
Job Submission on the Nanolab Cluster
Derek Stewart

stewart@cnf.cornell.edu

The job submission system, slurm, has now been set up on the CNF cluster.
This queuing system should provide an easy and transparent way to
streamline calculations on the cluster and make cluster-use more efficient.
After examining several job submission systems, I decided to go with slurm
because it offers several user friendly features:

(1) It has the ability to run parallel calculations using LAM-MPI by
allocating a set of nodes specifically for that task.

(2) Users running serial jobs with minimal input/output can start them
directly from the command line without resorting to batch files.

(3) Slurm has the ability to handle batch jobs as well, allowing users to
still take advantage of the scratch space available on the Nanolab
nodes.

For complete information on SLURM, I encourage you to check out the
program’s website:

http://www.llnl.gov/linux/slurm

Below I have provided a brief introduction to some of the commonly used
slurm commands.

Common Commands to use with Slurm

Cluster activity (squeue)
When you get ready to run a calculation, you can check the activity on the
cluster by running squeue. This command will provide a list of the currently
running jobs, how long they have been running, and which nodes they are
running on. An example is shown below:

 [der12@nanolab der12]$ squeue
 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)
 70 nlab nt_light der12 R 3:22:11 1 b29
 71 nlab nt_light der12 R 3:21:19 1 b30
 72 nlab nt_light der12 R 3:20:48 1 b31
 74 nlab nt_light der12 R 2:45:51 1 b33
 76 nlab nt_light der12 R 2:44:54 1 b34
 77 nlab nt_light der12 R 2:34:47 1 b32
 82 nlab node_run der12 R 1:41:24 1 b35
 83 nlab node_run der12 R 1:36:31 1 b36
 84 nlab node_run der12 R 1:31:48 1 b37
 85 nlab nt_light der12 R 1:02:32 1 c12
 86 nlab nt_light der12 R 1:01:43 1 c13
 87 nlab nt_light der12 R 1:00:50 1 c14
 89 nlab nt_light der12 R 40:52 1 c15
 90 nlab nt_light der12 R 39:39 1 c16
 91 nlab nt_light der12 R 38:40 1 b6

Each calculation is given a JOBID. This can be used to cancel the job as well
if necessary. The PARTITION field describes the available nodes. In this
case, we have all nodes set up in the partition nlab. The field NAME gives
the name of the program being used for the calculation. The NODES field
shows which node each calculation is running on.

How many nodes are free? (sinfo)
You can also get an idea of how many nodes are free to run calculations by
typing sinfo. This command shows which nodes are down, allocated to
current jobs, or idle.

[der12@nanolab der12]$ sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
nlab* up infinite 1 down* nanolab
nlab* up infinite 15 alloc b[6,29-37],c[12-16]
nlab* up infinite 27 idle b[3-5,7-16,18-20,38-42],c[10-
11,17-20]

Starting a calculation (srun)
In this case, we see that 27 nodes are ready to run calculations. You can
start a calculation directly from the prompt by using srun. This command
submits jobs to the job submission system and it can also be used to start
the same command on multiple nodes. We will start with a simple example.

[der12@nanolab der12]$ srun -N4 /bin/hostname &
b41
b38
b39
b40
[der12@nanolab der12]$

In the example above, we use srun to start the command hostname on 4
nodes in the cluster. The option –N4 tells slurm to run the job on four nodes
of its choice. The command hostname prints out the hostname of each node
that was used.

With many calculations it is important to pipe data in (<) from an input file
and pipe date out (>) to an output file. The program may also have command
line options as well. $program [options] < input.dat > output.dat.

One of the nice features of srun is that it preserves this ability to redirect
input and output. Just remember that any options directly after srun such
as –N will be used by srun. However, any options or piping commands after
your program name will be used by the program only.

Dealing with batch files (-b option for srun)
In many cases, you will want to run your calculation on the scratch space for
a particular node. This will prevent your calculation from writing to the NSF
mounted /home directory and insure that you are not wasting time due to
unnecessary data transfer between nodes. However, the srun command
doesn’t know which node you want to run on or in which directory your
calculation will need to run. In these cases, it is essential to write a batch
file that will guide your calculation along. The essential steps to include in
your batch file (may24run.bat) are:

(1) Create an unique directory in your scratch space for this
calculation (substitute your user name is the commands below):
a. mkdir /scratch/user_name/may24_run2/

(2) Report back to a file in your home directory as to which node the
calculation is running on and the time it started. This will help you
track down the results when it is finished.
a. /bin/hostname > /home/user_name/may24_run2.log
b. /bin/date >> /home/user_name/may24_run2.log

(3) Now that we have created the directory, we need to move all the
necessary input files over from the home directory.
a. cp /home/user_name/input_store/input.dat

/scratch/user_name/may24_run2/
(4) Hop into the directory we have created

a. cd /scratch/user_name/may24_run2/
(5) Start the calculation

a. /home/user_name/bin/cool_program.x < input.dat >
may24.out.run

(6) Report back when it is finished. Leave some info in our home
directory log file.
a. echo “Job Done” >> /home/user_name/may24_run2.log
b. /bin/date >> /home/user_name/may24_run2.log

(7) (Optional) At this point, the results can be accessed either by
logging into the node where the calculation ran or by copying the
results to a directory in your home space.
a. cp /scratch/user_name/may24_run2/may24.out.run

/home/user_name/output_store/

I will provide a sample batch file that you can adapt on the cluster soon. It
provides the steps outlined above. Please adjust it to match your username
and the program you will be using. When you finish setting it up, we will need
to insure that it is executable.

$chmod +x batch_file.run

Also, when you start the batch file with srun, you need to make sure you use
the –b option so srun knows that the file contains a series of commands

$srun –b batch_file.run

If everything goes well, you should see a new job listed when you type
squeue.

Running parallel calculations:

Often we need to run parallel calculations that take advantage of several of
the nodes on the cluster. This can be done using the slurm job submission
with a few small modifications. Instead of running the calculation directly
with srun, we are only going to use srun to reserve the nodes we need for
the calculation. Let’s say we want to run a parallel calculation on 4 nodes.
First we allocate them for the calculation:

$srun –n 4 –A

The (-n) option tells slurm that we need 4 nodes for the calculation. The (-
A) option reserves them for a parallel calculation.

After you type this, you will still see the same prompt, but srun has really
opened a shell for all the following commands.

So we can now boot up LAM-MPI on these allocated nodes.

$lamboot

$mpirun –C parallel_program (Run the program on the nodes allocated)
$lamclean (Clean up the lam universe after the run)
$lamhalt (Halt the lam universe)
$exit (Exit out of the shell the srun created)

Stopping a calculation (scancel)
There will be times when it will be necessary to stop a calculation. To do
this we need the JOB ID for the calculation and the command scancel. The
JOB ID can be determined using the squeue command described above. To
cancel the job with ID = 84, just type:

$scancel 84
$

When you type squeue again that job should be gone.

