- 1. Canine diabetes is divided broadly into IDDM and NIDDM
- 2. IDDM
 - Etiology: immunologic destruction of beta cells + genetic susceptibility (polygenetic disorder)
 - Autoimmune disease (organ specific) where β -cells are destroyed by T lymphocyte mediated mechanisms
 - \circ Circulating autoantibodies (against β -cell cytoplasm or cell membrane, insulin) are markers of ongoing disease process
 - Little is known about pathogenic mechanisms in the dog
 - Canine DM diagnosed very late in disease process
- 3. NIDDM
 - Rare in dogs most cases observed with severe obesity
 - \circ Increasing obesity correlates with degree of deterioration of glucose tolerance
 - Characterized by:
 - o Hyperglycemia
 - o Insulin resistance
 - Impaired insulin secretion
 - Contributors to development of NIDDM:
 - Beta cell function
 - Hepatic glucose production
 - Insulin mediated glucose uptake
- 4. Secondary Diabetes
 - Conditions seen in dogs with secondary diabetes
 - Endocrine disorders (hormones oppose action of insulin and cause insulin resistance)
 - Hyperadrenocorticism
 - Progesterone induced growth hormone abnormalities
 - Acute pancreatitis
 - Progressive destruction of pancreatic tissue

General Principles

- Pancreatic islets of Langerhans
 - o Beta cells: produce insulin
 - o Alpha cells: produce glucagon
 - Delta cells: produce somatostatin
 - PP or F cells: pancreatic polypeptide
- Beta cells compromise 60-80% of the islet
 - Form central core surrounded by 3 other cell types
 - Endocrine cells arranged in non-random distribution in dogs

IDDM

- Etiology: immunologic destruction of beta cells + genetic susceptibility (polygenetic disorder)
- Most common lesion: destruction in number and size of islets; hydropic ballooning degeneration of βcells
- 75% of β -cells must be destroyed before hyperglycemia is observed
 - o Decrease in cell mass associated with decreased insulin secretion
- Beta cells have little regenerative capacity
- Autoimmune disease (organ specific) where β-cells are destroyed by T lymphocyte mediated mechanisms
 - Circulating autoantibodies (against β-cell cytoplasm or cell membrane, insulin) are markers of ongoing disease process
 - Presence of more than 1 antibody greatly increases risk of developing DM
 - Prediabetics (humans and some animal models): may be non-lymphocyte dependent phase proceeding beta cell destruction by cytotoxic T lymphocytes
- Destruction mediated through release of beta cell proteins that are taken up by Ag presenting dendritic cells in islets
 - o leads to secretion of cytokines which are toxic to beta cells through induction of free radicals
- Canine diabetes is diagnosed very late in disease process
 - As little is known about pathogenic mechanisms in the dog that lead to destruction of beta cells

NIDDM

- Heterogeneous disorder
- Rare in dogs most cases observed with severe obesity
 - o Increasing obesity correlates with degree of deterioration of glucose tolerance
- Characterized by:
 - o Hyperglycemia
 - o Insulin resistance
 - o Impaired insulin secretion
- Contributors to development of NIDDM:
 - o Beta cell function
 - o Hepatic glucose production
 - o Insulin mediated glucose uptake
- Beta cell function
 - \circ $\;$ Insulin processing and the beta cell glucose sensing device is altered
 - Altered beta cell glucose metabolism:
 - Site specific defects in transport of glucose across plasma membrane of beta cell
 - Defective phosphorylation of glucose by glucokinase
 - Increase in dephosphorylation of glucose
 - Deficiency of mitochondrial enzymes
 - Glycogen accumulation in response to high glucose concentrations
- Hepatic glucose production
 - Impaired insulin release, hepatic insulin resistance, hyperglucagonemia and increase in free fatty acids all act on the liver to promote gluconeogenesis \rightarrow increase in hepatic glucose production
- Insulin mediated glucose uptake
 - Impairment of insulin secretion + insulin resistance at target tissues (liver and muscle) causes reduced clearance of glucose and reduced suppression of glucose production

Secondary Diabetes

- Conditions seen in dogs with secondary diabetes
 - \circ Endocrine disorders:
 - Hyperadrenocorticism
 - Progesterone induced growth hormone abnormalities
 - These hormones oppose action of insulin and cause insulin resistance
 - Acute pancreatitis
 - Progressive destruction of pancreatic tissue

Questions

- 1. Name the 4 types of cells that make up pancreatic islet of Langerhans and their products.
- 2. ____% of β -cells must be destroyed before hyperglycemia is observed.
 - a. 25%
 - b. 50%
 - c. 75%
 - d. 80%
- 3. Name 3 conditions seen in dogs with secondary diabetes.
- 4. Briefly describe the proposed etiology of IDDM.

Answers

- 1. Name the 4 types of cells that make up pancreatic islet of Langerhans and their products Pancreatic islets of Langerhans
 - a. Beta cells: produce insulin
 - b. Alpha cells: produce glucagon
 - c. Delta cells: produce somatostatin
 - d. PP or F cells: pancreatic polypeptide
- 2. _____% of β -cells must be destroyed before hyperglycemia is observed
 - a. 25%
 - b. 50%
 - c. 75%
 - d. 80%
- 3. Name 3 conditions seen in dogs with secondary diabetes: acute pancreatitis, hyperadrenocorticism, progesterone induced growth hormone abnormalities
- 4. Describe the proposed etiology of IDDM

Etiology: immunologic destruction of beta cells + genetic susceptibility (polygenetic disorder) Autoimmune disease (organ specific) where β -cells are destroyed by T lymphocyte mediated mechanisms