper.

References
tomography for evaluation of lung lesions associated with spontaneous pneu-
Medical Association 228, 783-787
Journal of the American Veterinary Medical Association 237, 348-353
the American Veterinary Medical Association 199, 617-621
slice computed tomography protocols for detection of pulmonary nodules in
dogs. Veterinary Radiology & Ultrasound 50, 279-284
DEMETRIOU, J. L., FORSEY, E. J., LACLOCH, J., McGRATHY, Y., FALUNSON, J. & KIRBY, B. M.
(2002) Canine and feline pyothorax: a retrospective study of 50 cases in the
UK and Ireland. Journal of Small Animal Practice 43, 388-394
Journal of Veterinary Medicine 44, 167-178
Therapy XIV. 14th edn. Eds J. D. Bonagura and D. C. Twedd. Saunders Elsevier,
St Louis, MO, USA, pp 679-678
with pyothorax. Journal of Small Animal Practice 48, 12-16
& SULLIVAN, M. (2004) Thoracic high-resolution computed tomography in the diag-
nosis of metastatic carcinoma. Journal of Small Animal Practice 45, 134-143
slice computed tomography imaging of the thorax in female dogs with mammary tumours. Acta Veterina
Scandinavica 52, 20-26
with computed tomography for the assessment of noncardiac thoracic disease
in the dog and cat. Veterinary Radiology & Ultrasound 46, 114-121
male canine patients. Veterinary Radiology & Ultrasound 41, 154-162
in dogs. Veterinary Quarterly 24, 107-111
tomographic assessment of vascular invasion and resectability of mediastinal
masses in dogs and cats. New Zealand Veterinary Journal 56, 330-333
in the mesothelial dog: thorax and cranial abdomen. Veterinary Radiology & Ultrasound 34, 143-153
TURK, W. D. & BRENNER, E. M. (1988) Continuous suction drainage for manage-
ment of canine pyothorax – a retrospective study. Journal of the American
Animal Hospital Association 24, 485-494