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I. INTRODUCTION 

Functionalized nanoparticles play an increasingly important role in biomedical sciences, 

materials science, biophysics and numerous other disciplines. The ability to coat 

nanoparticles with a conformal metal or dielectric cladding, to nanometer precision, is 

often highly desired for applications such as fabricating anti-reflective coatings for high 

refractive index nanoparticles1, creating diffusion barriers2,3, tuning catalysis4, or masking 

a toxic core with a biocompatible shell5. Coating alumina on highly UV-absorbing, but 

potentially bio-damaging, oxidative titania nano- or micro- particles is one high impact 

use of the particles and coatings, as only 6 nm of alumina can quench the photocatalytic 

activities of TiO2
6,7. Since photocatalysis of TiO2 can damage DNA or cells, quenching 

photocatalytic materials like TiO2 can be important in applications from cosmetics to 

optical tweezer biophysics experiments. 

In this note, we describe a simple, low-cost and time-efficient method to conformally 

coat nanoparticles with nanometer precision using atomic layer deposition (ALD) of 

alumina, titania, and platinum films. The nanoparticles are chemically synthesized 

monodisperse titania and silica nanospheres that have tunable size in either material and 

tunable refractive index for titania. The coating process is performed without the long 

particle soaking ALD steps8, fluidized beds9,10,11,12 or vibration or multi-component 

rotary stages commonly used in current literature12,13,14. By eliminating the long precursor 

soak times used in industry protocols for high surface area samples, we were able to 

reduce the time needed to thermally deposit 45 nm of alumina, for example, from 48 
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hours to 8 hours. Additionally, our shortened ALD recipe gives the same deposition rate 

on Si wafers as on nanospheres, so a silicon process monitor piece can be inserted into 

the ALD chamber simultaneously with the nanoparticles as a rate monitor, thus 

eliminating the need for costly transmission electron microscopy (TEM) to check the 

particle cladding thickness. The limitation of this process, mainly the scalability beyond a 

few grams of substrate powder, makes our recipe most applicable for academic research 

labs. 

 

II. EXPERIMENTAL METHODOLOGY 

A. Titania Bead Synthesis  

High quality amorphous titania monodisperse nanospheres were grown following the 

protocol outlined in previous literature15,16 (Figure 1), with some small changes. For 

example, we reduced the wait period from the  recommended 12-24 hours after mixing 

the glycolated titanium IV butoxide precursor solution with the solution of acetone, water 

and Tween 20 to 20 minutes. We determined that the synthesis reaction still was 

complete within this shortened period.  We chose the molarity of titania butoxide in 

acetone that corresponded to monodisperse 300-400 nm diameter titania bead formation. 

Dehydration by annealing at 500-600 C further improved the size uniformity of beads, as 

described in literature15,16.  
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FIG. 1. As-synthesized, uncoated mondisperse titania nanospheres images in an a) SE2 

angled detector and b) Inlens detector in an SEM. Scale bars are 1 um in each figure. 

 

The solution of beads was so dense that the solution turned from clear to a milky white 

color after titania seed growth. However, perhaps either due to the presence of Tween 20 

detergent or an effective de-clumping sonication and vortex protocol, aggregation only 

weakly occurred and did not hinder the ALD process as in other nanoparticle ALD 

reports14. After brief sonication and vortexing, and then dilution to typical optical tweezer 

trapping of bead concentrations, problematic clumping was not immediately rampant in 

aqueous or ethanol solution under a light microscope, as beads would typically float as 
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single or double beads. However, we observed as expected from Derjaguin-Landau-

Verwey-Overbeak (DLVO) and zeta potential theory, that higher index of refraction 

particles like titania clump more readily over time in solution than low index polymer or 

silica particles17. Thus storage of titania beads should be performed with proper steric18 or 

ionic stabilization19.   

After three rounds of centrifugation and rinsing with ethanol, the newly grown titania 

beads were suspended in ethanol and then the dense solution was dried in an aluminum 

crucible approximately 2 inches in diameter or on a standard 100 mm Si wafer for 

deposition in the Arradiance ALD GEMStar6 system20. An optional step at this point is to 

anneal the beads in an atmospheric furnace at 500-600 C to create anatase phase titania, 

or 700-900 C to create rutile phase titania. Previous studies have shown that amorphous 

titania nanospheres have a refractive index of n=1.7-1.8, while annealed anatase and 

annealed rutile titania have refractive indices of 2.3 and 2.7 respectively in beads1,15,16 

(lower than the respective wafer titania thin films). We performed a 500 C anneal on the 

amorphous beads and observed a slight, permanent shrinkage of bead diameter from 

350+/-70 nm down to 300 +/- 25 nm. The beads did not re-expand after suspension in 

solution, confirming previous results that the post-anneal size is highly stable15. We 

confirmed that the 500 C anneal produced an index higher than 2.0 using an optical trap 

experiment. Note that earlier work 21 found that alcohol rinses of synthesized titania can 

drastically lower the anatase-rutile phase transition temperature of titania nanoparticles.  

It should be mentioned that the anneal ambient conditions may be critical for the 

photocatalytic (and thus biocompatibility) properties of titania spheres. Literature 

suggests an oxygen or atmospheric anneal may be most desirable for low photocatalytic 

properties, while anneals in argon or nitrogen leave more oxygen vacancies and thus 

larger photocatalytic effects. The magnitude of the photocatalytic ability is inversely 

proportional the photoluminescent emission levels22.  

 

B. Silica Bead Synthesis  

We synthesized highly spherical silica beads using the standard ammonia and TEOS 

chemistry. The silica bead production was done according to modified version of 

previous work23,24 to have a diameter comparable to the titania nanospheres  to test the 
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titania ALD process  (Figure 2). The final silica bead diameters came out to be 375-550 

nm. Our modifications allowed the beads to be produced in approximately one hour by 

mixing the reagents. A slightly longer and more complex process detailed in the 

literature23,24 would produce silica beads of lower size variation of tunable size. 

 

 

FIG. 2. As-synthesized, uncoated, monodisperse silica nanospheres imaged in an Inlens 

SEM detector. Scale bar is 1 um. 

 

C. ALD Process Parameters  

The ALD films were thermally deposited in the Arradiance GEMStar6 desktop system. 

The alumina films were deposited using trimethylaluminum (TMA) and water as the 

precursor for oxidation. Titania films were deposited by a reaction of 

tetrakis(dimethylamino)titanium(IV) (TDMAT) and water. Platinum films were 

deposited by a reaction of (trimethyl)methylcyclopentadienylPt(IV) Pt(MeCp)Me3 and 

oxygen. For proper nucleation of Pt, a 1 nm seed layer deposition of alumina is 

incorporated in the recipe. 

We next compared the recommended particle ALD recipe from Arradiance8  to the planar 

ALD recipe optimized for rapid thermal ALD film growth on a wafer. The particle 

alumina ALD recipe ran for 120 cycles at 175 C with a 48 hour run time, while the 

alumina wafer growth recipe ran for 400 cycles at 175 C with an 8 hour run time. The 

process parameters for the particle ALD recipe are considerably different than the planar 
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ALD recipe to account for the extremely large increase in surface area needed to be 

conformally coated in beads vs a planar surface.  The table below illustrates the 

significant differences in the Al2O3 particle and wafer ALD recipes. The cycle time of the 

particle alumina ALD recipe is 13.3min compared to only 0.7min of the wafer ALD 

recipe.  To account for the much larger surface area, the particle ALD recipe incorporates 

33 doses of TMA and 33 doses of water within a given ALD cycle.  In addition, there are 

various delays in MFC flow stabilization and exposure valve operation within the particle 

recipe.  A fast Pt wafer recipe deposition at 175 C was also applied to the titania 

nanospheres, and a 175 C titania wafer recipe to silica beads. 

 

 Particle ALD Wafer ALD 

Alumina ALD Step Parameter Value Parameter Value 

TMA Dose (msec) 80 25 

Delay-hold (sec) 12 18 

TMA doses/cycle 33 1 

H2O dose time (msec) 80 25 

Delay-hold (sec)  12 23 

H2O doses/cycle 33 1 

TABLE I. The alumina ALD coating steps and their parameter values for both the fast 

wafer coating recipe and the slow particle soaking recipe. 
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III. RESULTS AND DISCUSSION 

Pre ALD-coated bead quality was studied using Zeiss Ultra and Zeiss Supra Scanning 

Electron Microscopes (SEMs), see figure 1 demonstrating the highly monodisperse 

titania spheres. An FEI T12 Spirit Transmission Electron Microscope (TEM) was used to 

image the post-ALD deposition coatings for many tens of beads per sample. A Woollam 

Ellipsometer was utilized to measure the ALD film thickness on a Si wafer placed in the 

ALD chamber during each bead run. Figure 3a demonstrates an alumina coating on a 

titania bead using the slow particle soaking recipe, compared to Figure 3b showing the 

same thickness alumina coating created in a high rate process for wafers that is six times 

faster than the particle soaking recipe. The coatings are virtually identical in quality and 

thickness in each recipe for the alumina ALD process. The coatings are also highly 

similar to those obtained using vibrating and rotary stages in ALD systems. 

We verified that the high rate process produced highly conformal coatings in alumina of 

15 nm, 30 nm, and 45 nm thicknesses. Additionally, we measured a wafer present in the 

chamber during the same deposition and found that the nanospheres’ cladding thickness 

matched the wafer thickness to within 5 nm for titania beads with an alumina coating 

(Figure 3a and 3b).  
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FIG. 3. Alumina coated mondisperse titania nanospheres imaged in a TEM. The black 

shell on the outside of the beads is the alumina coating, while the less dense bead core is 

titania. Figure 3a depicts the results of the particle soaking recipe with a target of 40 nm 

to compare to 3b which has 45 nm of the faster ALD wafer recipe. The results look nearly 

identical. Scale bar is 50 nm in Figure 3a and 100 nm in Figure 3b. 

 

For our ALD Pt run on titania particles, we obtained 7-13 nm wide Pt grains covering the 

surface of approximately 200 nm titania nanospheres using a recipe that yielded 12 nm Pt 

on a wafer (Figure 4). Note that the metal ALD gives discrete grains while the dielectric 

coatings are more conformal, agreeing with previous literature4.   
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FIG. 4. ALD Pt-coated titania nanospheres imaged in a TEM. The Pt coating is made up 

of 7-13 nm grains, colored black in the image. The grain thickness matches an 

ellipsometer measurement of a silicon monitor wafer coated with Pt in the same run as 

the titania spheres. Scale bar is 20 nm. 

 

For the monodisperse silica beads, the titania coating provided a 15-30 nm thick layer 

around the silica beads for a 30 nm wafer deposition (Figure 5). The ALD titania process 

was found to be slightly less uniform than the alumina ALD process. Each silica bead 

locally had a titania ALD coating that was conformal in thickness to approximately 5 nm, 

but across the bead population the bead coating thickness could vary between 15-30 nm. 
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FIG. 5. An example of a titania-coated silica nanosphere imaged in a TEM after a fast 

wafer ALD titania recipe. The (black) titania coating ranged from 15-30 nm on (gray) 

silica spheres for a run where the silicon monitor wafer was coated in 30 nm of titania. 

Scale bar is 50 nm. 

 

At a higher thickness of 85 or 100 nm ALD alumina wafer recipes, the conformal coating 

abilities were not uniform across the bead population in the crucible. The majority of 

beads had coating thicknesses varying between approximately 30-100 nm if this thicker 

recipe is attempted. Some of the variation in the smaller ALD thicknesses <40-50 nm, as 

well as the larger thicknesses, is likely an artifact due to particles not being perfectly 

spherical, so that the particle’s tilt in the TEM makes the coating on one side of the 

particle look thicker than the other side25. One possible mechanism why a fast, static 

deposition is successful at lower thicknesses is that at this bead size and closed-packed 

spacing, the beads have enough space and thermal energy at 175 C to allow for ALD 

vapor penetration and uniform growth. 

For larger amounts of bead powder added to the crucible, and with more tightly packed 

<50 nm particles, or coatings thicker than 40-50 nm, the conformal and uniform process 

is known to break down, and alternative methods become desirable. Fluidized beds, for 

example, offer a high precision route for scalable production of nanostructured 

particles10,11, and allow for more efficient (up to 90% efficiency12) use of the precursor 
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chemicals than static depositions. However, within our bead property parameter window, 

our runs used on the order of 1-10 milligrams per cm2 of nanospheres in the stationary 

crucible, which is an amount we verified can last several weeks or longer in typical 

academic research labs, depending on the application. If a 100 mm or 150 mm diameter 

wafer is used to hold the powder, the quantity of beads can easily reach into the several 

grams range as the surface area for a standard 100 mm and 150 mm Si wafer is 

approximately 80 cm2 and 176 cm2 respectively.  

For an excellent review further discussing the theoretical and experimental limitations of 

each ALD technique, including the fixed bed method explored in this report, see Longrie 

et al26. 

 

IV. SUMMARY AND CONCLUSIONS 

We conclude that time-consuming, expensive ALD processes with complicated sample 

holders may not be necessarily required for producing limited, but useful, quantities of 

highly conformal ALD coatings on nanoparticles. While planar stationary ALD 

deposition is not itself novel, we wanted to demonstrate and characterize the combination 

of streamlined and time-efficient nanosphere synthesis with ALD deposition for 

researchers entering the field to show that more advanced ALD techniques are not 

required for many nanotechnology applications. 

We have demonstrated a highly repeatable and efficient nanofabrication process that 

allows monodisperse nanospheres of tunable size and index of refraction to be fabricated 

from scratch, and then precisely and uniformly conformally coated with up to 45 nm of 

dielectric ALD cladding within an 8-10 hour workday. The bead fabrication process takes 

approximately one hour while the ALD can be 1-8 hours depending on material and 

thickness, with silica ALD deposition rates exceeding those of alumina for example.  

The entire process, from fabrication of monodisperse nanospheres to conformal atomic 

layer coating was done using shared user academic facilities. The process is low cost: the 

price of the process being set only by the cost of materials for 10-100 mL or more of high 

density titania nanosphere solution being fabricated and the ALD tool time  of several 

hours. TEM measurement can be minimized if a monitor wafer piece is  inserted into the 

ALD chamber. The beads can be placed in a standard stationary aluminum crucible or on 
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a Si wafer up to six inches in diameter, and conformal coatings are obtained of equal 

quality to those reported with vibrating or rotary stages with these parameters.  
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