Heat Stroke

Erik Zager, DVM Resident Emergency and Critical Care Cornell University

Outline

 Pathophysiology of heat stroke Organ systems affected Predisposing factors Clinical presentation Treatments Prognosis

Definition of Heatstroke

Dogs:

A syndrome, characterized by core body temperatures >41°C (105.8°F) and central nervous system depression or seizures

Humans:

A form of hyperthermia associated with a systemic inflammatory response leading to a syndrome of multiorgan dysfunction in which encephalopathy predominates

Human vs Veterinary Literature

One large retrospective study in veterinary medicine and one clinical review

Most information is extrapolated from human medicine

Some experimental studies in dogs >20-30 years ago used as basis from human treatment

J Vet Intern Med 2006;20:38-46

Heat Stroke in Dogs: A Retrospective Study of 54 Cases (1999–2004) and Analysis of Risk Factors for Death

Yaron Bruchim, Eyal Klement, Joseph Saragusty, Efrat Finkeilstein, Philip Kass, and Itamar Aroch

Heatstroke in small animal medicine: a clinical practice review

Scott I. Johnson, DVM, Maureen McMichael, DVM, DACVECC and George White, DVM, DACVECC Journal of Veterinary Emergency and Critical Care 16(2) 2006, pp 112–119 doi: 10.1111/j.1476-4431.2006.00191.x

Outline

 Pathophysiology of heat stroke Organ systems affected Predisposing factors Clinical presentation Treatments Prognosis <u>.</u>

Pathophysiology of Heat Stroke

Leon, Lisa R., and Abderrezak Bouchama. "Heat stroke." Comprehensive Physiology (2015).

Temperatures That Risk Heat Stroke

	Relative humidity (%)					
Temperature (°F)	90	80	70	60	50	40
90	121	113	105			
95		133	122	113	105	
100			142	129	118	109
105				148	133	121
110						135
Heat index	Heat disorde	r seen in humans				
105–130°F	Heatstroke possible					
>130°F	Heatstroke highly likely with continued exposure					

Thermal Area

Leon, Lisa R. "Pathophysiology of Heat Stroke." Colloquium Series on Integrated Systems Physiology: From Molecule to Function to Disease. Vol. 7. No. 2. Morgan & Claypool Life Sciences, 2015.

Cellular adaptive response to heat

Increased temperatures -> Production of Heat Shock Proteins (HSPs):

- Chaperonin activity
- Modulation of inflammatory responses (decreased IL-1, IL-6, TNF-a NF- κ B)
- Regulation of the acute physiological alterations
- Antioxidant effect
- Antiapoptotic effect

Cellular Response to Hyperthermia

When heat overcomes HSPs, or there is lack of acclimatization:

- \sim IL-6 and NF- κ B is greatly increased
- Temperatures above 106.7°F for as little as a few minutes can induce cellular apoptosis
- Temperatures above 109.4°F uncouples oxidative phosphorylation and enzymes are denatured

Cellular Response to Hyperthermia

- Temperature dependant electrolyte channels are altered
- Potassium flows extracellularly leading to increased plasma [K+]
 - Rarely seen in veterinary patients
- Severe hyperthemia also results in increased intracellular [Ca++]
 - Can cause damage to myocytes

Adaptive Physiologic Response to Heat Stress

- Increases in temperatures as little as 1°C are detected by hypothalamic and peripheral thermoreceptors
- Cutaneous vascular bed dilates
- Splanchnic venous beds constrict to maintain effective circulating blood volume

TABLE 3: Adaptations and functional outcomes in response to heat acclimatization		
PHYSIOLOGICAL RESPONSE	EFFECT	
Thermoregulatory		
Core temperature (rest and exercise)	Reduced	
Skin flow	Earlier onset; higher rate	
Skin Temperature	Reduced	
Sweating	Earlier onset; higher rate	
Cardiovascular		
Heart rate	Reduced	
Blood pressure	Better defended	
Stroke volume	Increased	
Cardiac output	Improved sustainment	
Cardiac efficiency	Increased	
Cardiac compliance	Increased	

TABLE 3: Adaptations and functional outcomes in response to heat acclimatization	
PHYSIOLOGICAL RESPONSE	EFFECT
Metabolic)
Metabolic rate	Reduced
Muscle lactate	Reduced
Muscle lactate threshold	Increased
Muscle glycogen	Spared
Muscle force generation	Increased
Fluid-Electrolyte	
Fluid balance	Improved
Sweat electrolyte losses	Reduced
Plasma volume	Increased
Total body water	Increased
Thirst	Improved

Maladaptive Physiologic Response to Heat Stress

- As blood continues to get shunted to the peripheral circulation, perfusion to the gut is compromised
- Direct heat injury to the gut also causes breakdown of tight junctions and bacterial translocation
- Direct cytotoxic injury to liver limits ability to overcome portal bacteremia
- Cerebral blood flow decreases

Maladaptive Physiologic Response to Heat Stress

- Dysregulation of the immune/inflammatory system leads to systemic inflammatory response syndrome (SIRS)
- Venous dilation of the splanchnic circulation occurs which leads to severe hypotension

Maladaptive Physiologic Response to Heat Stress

- Splanchnic vasodilation results in decreased central venous pressures, cardiac return, and thus cardiac output
- Blood can no longer be shunted to periphery to participate in heat exchange resulting in perpetuation of central hyperthermia

Outline

Pathophysiology of heat stroke **O** Organ systems affected Predisposing factors Clinical presentation Treatments Prognosis -

Brain Effects of Hyperthermia

- Cerebral blood flow decreases due to systemic hypotension
- Circulating cytokines also lead to intracranial hypertension
- Cerebral perfusion pressure = MAP ICP
- Cerebral metabolic oxygen requirement increases
- Leads to cerebral ischemia and altered mentation state "heatSTROKE"

Coagulopathies associated with Heatstroke

- Primary initiating factor of coagulopathic state is thermal injury to the vascular endothelium
- Leads to platelet aggregation may be irreversible, despite cooling
- Platelet activation leads to fibrin deposition occluding vessels microvascular thrombosis
- Major contributor to MODS

[&]quot;Heat stroke." New England Journal of Medicine 346.25 (2002): 1978-1988.

Virchow's Triad and Tissue Factor

Coagulopathies associated with Heatstroke

Within hours to days, hypercoagulable phase of DIC progresses to hypocoagulable state and clinical bleeding

Effects of Hyperthermia on the GI Tract

- Direct heat injury to enterocytes
- Combined with decreased splanchnic blood flow and gastrointestinal hypoperfusion
- Interferes with mucosal barrier and results in bacterial translocation

Effects on the Muscles

- In dogs, heat stroke is often combined with or a result of exertional hyperthermia
- Decreased intracellular ATP

Increased intracellular calcium

Effects on Kidneys

- Combination of hypovolemia and dehydration causes decreased renal perfusion
- Rhabdomyolysis results in myoglobinuria and direct tubular injury
- DIC and renal thrombi cause ischemic injury

Necropsy Findings

Necropsy findings confirm premortem findings Microthrombosis Multi-organ necrosis Increased endothelial permeability Did not find blood-bone marrow barrier defects Not-detectible by light microscopy Response to cytokines

Pathological Findings in Dogs with Fatal Heatstroke

Y. Bruchim^{*}, E. Loeb^{*}, J. Saragusty[†] and I. Aroch^{*}

* Koret School of Veterinary Medicine, Emergency and Critical Care Unit and [†]Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Germany

J. Comp. Path. 2009, Vol. 140, 97-104

Outline

Pathophysiology of heat stroke 0 Organ systems affected Predisposing factors Clinical presentation Treatments Prognosis -

Types of Heat Stroke

- Classic heat stroke occurs without history of exercise in patients that have compromised health or exposed to very high environmental temperatures
- Exertional heat stroke Occurs in healthy individuals where external and internal heat production exceed heat dissipation

Heat Stroke in Dogs

- Almost always a combination of both exertional and classic
- Dogs in hot cars struggle to get free
- Dogs with laryngeal paralysis or brachycephalic conformation doing heavy exercise

Factors that Decrease Heat Dissipation

Predisposing factor	Mechanism of action		
Exogenous			
Lack of acclimatization	Decreased neurohormonal responses		
Confinement and/or poor ventilation	Decreased conduction, convection, radiation, and evaporation		
Increased humidity	Decreased evaporative heat loss		
Water deprivation	Decreased blood volume that leads to decreased cutaneous vasodilation and cooling		
Furosemide	Fluid losses that lead to hypovolemia		
	Electrolyte losses that lead to altered electrical activity		
Negative inotropic drugs (β-blockers)	Impair cardiac contractility		
Phenothiazines	Hypohidrosis (in humans)		
	Altered autonomic function		

Predisposing factor	Mechanism of action
Endogenous	
Brachycephalic anatomy	Inadequate ventilatory capacity
Laryngeal paralysis	Inadequate ventilatory capacity
Obesity	The insulating effect of fat leads to decreased heat dissipation and decreased ventilation
Cardiovascular disease	Decreased cardiac output
Neurological/neuromuscular	Altered thermoregulatory function
	Decreased ventilatory capacity
Age (geriatric)	As extrapolated from humans, poor acclimatization, compromised cardiovascular response, and deficient voluntary control
Hair coat and color	Darker coats absorb more heat
	Thicker coats decrease radiation and convection

Factors that Increase Heat Production

Exogenous	<u>Endogenous</u>
Amphetamines	Exercise
Metaldehyde	Pyrexia (febrile disease)
Macadamia nuts	Hormonal hyperthermia (hyperthyroid)
Organophosphates	Seizures
Halothane	Eclampsia

Outline

Pathophysiology of heat stroke 0 Organ systems affected Predisposing factors Clinical presentation Treatments Prognosis

Historical Findings

- Most cases occur early in the summer
 - Owner lack of vigilance?
 - Lack of acclimation?
- June (28%), July (31%), and August (19%)
- Exertional heat stroke Heavy exercise prior
- Classic heat stroke left in car, laryngeal paralysis, brachycephalic breeds
- Dogs may or may not have been cooled at home by owners will affect rectal temperatures at presentation

Physical Examination Findings

- Rectal temperatures ranges from out of range high to hypothermia (14%) - often depends on if there was cooling performed at home or at referral vet
- Most dogs are tachycardic +/- pulse abnormalities (25% arrhythmias)
- Almost all dogs have mental abnormalities ranging from disorientation to coma

Physical Examination Findings

- Diarrhea and/or blood in stool is often present.
- Petechiae, ecchymosis
- Vomiting +/- hematemesis
- Tachypnea, severe panting

Point of Care Blood Work

- Blood smear evaluation often shows nucleated red blood cells presumed due to thermal damage to the blood bone marrow barrier
- Coagulation tests may reveal prolonged PT and aPTT
- Platelet count often decreased
- PCV and TS often reveal hemoconcentration
- Electrolytes may reveal free water deficits such as increased Na+,

CBC and **Biochemistry**

Increased Value	Decreased Value
ALT	Glucose
AST	Platelet count
CK*	
ALP	
BUN	
Creatinine	
Neutrophils 🔶	Neutrophils

Outline

Pathophysiology of heat stroke 0 Organ systems affected Predisposing factors Clinical presentation Treatments Prognosis

Evaporative cooling

- Applying room temperature or cool water to patient's skin
- Using fans to circulate air and promote evaporation of water
- Each 1.7ml of water that is evaporated consumes 1 kcal of heat
- Less likely to cause peripheral vasoconstriction, shivering, or patient distress
- Slower than ice bath immersion

Ice water immersion - Conductive cooling

- Submerging entire body in ice bath and massaging limbs to promote dermal blood flow and heat exchange
- Best method for rapid cooling
- Recommended for humans for exertional heatstroke
- Many downsides, including personnel needed, difficulty to administer other treatments, 'overshoot' hypothermia, shivering, extreme patient discomfort

Invasive Cooling Methods

Cold water lavage of:

- Colon
- Bladder
- 🔅 GI tract
- Peritoneal cavity

Novel Therapies

- Cooling catheters: Closed system catheters that circulate icewater
- Cooling Bodysuits

Cooling

 Recommendations are for termination of active cooling when rectal temp reaches 103.5–104.1F

- Overshoot cooling can lead to shivering which will increase core temp, as well as complications from hypothermia
- Possible link of vasoconstriction to DIC
- Hypothermia inactivates clotting factors

Other Therapeutics

- Dantrolene in malignant hyperthermia
- Reduces release of calcium from sarcoplasmic reticulum
- Studies only support in cases of malignant hyperthermia

Cardiovascular support

- Aggressive IV fluid therapy may be needed to correct hypovolemia and electrolyte abnormalities
- Room temperature fluids will also help with systemic cooling
- Hypertonic saline may not be effective, as patients are often severely dehydrated
- Vasopressors may be needed due to severe vasodilation

Respiratory Support

Intubation may be required for patients with upper airway obstruction and/or pharyngeal swelling
Most patiens will breath on their own once intubated
Wake up SLOWLY

Neurologic Support

- Administration of anticonvulsants for patients experiencing seizures such as levetiracetam or diazepam
- Correction of hypoglycemia if present with 0.5ml/kg of 50% dextrose +/- additional dextrose supplementation
- Head elevation +/- mannitol or hypertonic saline if depressed mentation persists and cerebral edema is suspected

Renal Support

- Urinary catheterization may be helpful to monitor urine output and for patient cleanliness if they remain obtunded or stuporous
- Intravenous fluid support to maintain renal perfusion and assist with diuresis of pigment

Treatment of Coagulopathy

- Currently no support for anti-coagulation for hypercoagulable phase of DIC, often present on presentation
- Fresh frozen plasma may be required if patient progresses to hypocoagulable phase of DIC including prolonged clotting times and clinical bleeding

Gastrointestinal Support

- Broad spectrum antibiotics to treat bacterial translocation and septicemia
- Antacids and gastroprotectants such as sucralfate if melena or hematemesis are present or GI bleeding suspected

Outline

Pathophysiology of heat stroke 0 Organ systems affected Predisposing factors Clinical presentation Treatments Prognosis

Prognosis

- Prognostication can be made by a number of factors
- Patients with increased nRBCs are less likely to survive
- Patients with hypoglycemia refractory to treatment are less likely to survive
- Patients presenting >90 minutes after onset of signs are less likely to survive

Nucleated Red Blood Cells

Retrospective study from Israel
18 nRBCs per 100 WBC
Sen 95% Sp 88% for death

Fig 1. Relative nucleated red blood cells (NRBC) (cells per 100 leukocytes) at presentation and absolute NRBC in 17 survivor and 21 nonsurvivor dogs with heatstroke.

J Vet Intern Med 2009;23:544-551

Peripheral Nucleated Red Blood Cells as a Prognostic Indicator in Heatstroke in Dogs

I. Aroch, G. Segev, E. Loeb, and Y. Bruchim

Prognosis

- Persistent neurologic abnormalities are less likely to survive
- Seizures are assossaited with risk of death
- Prolongations in PT or aPTT are negative prognostic indicators
- Overall mortality is approximately 50-60% based on old literature
- Dogs that died tend to die quickly within 24 hours

Summary

- Heat stroke is a complex disease processes that shares many similarities with sepsis
- Heat stroke is life threatening if not threated quickly and aggressively
- Patients require intensive therapy involving all body systems
- Non-invasive evaporative cooling is the preliminary treatment of choice
- Owners should attempt cooling at home if >90 minutes away
- First 24 hours are the most critical

References

Johnson, Scott I., Maureen McMichael, and George White. "Heatstroke in small animal medicine: a clinical practice review." Journal of Veterinary Emergency and Critical Care 16.2 (2006): 112-119.

Hadad, Eran, et al. "Heat Stroke." Sports Medicine 34.8 (2004): 501-511.

- Aroch, I., et al. "Peripheral nucleated red blood cells as a prognostic indicator in heatstroke in dogs." Journal of veterinary internal medicine 23.3 (2009): 544-551.
- Bruchim, Y., et al. "Pathological findings in dogs with fatal heatstroke." Journal of comparative pathology 140.2 (2009): 97-104.
- Flournoy, W. Shannon, Douglass K. Macintire, and James S. Wohl. "Heatstroke in dogs: clinical signs, treatment, prognosis, and prevention." *Compendium* 25.6 (2003): 422-431.
- Amsterdam, James T., et al. "Dantrolene sodium for treatment of heatstroke victims: lack of efficacy in a canine model." *The American journal of emergency medicine* 4.5 (1986): 399-405.
- Bouchama, Abderrezak, and James P. Knochel. "Heat stroke." New England Journal of Medicine 346.25 (2002): 1978-1988.
- Bruchim, Yaron, et al. "Heat stroke in dogs: a retrospective study of 54 cases (1999–2004) and analysis of risk factors for death." *Journal of veterinary internal medicine* 20.1 (2006): 38-46.
- Leon, Lisa R., and Bryan G. Helwig. "Heat stroke: role of the systemic inflammatory response." *Journal of Applied Physiology* 109.6 (2010): 1980-1988.
- Yeo, Theresa Pluth. "Heat stroke: a comprehensive review." AACN Advanced Critical Care 15.2 (2004): 280-293.

Questions?

