
Progress Report: Design Updates

Kevin Juan and Sofya Calvin

May 15, 2016

1 Introduction

1.a AguaClara Overview

AguaClara is an engineering student project team at Cornell University started in 2005 with the goal of
bringing sustainable water treatment to the Global South. Through connections with local communities,
AguaClara has been able to implement many economic, gravity-powered water treatment plants in Honduras.
Members on the team carry out the research to improve the technologies and help generate designs for
treatment plants and components. All of this is made possible through the communication between engineers
at the water treatment sites and students on campus, which the design team helps facilitate.

1.b Design Team Overview

The Design Team works on various projects which involve automating the design process for AguaClara’s
water treatment technology. Designs are coded using MathCAD and drawn out via AutoCAD and then
published on the AguaClara server for partners to use. The overarching aim of this team is to allow users to
enter various parameters about a plant and be presented with detailed AutoCAD designs, a materials list,
and a report describing any information needed to build the technology.

2 Modular Design Challenge Details

The Modular Design Challenge for Spring 2016 was to continue the progress made in the Fall 2015 term
to automate designs for individual components of AguaClara water treatment plants. Fall 2015 saw the
continuation of Heidi Rausch’s work in 2012 by Stephanie Sun to update pre-existing component files and
create new files for components not previously available. This spring, the team checked that the component
designs were up-to-date with current technologies used by AguaClara, found solutions to errors identified in
the fall, and created files for components not yet available on the beta server. The beta server is a server built
specifically to test how designs will draw when committed to the actual server that partners in Honduras
have access to. When the design team finishes a piece of code, they commit it to the beta server to make
sure that it draws out exactly as it should when on the actual AguaClara server.

2.a OStaRS/EStaRS

When the challenge was first taken on, there was no previously written modular code for the Stacked Rapid
Sand Filter. Furthermore, although there was code already written for both the OStaRS and EStaRS filters
within the entire plant, there were no files to combining the two filters into one code. Therefore, one of the
biggest challenges in this task was finding a way to combine the two codes into one functional modular code
that could distinguish between when the flow rate constituted an OStaRS or EStaRS filter.

The first step to writing this code was investigating the EtFlocSedFi file in the design folder. Browsing
through the entire plant code with an OStaRS filter, the team identified which references and variable inputs
would be needed to draw only the filter. After acquiring all of the references and formulas needed to draw
an OStaRS filter, the team wrote and tested a modular code to draw an OStaRS filter. Once that was

1



Kevin and Sofya: Progress Report 2

debugged, the process was repeated using the EtFlocSedFiLow file to write the modular code for EStaRS,
the enclosed flow filter.

The final step to this project was to take the two, separate modular codes and combine them. This
task would have been relatively simple if both of the individual codes didn’t refer to and redefine the same
variables. Because this was the case, the team had to find a way to draw both filters for any given set of
input variables but only output the code for one of them. To do this,the output variables (which code for
the drawings on AutoCAD) had to be redefined for OStaRS and EStaRS. These new variables could then
be incorporated into an if-statement, as shown in Figure 1, to determine which filter would actually be used.

Figure 1: If-statement that determines whether an OStaRS or EStaRS filter is drawn based on the flow rate.

This simple if–statement solved the problem as it essentially assigns the final variable, which codes for
the appropriate filter, based on whether or not the flow rate is less than or greater than the predefined
variable Q.PlantMaxLF. This variable is defined in the expert inputs file and represents the transition flow
rate between OStaRS and EStaRS. When the flow is less than or equal to that value, the AC.Filter codes
for an EStaRS low flow filter; when the flow is greater than that value, AC.Filter codes for an OStaRS high
flow filter.

After the if-statement was inserted, the code was tested on the beta server to see if it would properly
draw the correct filter. Testing on the beta server found several flaws in the code, all of which were resolved.
The first issue found was that the beta server would not display any variables in the About.html link other
than the ones that the user defined or stock variables. The fix for this was to add a section to the code
that explicitly showed the variables to be displayed. However, this was not enough as both EStaRS and
OStaRS had overlapping variable names, causing some variables to be incorrect. The solution, proposed and
implemented by Meghan Furton, was to filter through the variables for EStaRS, add ”Low” to the variable
name, and then insert them into the display variables section.

The other major flaw that the beta server revealed was that AutoCAD designs were not being produced
for flow rates less than 5 L/s. Running the code locally in the erroneous range of values found that the
code for OStaRS was not designed to produce viable code for flow rates below 5 L/s. Because of this,
AC.FilterHigh was always undefined, which would create a broken if-statement that would not produce an
output for AC.Filter. The work around for this issue was to create a new variable Q.PlantKeep. This
variable would be assigned the value that the user gave to Q.Plant. If Q.PlantKeep was greater than 5 L/s,
then Q.Plant receives the same value that was put in. Otherwise, if Q.PlantKeep was less than 5 L/s, then
Q.Plant was assigned an arbitrary flow rate above 5 L/s to prevent AC.FilterHigh from being undefined.
For the code, the arbitrary value was set to 20 L/s. The code for redefining Q.Plant occurred before the
code that produced AC.FilterHigh, and looked as such:

Figure 2: Code that reassigns Q.Plant.

After AC.FilterHigh was defined by either the initial or arbitrary value, Q.Plant was redefined as
Q.PlantKeep, the user input value, prior to the SRSF Low code seen in Figure 3. This redefinition was

2



Kevin and Sofya: Progress Report 3

critical to the proper functioning of AC.Filter because if the starting flow rate was less than 5 L/s, Q.Plant
would take on 20 L/s. However, this was only needed to make sure AC.FilterHigh was defined. Restoring
Q.Plant to its original value would ensure that the flow rate for EStaRS calculations was correct. This safety
measure was only necessary for flow rates lower than 5 L/s as any value between 5 L/s and the threshold
flow rate would still draw the proper EStaRS.

Figure 3: Q.Plant being redefined before the SRSF Low code.

Once all of the corrections were made to the code and all of the bugs were removed, the beta server was
able to draw and display the correct sand filters along with all of the specified variables. In addition, no
ambiguities were found in drawing the filter at the threshold flow rate.

Figure 4: The AutoCAD drawing of a 10 L/s OStaRS using the modular code.

2.b Chemical Dose Controller and Chemical Storage Tanks

Much like EStaRS and OStaRS, the chemical dose controller and chemical storage tanks also lacked modular
code. The goal for the modular code of the CDC was to write it such that it would draw both the CDC as well
as the chemical storage tanks. The major challenge of this was taking two different AC functions, AC.Cdc
and AC.ChemTanks, and combine them into one AC variable that would be named AC.CDCChemTanks.

The process of writing the modular code was much like that of the combined EStaRS and OStaRS
code where the first part was to investigate the EtFlocSedFi code for the references and variables directly
and indirectly needed to draw the CDC and chemical storage tanks. Once all of the correct variables and
references were found, the challenge of compiling both drawings into one was taken on. The solution to
this challenge was relatively simple as a new AC variable called AC.CDCChemTanks was defined. The new
variable took both the outputs from AC.Cdc and AC.ChemTanks and stacked it into one. In order for this

3



Kevin and Sofya: Progress Report 4

Figure 5: The AutoCAD drawing of a 5 L/s EStaRS using the modular code.

to work, the newly defined AC.CDCChemTanks variable had to be placed after the definitions for AC.Cdc
and AC.ChemTanks. The reulting AC variable looked like:

Figure 6: The newly defined AC.CDCChemTanks variable stacks the AC.Cdc and AC.ChemTanks variables.

When the code was originally tested on the beta server for the CDC and Chemical Storage Tanks, the
code only created the tanks and the CDC as free floating objects. This was exactly what was desired as the
modular code intended only to show the components without any of the masonry. However, the issue with
the original code was that the CDC and Chemical Storage Tanks existed as separate, disconnected pieces.

The missing piece to the code and model was the script that implemented the designs for the plumbing
and flexible tubing that would connect the two parts. Design Team member, Meghan, was tasked with
writing the code for the plumbing and flexible tubing that connected the two parts. Once the script for the
plumbing was finished, the variable ChemConnectionPluStack was added to the AC.ChemTanks variable.

Figure 7: The new AC.ChemTanks variable includes the variable ChemConnectionPluStack that draws the
piping from the Chemical Storage Tanks.

The resulting AutoCAD design drew the Chemical Storage Tanks with PVC pipping connected to it,
but still had the CDC as a free floating unit. The lack of connection between the two units was due to the
fact that the flexible tubing code was not finished, so it was not implemented into the code. Addition of
the finished flexible tubing code was deemed as one of the final tasks to completion of the CDCChemTanks
modular code.

An issue that occurred with the code was the improper rotation and drawing of the Chemical Storage
Tanks. At large flow rates, namely above 50 L/s, the Chemical Storage Tanks were rotated such that the
four tanks could fit within the masonry (not drawn in the model). The issue with the rotation was that while
the tanks were rotated, parts of the script that were necessary to subtracting out pieces from the Chemical

4



Kevin and Sofya: Progress Report 5

Figure 8: The AutoCAD model of the Chemical Storage Tanks and CDC with the piping only for 10 L/s
plant flow rate.

Storage Tanks were left untouched. AutoCAD subtraction requires that the shape of the subtraction be
drawn first as a solid before it is taken out of the desired piece. The problem with the rotation was that the
subtracted pieces’ positions were not being changed, causing AutoCAD to draw the solid and not subtract
it from the Chemical Storage Tanks, which left cylinders and boxes in the model space.

Figure 9: Cylinders and boxes that appeared from the rotation.

The error in the cylinders and boxes being drawn was traced back to the variable ChemTanksReflectRo-
tateScript, which was a component of AC.ChemTanks. The problem was linked to the thawing and freezing
of certain layers when the model was being generated by AutoCAD. When the solids were drawn in the
wrong place, a new layer was created for them. After AutoCAD failed to subtract the pieces correctly, the
solids were frozen in their layer, which left them in the model space. To fix this, the subtracted pieces had to
be thawed after they were frozen so that they could be rotated to the correct spot. Once they were correctly
placed in the model, the subtracted pieces layers could be frozen again. By implementing the redefinition
code in Figure 10, the cylinders and boxes present in Figure 9 were successfully removed for CDC and
Chemical Storage Tank designs for plant flow rates greater than 50 L/s.

To finish the design for the CDCChemTanks, the rest of the plumbing and flexible tubing from Meghan’s
challenge had to be implemented. For this task, there was nothing to modify within the CDCChemTanks
modular code as all of the changes took place within files that were referenced by the modular file. Because of

5



Kevin and Sofya: Progress Report 6

Figure 10: Modifications to the position variable.

this, all of the additions would automatically apply. The first round of testing the tubing and piping changes
on the CDCChemTanks modular code found issues with the flexible tubing when the beta server produced
the design. To understand the issues and solutions better, it is recommended that Meghan’s progress report
is consulted with.

Once the kinks in the flexible tubing were fixed, the beta server successfully produced the fully integrated
CDCChemTanks modular design. Figure 11 is an example of the final design produced by the beta server.

Figure 11: The CDC and Chemical Storage Tanks connected by piping and flexible tubing.

2.c LFOM and Orifice Template

The Linear Flow Orifice Meter (LFOM) is a short straight section of pipe which measures the water flow
through the plant and creates a linear relationship between the depth of water in the entrance tank and the
flow rate through the plant. The LFOM is unique because because it has many orifices, or holes, in the pipe
wall. The number and placement of the orifices is dependent on the plant flow rate. When the team first
took on this portion of the modular challenge, the code for the LFOM was defined within the large scale
plant and there was a second code to draw out the orifice template. The orifice template code consisted

6



Kevin and Sofya: Progress Report 7

of orifices, with cross hairs centered in each, all within the boundaries of sheets of paper. The overarching
goal was to create a modular code that not only drew the LFOM at various flow rates, but one that also
produced an attached file with the appropriate orifice template.

As the team set out to create this code, it seemed like a simple task. All that had to be done was combine
the code to produce the LFOM with the code to produce the template and then create a final output variable
which stacked the two parts of the code. However, after committing this to the beta server, it became clear
that there were many problems, specifically with the code for the orifice template. However, the code for
the orifice template that was left in the Mathcad document set a solid foundation for achieving the overall
objective, but still contained many flaws. Because of this, it was sensible reconstruct and revise the current
code to be simpler and functioning rather than start from scratch.

The first error encountered in the code was that the template was not producing the proper number of
orifices at various flow rates. After looking over the code and testing various variables, it was found that
the server had trouble drawing both the LFOM and the template at once - perhaps because of an overlap of
variables within each code. Therefore, the team decided to create two duplicate Mathcad files with all of the
LFOM code and references needed. One file was responsible for generating a model of the LFOM by returning
only AC.Lfom. The other file was responsible for the template by returning only AC.LfomTemplate. This
resulted in the creation of two different modular codes that performed the two different tasks assigned to
the files. This ultimately corrected the number of orifices drawn.

Figure 12: Orifice template at 20 liters per second using the original code.

The second error encountered also involved the template code. Even though the number and placement
of orifices on the template was correct, the pages themselves were presenting many issues. For some flow
rates, the top boundary of the papers were elevated and disconnected to produce a template similar to Figure
14. For other flow rates, the template was not drawing the proper number of papers to fit the amount of
orifices so some of the orifices were being cut off by the paper limitations, which is later shown by Figure
24. To fix these issues with the paper, the team looked into how the boundaries of the paper were defined.
As it turned out, the code for the boundaries utilized the floor function to round calculated values down.
The team tried changing this to the ceil function (to round calculations up) which proved to be an effective
solution for flow rates where orifices were cut off. However, this created larger issues with the template.
The issue with the floating upper boundary still persisted, but for all flow rates, the paper layout view was
cutting off at the wrong points. This resulted in pages not being cutoff at the specified borders drawn into
the AutoCAD drawing as shown in Figure 13

Yet another issue with the original template code present was that the template would be improperly
scaled, resulting in the pages defined in the model space to appear on the paper space as a tiny rectangle.
The issue that was causing this was that the paper space in AutoCAD defaulted to 11 by 8.5 in no particular
set standard of units. Because of this, if calculations were performed in meters as they were, the paper space
would automatically take on units in meters. Likewise, if calculations were done in inches, the paper space

7



Kevin and Sofya: Progress Report 8

Figure 13: Layout view of an improperly cut off page.

would take on inches. AutoCAD would never convert units into on standard, causing us to end up with a
layout that was approximately 0.2 m x 0.2 m plotted on a paper that was 11 m x 8.5 m, and likewise for
inches. These always led to an extremely small layout on a huge blank paper space as shown in Figure 15.

All of these issues with the template drawing led the team to critically reevaluate the effectiveness of the
code that defined the templates and page layouts, and then create new code and edit old code to function
better. The first change made to the code was to redefine how the length and width of the border of each page
were calculated. The original code attempted to define the length and width of the border using complicated
floor functions on different orifice variables like the diameter, orifice height from the x-axis, and the length
of one orifice diameter and the spacing between orifices as shown in Figure 16. Since changing the floor
function to a ceiling function was an ineffective solution, the calculations were completely redefined. To
redo the calculations, the team utilized the fact that AutoCAD’s paper space creates a dashed outline seen
in Figure 14 that sets the printable area. Anything outside of the dashed border would not be printed by
AutoCAD. For practicality, the size of the paper space chosen was standard 11” x 8.5” letter paper, and is
the default paper space set by AutoCAD. On this paper space, AutoCAD automatically sets a 0.25” margin
on each side, meaning the printable area was only 10.5” x 8”. The team used these dimensions to make the
length and width of the border fit exactly within the printable area, which led the length and width of the
border to be calculated by subtracting the total size of the margin from the paper length and width. This
ultimately simplified the border dimensions by making them the exact same dimensions of the printable
area. Figure 17 shows the new code.

The next part of the script was to figure out how many horizontal, vertical, and transverse layouts would
be needed to capture all of the LFOM orifices on the paper space. Much like the rest of the old code,
the parts used to define the number of horizontal, vertical, and transverse layouts were overly complicated,
involving if statements and ceiling and round functions. Figure 18 shows the complexity of the old code
when determining the number of layouts to produce. Rather than making the code conditional, the team
used the fact that each layout would be exactly the dimensions of the printable area to our advantage to
calculate the number of each type of layout.

To calculate the number of horizontal layouts, N.HLayouts, the total length of the template had to
be known. One of the key facts about the total length is that it is dependent on the row with the most
number of orifices. To find the maximum number of orifices in one row, the function max was used on the
N.LfomOrifices array to return the maximum number of orifices in any row. With this value, the total length
of the template, L.Temp, would be the sum of the diameters of all the orifices and the spacing between all
of the orifices. Figure 19 shows the the template length calculations. The spacing length was multiplied by

8



Kevin and Sofya: Progress Report 9

Figure 14: Orifice template with error in paper boundaries.

Figure 15: Improperly scaled template on the paper space (Bottom Left Corner).

Figure 16: Original code that defined the border length and border width.

9



Kevin and Sofya: Progress Report 10

Figure 17: New code that defined the border length and border width as the dimensions of the printable
area.

Figure 18: Old code that calculated the number of layouts.

10



Kevin and Sofya: Progress Report 11

Figure 19: Code that calculates the entire template length and width.

Figure 20: New code that calculates the number of horizontal, vertical, and transverse layouts.

the max of N.LfomOrifices minus one because the number of spaces between orifices is one fewer than the
number of orifices. Using the total length of the template, the number of horizontal layouts needed could
be determined by taking the ceiling of L.Temp divided by L.Border. Dividing L.Temp by L.Border would
produce a number that indicated how many borders of length L.Border could fit the length of the template.
Taking the ceiling of this value ensures that the number was always rounded up to the nearest integer so as
not to miss any orifices and because only whole numbers of pages are desired. The first line in Figure 20
shows the new code for N.HLayouts.

Calculating the number of vertical layouts was similar and different from the number of horizontal layouts.
The first thing that needed to be done was figure out the height of the template. The variable H.Temp in
Figure 19 shows how the template height was calculated as the height of the centers of the orifices in top
row plus an orifice radius.

Unlike the calculation for the number of horizontal layouts, the calculations for the number of vertical
layouts needed was conditional. The first statement was that if the ratio between H.Temp and W.Border
was less than or equal to one, then the number of vertical layouts defaulted to 0. This was implemented
because if that ratio was less than or equal to one, then the entire layout can vertically fit on one page.
Because N.VLayouts calculates how many rows of layouts are needed above the row of horizontal layouts,
if the ratio between H.Temp and W.Border was less than or equal to one, then adding an extra row would
produce redundant blank templates.

If the ratio between H.Temp and W.Border exceeded one, then the number of vertical templates would
be calculated as the ceiling of that ratio. Ceiling the ratio was important for this condition because then
the number of vertical layouts would be rounded up to the nearest whole number. This would then create
the proper whole number of extra rows needed to fit the template vertically. Figure 20 shows how this was
implemented.

As for the number of transverse layouts, the new code also greatly simplified the calculations. The
number of transverse layouts is defined as the number of horizontal layouts that don’t occur in the bottom
row of layouts. Because of this fact, the number of transverse layouts could simply be equated to the number
of horizontal layouts only if there were extra rows needed as determined by N.VLayouts. Otherwise, there
would be no transverse layouts since N.VLayouts was zero, meaning no extra rows were needed. The old
code produced code that was going along that idea, but was never implemented correctly. This led to layouts

11



Kevin and Sofya: Progress Report 12

Figure 21: Old code that defined the start and end points for the vertical boundary.

Figure 22: New boundary code. The vertical boundary points are the first two points while the horizontal
boundary points are the second set.

not in the first row to be unlabeled, which was mostly an aesthetic issue. Figure 20 shows how the number
of transverse layouts was determined.

After modifying the calculations for the layout border dimensions and the calculations for the number
of layouts, the next part that had to be fixed was the issue with drawing the physical boundaries. This
amounted to changing the definitions of the Boundary variable and implementing these changes into the
DelineateL and DelineateW variables. One of the issues with the old boundary code had to do with selecting
the right points for drawing a vertical line. The old code correctly selected the first point by making the
x-coordinate the leftmost point on the template and the y-coordinate be on the y-axis. However, the second
point that defined the vertical line was consistently off because it didn’t factor in the number of vertical
layouts produced. Instead, set the end point to where the topmost orifice ended as seen in Figure 21. With
the new code, the vertical boundary end point was changed to the sum of the vertical border lengths, which
was the number of vertical layouts plus one times the width of the border. The reason that one had to be
added to the number of vertical layouts was because N.VLayouts only counts the number of vertical layouts
needed above the first row, so to account for all rows, one had to be added. This provided the fix to the
issue with the border not being correctly drawn.

For the drawing of the horizontal border, the original code was sufficient for how it was written before,
but had to be updated to match the new code. This was simply changed by making the first point for the
horizontal line be the XStartPoint and the end point be the number of horizontal layouts times the border
length. The reason that the first point was now XStartPoint rather than XStartPoint minus an orifice radius
was due to a change that will be later explained.

Once the boundary line code was modified, the DelineateL and DelineateW variables were changed to
adopt the boundary modifications. The DelineateL variable, which draws horizontal boundaries at the correct
width points, now took on y-coordinates identical to the first two y-coordinates in the boundary code. The
DelineateW variable, which draws the vertical boundaries at the correct length points, was changed to take
on the x-coordinates of the second pair of points in the boundary code. Figure 23 shows the delineation code
with the boundary modifications implemented.

After the boundary drawing code was fixed, the next step was to figure out how to scale the template
correctly to fit on the paper space layout. The root of the cause for the template being plotted as a tiny
corner on a large piece of paper was how the AutoCAD view port was set up for each different type of layout.

Figure 23: Code that copies the horizontal boundary and puts it a border width higher than the last one,
and copies the vertical boundary places it a border length to the right of the last one.

12



Kevin and Sofya: Progress Report 13

Figure 24: Paper space when the cleared space was changed to units of inches. The model space was not
cleared out since the space to be cleared was in inches.

The original code started by clearing out a 10 m x 7.7 m blank space. It would then start the new view port
at the point (0.013 m, 0.013 m) and extend it so that the area dimensions of the view port were the border
length plus an orifice radius in length and the border width for the view port width. The first obvious issue
with this is that the cleared out space was 10 m by 7.7 m, which would be much too large for the template,
which was roughly 0.2 m by 0.2 m. The first approach to fixing this was to simply change the cleared area
dimensions to inches. However, this caused a very small space to be cleared for the template to be printed,
and didn’t clear out the model space as seen in Figure 24.

Changing the space to be cleared for the view port to inches showed that AutoCAD was not converting
units where they should have been. This meant the paper being drawn on was could have had dimensions
in meters or inches. The fix to this was to scale the view port points in meters to correspond with the
inches measurement. This was not the same as converting between units, but rather making everything
such that 1 m was equivalent to 1 inch. This would mean that all of the calculations and points would be
entered as meters and would remain as meters throughout the rest of the code, but when printed on the 11”
x 8.5” paper, each meter would be 1 inch. To implement this, the right side point chosen to define the view
port was multiplied by the unit-less conversion factor between meters and inches (39.37 in/m). This scaled
everything such that 1 m equaled 1 inch on the paper. The final product would ultimately be printed in
inches, and not meters as the Mathcad calculations would suggest. Figure 25 shows the old code without the
scale factor applied. Figure 26 shows the scale factor being applied to the right side point, where L.Border
is the x-coordinate and W.Border is the y-coordinate (The different points used between the view ports will
be explained later).

After this scale was applied, AutoCAD began plotting the correctly sized layout on each sheet of paper.
To confirm the results of the scaling factor, a template was physically printed on paper on a 1:1 scale and
hand measurements were made. The results of hand measuring found that the actual printed template had
the correct border dimensions, orifice diameter, and spacing as specified by the calculations done in Mathcad.

Following the changes made to scaling the templates, the last task that needed to be completed was to
move the cluster of orifices from the far left of the template towards the middle as well as adjust the spacing
between orifices on different rows. This modification took place in the section of code that drew the cross
hairs and the circles of the template. In the original code, the section that determined the origins of the
circles was not conditional. The code simply shifted the x-coordinate of the orifice origin to the right by an
orifice radius if it was in an odd row, and left it at XStartPoint if it was in an even row.

Unlike other sections of the code, the revised section for determining orifice origin was made more complex

13



Kevin and Sofya: Progress Report 14

Figure 25: Old code that cleared the paper space and defined the new view port. In view port erase, the
units were switched from meters to inches for testing.

Figure 26: New code that cleared the paper space and defined the new view port with the proper scaling
factor between meters and inches (39.37 in/m).

in order to produce an aesthetically correct template. The new code made the determination of the origin
conditional, resulting in three unique calculations for the orifice origin. The condition that was used was
again dependent on which row the orifices were in, h, where the 0th row was the bottom going to the top
row, last(H.LfomOrifices).Though the same loop and condition was similar to the original code, the new
code applied it in a different way. For the bottom row, h=0, the orifice origin was always shifted one radius
to the right of the XStartPoint as shown in Figure 28.

For the rows above the bottom, the calculations got a little more complicated. The first thing that had
to be done was create a temporary array with the number of orifices in each row, N.LfomOrificesTemp, but
for the bottom row, the number of orifices was set to zero. Figure 29 shows how this was done. Once this
was done, two different conditional statements were created. The first was for any row that was not the
bottom row, and the number of orifices in the the bottom row was even (Second definition of origin in Figure
28). The other was for any row that was not the bottom row, and the number of orifices in the bottom row
was odd (Third definition of origin in Figure 28). In both of these statements, the first shift made was to
move the origin by a distance that was equal to half the length of OrificeCenterDist if the row was even,
otherwise not for odd rows. This would ensure that the orifice origin of the current row lay dead center
between two orifices from the row below it, which is critical to the structural integrity of the LFOM. The
next shift done was to move each row by a distance of half the template length, which is the length of all of
the orifice diameters and spaces in the bottom row. This movement made it so that the orifice furthest to
the left aligned with the middle of the template.

After this point, the calculations were dependent on whether the number of orifices in the bottom row
were even or odd. If the template was such that the bottom row had an even number of orifices, the orifices
were shifted to the left by the product between OrificeCenterDist and the floor of half the maximum number
of orifices not in the bottom row. This would ultimately align the middle of the cluster of orifices with the
middle of the bottom row to achieve the proper aesthetic. Similarly, if the number of orifices in the bottom
row was odd, then the only difference was to shift the cluster by the product of half the OrificeCenterDist
and the floor of the half the maximum number of orifices not in the bottom row. This resulted in the

Figure 27: Old code that defined the origin based on whether the row it was in was an odd row or an even
row.

14



Kevin and Sofya: Progress Report 15

Figure 28: New code with three conditions to determine the placement of orifice origins.

Figure 29: Creation of a temporary array that stores the number of orifices in each row, but with the bottom
row set to have no orifices. This would ensure that the max of this array returned the maximum number of
orifices in rows that were not the base.

Figure 30: Model space view of a template for plant flow rate of 20 L/s.

15



Kevin and Sofya: Progress Report 16

Figure 31: Model space view of a template for plant flow rate of 50 L/s.

Figure 32: Paper space view of a page from the template for plant flow rate of 20 L/s.

proper alignment between the center of the cluster and base for the best aesthetic. Figure 30 shows how the
the template is properly aligned for when the number of orifices in the base is even. Figure 31 shows the
alignment for templates with odd number of orifices in the base.

The next step towards finishing the LFOM Template code was to implement it onto the beta server. To
put the LFOM Template code onto the beta server, the old LFOM file was replaced in the ADT Designs
folder with the new file. Within the new file, both AC.LFOM and AC.LfomOrificesTemplate were expressed
as outputs. To make sure the two AC variables produced something on the beta server, an extra line in
the Beta Methods file was added under file name and AC variables. The extra line contained the file name
LFOMTemp and the corresponding AC variables for the template. Committing to the beta server caused
the template to upload as a .dwg file.

Committing the file to the beta server also revealed several critical things. The first thing that was noticed
was for certain flow rates, the orifice cluster was not properly aligned with the bottom row. This led to a
reevaluation to the origin definition, which revealed that the number of orifices in the row immediately above
the bottom row was important for correct alignment. In other words, whether the second row contained
an odd number of orifices or even number of orifices mattered. This resulted in testing the eight different
combinations between even and odd number of orifices in the base, second, and row with the second largest
number of orifices.

While testing the eight different cases and producing the different templates, it was found that all of the
templates where the base row had an even number of orifices did not need the code modified from Figure
28. In the case where the base had an odd number of orifices and the row with the next largest number of

16



Kevin and Sofya: Progress Report 17

Figure 33: Origin modifications as a result of beta server testing.

orifices had an odd number of orifices, the code also did not differ from that in the third origin definition in
Figure 28. The cases that needed modification were the ones where the base had an odd number of orifices
and the row with the next largest number of orifices had an even number of orifices.

If the template had a base with an odd number of orifices, a second row with an even number of orifices,
and its next largest row with an even number of orifices, the origin definition was the same as the third
origin definition in Figure 28 except half the value of OrificeCenterDist was added on to the end. In the
other case where the base and second row had an odd number of orifices and the next largest row had an
even number of orifices, the origin definition was the same as the second origin definition in Figure 26, but
with half the value of OrificeCenterDist added at the end. Figure 33 shows the modified origin definitions

The testing on the beta server combined with the orifice origin modifications also effectively fixed the
error with the drawing at 10 L/s.

The culmination of all of these modifications and additions led to the creation of a proper LFOM Tem-
plate. An example of a final template in model space can be seen in Figure 30 for an LFOM designed for a
plant flow rate of 20 L/s. The correctly scaled paper space is exemplified by Figure 32, which shows Page
AB of the 20 L/s LFOM Template from the model space.

3 Future Work

There are quite a few, albeit not terribly difficult, tasks that still need to be taken on by the modular team.
Regarding the stacked rapid sand filter, the code is fully functional on the beta server indicating that it is
ready for partners to use. The only thing left to do for this is to work with Monroe to implement the code
on the actual AguaClara server. As a part of this process, the team will have to look into the flow rates
where the number of OStaRS/EStaRS filters are changed. Once these key flow rates are identified, the team
will upload the modular code onto the actual server using these key flow rates as they show distinct changes
in the design. Furthermore, documentation will needed to be checked to make sure everything is up-to-date
with the new revisions.

Likewise, the CDCChemTanks modular code has been completed, and can be implemented onto the
server that clients can access. Before adding it to the server, however, documentation needs to be written
since the CDCChemTanks was a brand new design added to the Final Designs folder. This means there was
no prior existing folder that had old documentation that could simply be updated.

Regarding the LFOM and its template, there are a few minor changes that still need to be made. The
first task that must be taken on is translating the new template format onto the 3-D model of the LFOM.
One of the changes made by the team was to shift the stack of orifices on the template so that they were
centered on the page. This change needs to be reflected on the 3-D model as the current model has all of the
orifices shifted to the left. Additionally, the team still has to figure out the best way to have partners print
out the template of actual use. The eventual goal is to get the server to return a pdf file of the template so
that partners can merely open the pdf and print it without any worries. Unfortunately, this is harder than it
sounds as the printing feature of AutoCAD is rather complicated. In the meantime, the team wants to put

17



Kevin and Sofya: Progress Report 18

together detailed, easy to understand instructions outlining the exact steps that partners need to take after
opening the AutoCAD file of the template to print the design out. These instructions will likely be posted
in a word document that would also be committed to the server and returned when the user requests the
template design.

Another challenge for future semesters would be to check the status of all the other modular designs
that were not addressed this semester. These would include the flocculator and sedimentation tank designs.
The objective should be to inspect the code and check that they function properly by first implementing
them onto the beta server. After approving the functionality of the designs, the documentation should be
updated to reflect the new pertinent information for the clients. Once all of the designs have been modified
and documentation updated, the team should consult with Monroe to get verification to upload the designs
onto the server that clients can access.

4 Task Map

Figure 34: Task Map with challenges

4.a Task Map Details

• Modular Design

– Review progress made in the fall and determine what still needs to be accomplished

∗ LFOM – Create a template for the modular design showing the drilling pattern for the LFOM

∗ CDC – Create a stand-alone module with Chemical Storage Tanks integrated

∗ EStaRS/OStaRS – Create a module that will draw either EStaRS or OStaRS given specific
values; Should try to integrate it into one MathCAD code possibly with an if-statement

18


	Introduction
	AguaClara Overview
	Design Team Overview

	Modular Design Challenge Details
	OStaRS/EStaRS
	Chemical Dose Controller and Chemical Storage Tanks
	LFOM and Orifice Template

	Future Work
	Task Map
	Task Map Details


