Smarter Tools for (Citi)Bike Sharing: Analytics for Managing a Complex System

David B. Shmoys Cornell University

Joint work with Daniel Freund, Shane Henderson, Eoin O'Mahony

Initiated May 2013

• Now

More than 1 million rides per month (Vélib' 3M) More than 10 million rides in 2015 6000+ bikes 380+ stations Ongoing expansion

 Citibike has worked with Cornell throughout Initially routing trucks for station battery replacement Current focus is rebalancing

SYSTEM IMBALANCE

Departing

Arriving

Diameter~ # Bikes

KNOWING SYSTEM STATE

KNOWING SYSTEM STATE

KNOWING SYSTEM STATE?

CENSORED DATA

We don't observe failed trips

Can we infer the actual demand?

Rebalancing can help us

CENSORED DATA

Flow of bikes?

12:00am 12:00pm 12:00am

CENSORED DATA

Using fact that departure process from M/G/∞ is Poisson

WHERE AND WHEN Poisson flow of bikes (compute from data)

Model stations with Continuous Time Markov Chain (CTMC)

Compute E[# Upset People] over rush-hour

CTMC MODELING

Given Rates: λ take μ returns

 $f(i) = E \begin{bmatrix} \lambda \int_0^t I(x(s) = 0 | x(0) = i) ds + \mu \int_0^t I(x(s) = C | x(0) = i) ds \end{bmatrix}$ Empty Empty Equal 1

CTMC MODELING

WHERE AND WHEN

Place bikes to minimize E[#up] Thm: Cost function convex

CONVEX PROGRAM

S

 $\forall s, 0 \le X_s \le C_s$

S

 $X_s =$ Number of bikes at s $C_s =$ Capacity of s

HOW WE USE THIS Where Should Have Racks

What if λ and μ are timedependent?

Assume that in small intervals (~30 minutes) λ , μ are constant

Find expected number of upset people for each interval, given each initial number of bikes

Find for each interval and each initial number of bikes the distribution over number of bikes at the end of the interval

Solve stochastic dynamic program

Average number of bikes over the course of a day next to Bellevue Hospital

REBALANCING WITH OPTIMIZATION

MID RUSH HOUR

REBALANCING WITH OPTIMIZATION

Mid Rush Rebalancing

MIDRUSH REBALANCING

Can't keep system balanced

Use is high but predictable

How do we focus resources?

MIDRUSH REBALANCING

Balance areas of the city

Subset of stations, k trailers

Everyone close to bike/spot

MIDRUSH REBALANCING

How to select 3 pairs of stations To be rebalanced by trailers?

OVERNIGHT

REBALANCING WITH OPTIMIZATION

Overnight Rebalancing

OVERNIGHT REBALANCING

Know where bikes need to be for the AM rush hour

Traffic is light, trucks work

Given an 8 hour shift balance as much as possible

OVERNIGHT REBALANCING

Zen and the art of battery maintenance

Zen and the art of battery maintenance

SUMMARY

Data now exists to build sophisticated models Of complex operational systems Focused on managing operations, but now working on system design as well Mix of data + math + analytics New challenges await!

THANK YOU

