1. incretin-secreting K cells and L cells in the gut sense the type and amount of digested nutrients and secrete incretins to other organs.

a. K and L cells
 i. L cells in jejunum, ileum and colon (increases toward colon)
 ii. K cells in duodenum, jejunum, and feline ileum and feline colon (decreases toward colon)

b. incretin effect: in the pancreas the main effect of incretin hormones is to increase sensitivity to glucose. oral glucose leads to greater insulin secretion than IV glucose
 i. mediated by glucagon like peptide 1 (GLP-1) from L cells and glucose-dependent insulinotropic peptide (GIP) from K cells
 ii. GLP-1 inhibits glucagon secretion, decreases appetite and decreases energy intake
 1. senses lipids, carbs and proteins
iii. GIP stimulates glucagon secretion (stimulates pancreatic alpha cells directly) and increases sensitivity of adipose tissue to insulin
 1. senses fat and carbs (fat in cats)
c. GLP-1 and GIP are degraded by DPP-4 (dipeptidyl peptidase-4, CD26) and NEP-24.11 (neutral endopeptidase 24.11) in tissue and blood leading to short half life in blood of 1-2 minutes for GLP-1 and 5 minutes for GIP. Once degraded, cleared by kidneys.

2. People with diabetes
 a. decreased incretin effect due to glucose intolerance, postprandial hyperglycemia
 i. obesity also decreases incretin effect
 b. GIP
 i. normal to slightly decreased amount BUT decreased effect on pancreas
 ii. NOT a good target for treating diabetes:
 1. decreased sensitivity of pancreatic Beta cells to GIP in diabetes
 2. increased glucagon secretion
 3. increased sensitivity of adipose tissue to insulin
 4. promotes obesity
 c. GLP-1
 i. decreased secretion but normal effect
 ii. GOOD effects BUT short half life
 1. DPP4 inhibitors prolong half life
 2. GLP-1 analogs are long acting DPP4 resistant synthetic GLP-1 receptor agonists.
3. GLP-1 analogs
 a. Exenatide (Byetta)
 i. from the Gila monster (Heloderma suspectum)
ii. 1000 x the affinity for the GLP-1 receptor
iii. NOT a substrate for DPP4 or NEP
iv. Eliminated in kidneys
v. T 1/2 = 3-4 hours in people, 20 minutes in cats
vi. humans: improves 1st phase insulin response, pro-insulin/insulin ratio and ability of beta cells to respond to rapid changes in [BG]
vii. cats: causes weight loss but no effect on remission rates or insulin dose
 1. exenatide + glargine leads to weight loss (vs weight gain with glargine alone)
b. Exenatide ER
 i. administered once/week SQ, effective concentration > 60 days
 ii. injectable microspheres of exenatide and a biodegradable medical polymer
 iii. humans: more effective than once daily insulin glargine for glycemic control. Also decreased risk of hypoglycemia, decreased weight, decreased fasting BG, fewer side effects.
 iv. cats:
 1. healthy cats 0.13 mg/kg SIM dose improves glucose tolerance, increases insulin concentration, decreases glucagon concentration, decreased fasting BG (but no clinical signs of hypoglycemia), no side effects, NO decrease in weight
 2. diabetic cats: once weekly 0.2 mg/kg only found trend to increase remission rates and improved glycemic control.
 a. need pancreatic beta cells (pancreatitis, advanced disease with decreased pancreatic cell mass could affect treatment) to be present and a disease that can be reversed by GLP-1 (decreased response to glucose.)
 b. BUT cats can have insulin resistance.
c. Liraglutide (Victoza)
 i. probably not as advantageous as exenatide ER
 ii. GLP-1 analog: 2 amino acid substitution and a fatty acid acyl group that leads to non-covalent binding to albumin
 iii. humans: better once weekly and once daily than BID exenatide BUT with more GI side effects (nausea, vomiting, diarrhea)
 1. fluctuation in drug levels may prevent down regulation
 2. hydrophobic properties may give better BBB penetration
 3. can be used to treat obesity in non diabetic patients
 iv. cats: 0.6 mg/cat q24hrs
 1. T1/2 12 hours
 2. dramatic decreased weight, decreased appetite, increased glucose tolerance, increased insulin concentrations and decreased glucagon concentration
 3. no change in fasting glucose
d. Albiglutide and dulaglutide
 i. not studied in cats
 ii. albiglutide: 2 GLP-1 molecules linked to albumin
 iii. dulaglutide: 2 GLP-1 molecules plus modified human IgG4 Fc fragments
iv. slow absorption from injection sites
v. protect GLP-1 component from degradation by DPP-4
vi. decreased renal clearance (prolonged T1/2)
vii. in humans superior to insulin, no weight gain, decreased risk of hypoglycemia.
 SIM can control glycemia but increased GI side effects.

E. DPP-4 inhibitors (sitagliptin, vildagliptin)
 i. PO
 ii. no association with hypoglycemia when used alone
 iii. increased plasma GLP-1 and GIP concentrations post meal, increased glucose stimulated insulin secretion, decreased glucagon secretion, decreased proinsulin to insulin ratio (improved beta cell function)
 iv. no nausea or vomiting BUT nasopharyngitis, UTI, headaches reported
 v. increased weight

Figure 5 | Molecular mechanisms underlying the insulinotropic effects of glucose-dependent insulinotropic polypeptide (GLP)-1. Binding of GIP and GLP-1 to their specific receptors, the GIP receptor (GIPR) and the GLP-1 receptor (GLP-1R), leads to activation of adenylate cyclase and subsequent elevation of intracellular cyclic adenosine monophosphate (cAMP) levels. Increased cAMP then activates protein kinase A (PKA) and exchange protein activated by cAMP (EPAC2)/cAMP guanine nucleotide exchange factor (GEF). Activation of PKA promotes closure of K$_{ATP}$ channels and facilitates membrane depolarization. PKA also leads to inhibition of the delayed rectifying K$^+$ (Kv) channel, a negative regulator of insulin secretion in pancreatic β cells, resulting in prolongation of action potentials. Depolarization opens the voltage-gated Ca$^{2+}$ channels (VDCC), allowing an increase of intracellular Ca$^{2+}$ concentrations that mobilizes Ca$^{2+}$ from intracellular stores through PKA- and EPAC2-dependent mechanisms. The increased Ca$^{2+}$ concentrations eventually trigger fusion of insulin-containing granules with the plasma membrane and insulin secretion from the β cells. Increased Ca$^{2+}$ levels also promote transcription of the proinsulin gene, thereby increasing the insulin content of the β cell. Activation of EPAC2 has been shown to increase the density of insulin-containing granules near the plasma membrane to potentiate insulin secretion from the β cell. ATP, adenosine triphosphate.
QUESTIONS:

1. Which type of incretin-secreting cell (K or L) is more prominent in the duodenum?

2. GLP-1 is secreted by _____ cells and GIP is secreted by ______ cells.

3. In the pancreas the main effect of incretin hormones is to.....

4. Which GLP-1 analog has been studied in cats and shown to have trend toward increased remission rates and improved glycemic control at once weekly SQ administrations?

5. Binding of GIP and GLP-1 to their receptors on the pancreatic beta cell leads to increased intracellular calcium which in turn causes ______________ and ______________.
QUESTIONS:

1. Which type of incretin-secreting cell (K or L) is more prominent in the duodenum?
 a. K

2. GLP-1 is secreted by _____ cells and GIP is secreted by _____ cells.
 a. GLP-1 L
 b. GIP K

3. In the pancreas the main effect of incretin hormones is to.....
 a. increase the sensitivity to glucose

4. Which GLP-1 analog has been studied in cats and shown to have trend toward increased remission rates and improved glycemic control at once weekly SQ administrations?
 a. Exenetide ER

5. Binding of GIP and GLP-1 to their receptors on the pancreatic beta cell leads to increased intracellular calcium which in turn causes _____________ and _____________.
 a. fusion of insulin containing granules with the plasma membrane
 b. promote transcription of the pro-insulin gene (increasing insulin content of the beta cell.)