Homeostatic response to acid and base loads occurs in 3 stages

- 1. Chemical buffering by extracellular and intracellular buffers
- 2. Changes in alveolar ventilation to control PCO₂
- 3. Alterations in renal H⁺ excretion to regulate plasma HCO₃⁻ concentration

Proximal acidification

- In the proximal tubule the H⁺ is secreted into the lumen by the Na⁺-H⁺ exchanger (or antiporter), whereas HCO⁻₃ is returned to systemic circulation primarily by Na-3HCO⁻₃ cotransporter
- In the collecting tubule the H⁺ is secreted into the lumen by the active H⁺-ATPase pump in the luminal membrane, whereas HCO⁻₃ is returned to systemic circulation primarily by Cl- HCO⁻₃ exchanger in the basolateral membrane

REGULATION OF ACID BASE BALANCE

 HCO_3^{-}/CO_2 buffering system important for acid-base homeostasis:

 $H^+ + HCO_3^- \iff H_2CO_3 \iff H_2O + CO_2$

- [HCO₃⁻] and PCO₂ can be regulated independently
- [HCO₃⁻] by changes in renal H+ excretion
- PCO2 by changes in the rate of alveolar ventilation

Homeostatic response to acid and base loads occurs in 3 stages

- 4. Chemical buffering by extracellular and intracellular buffers
- 5. Changes in alveolar ventilation to control PCO₂
- 6. Alterations in renal H^+ excretion to regulate plasma HCO_3^- concentration

RENAL HYDROGEN EXCRETION

- Renal H⁺ excretion varies directly with rate of H⁺ production
- Kidneys contribute to acid base balance by regulating H⁺ excretion so that plasma HCO3⁻ concentration remains within appropriate limits.
 - Step 1: reabsorption of filtered HCO3-
 - Step 2: excretion of H+ (of 50-100 mEq H+ produced per day)
- Loss of filtered HCO_3^- in urine is equivalent to addition of H^+ to the body, since both are derived from dissociation of H_2CO_3

Proximal Acidification

- a. Primary step is secretion of H⁺ by Na⁺-H⁺ exchanger (or antiporter) in the luminal membrane
- b. Intracellular water breaks down into H⁺ ion and OH⁻ ion
- c. OH⁻ combines with CO₂ to form HCO₃⁻ (reaction catalyzed by carbonic anhydrase)
- d. In the proximal tubule the H⁺ is secreted into the lumen by the Na⁺-H⁺ exchanger (or antiporter), whereas HCO⁻₃ is returned to systemic circulation primarily by Na-3HCO⁻₃ cotransporter
- e. In the collecting tubule the H⁺ is secreted into the lumen by the active H⁺-ATPase pump in the luminal membrane, whereas HCO⁻₃ is returned to systemic circulation primarily by Cl- HCO⁻₃ exchanger in the basolateral membrane
- f. The secreted H⁺ ions combine with filtered HCO⁻₃ to form carbonic acid, then CO₂+H₂O can be passively reabsorbed
- This maintains plasma HCO⁻₃ concentration by preventing HCO⁻₃ loss in the urine
- Na+-H+ exchanger (or antiporter) is responsible for 2/3 of proximal H+ excretion
- H+-ATPase pump is responsible for 1/3 of proximal H+ excretion

Questions

Primary step in proximal acidification is secretion of H+ by which of the following

- a. Na+-H+ exchanger in the luminal membrane
- b. Na+-H+ exchanger in the basolateral membrane
- c. Active H+-ATPase pump in the luminal membrane
- d. Active H+-ATPase pump in the basolateral membrane

Fill in the blanks. In the collecting tubule H+ is secreted into the lumen by the	in the
luminal membrane, whereas HCO3- is returned to systemic circulation primarily by	in the
basolateral membrane	

Answers

Primary step in proximal acidification is secretion of H+ by which of the following

- e. Na+-H+ exchanger in the luminal membrane
- f. Na+-H+ exchanger in the basolateral membrane
- g. Active H+-ATPase pump in the luminal membrane
- h. Active H+-ATPase pump in the basolateral membrane

In the collecting tubule H+ is secreted into the lumen by the <u>active H+-ATPase pump</u> in the luminal membrane, whereas HCO3- is returned to systemic circulation primarily by <u>CI-HCO3- exchanger</u> in the basolateral membrane