Upflow Anaerobic Sludge

Blanket Reactors

Zoe Maisel, Evan Greenberg, Yi Guo, Mason Minot

Cornell University

Wastewater Around the World

- "Up to 90% of wastewater in developing countries does not undergo treatment" [1]
- Environmental and health hazard

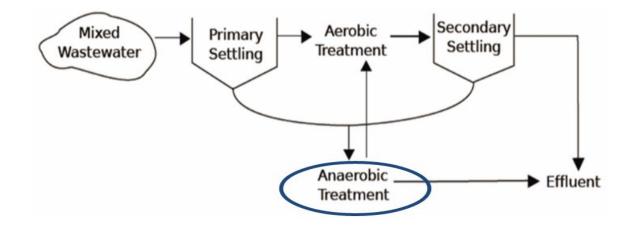
https://www.laprogressive.com/dumping-wastewater-into-aquifers/

Chlorine Tank

Large capital and operational costs

➤ Large energy demand

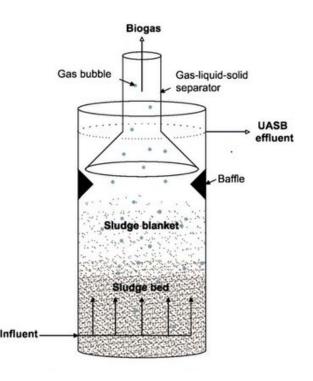
Difficult to handle lower flows


Alternative Treatment Goals

> Low cost

- > Energy neutral/positive
- Small scale treatment (households to small communities)
- Reduce biological sludge production

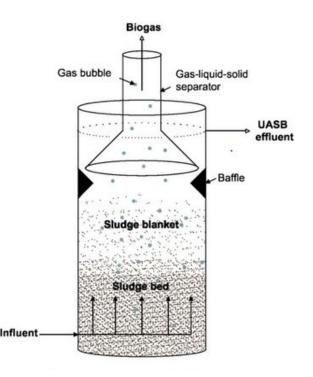
Proposed Treatment Process Flow



Combining anaerobic and aerobic treatment can reduce the need for downstream processing

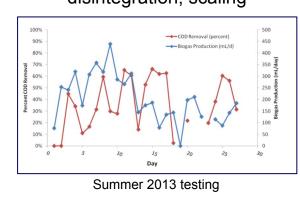
Upflow Anaerobic Sludge Blanket (UASB)

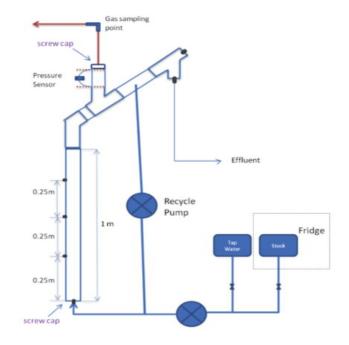
- influent wastewater contains chemical oxygen demand (COD)
- granular biomass of a mixture of bacterial species form a sludge bed and fluidized sludge blanket



Upflow Anaerobic Sludge Blanket (UASB)

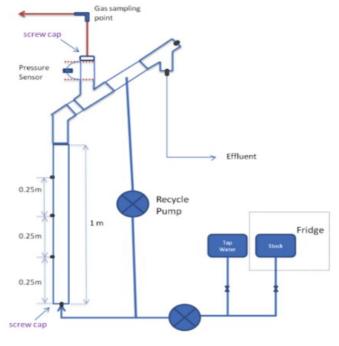
 granules process the COD to produce <u>biogas</u> (Methane and Carbon Dioxide)


biogas is captured by Gas-Liquid-Solid (GLS) separator



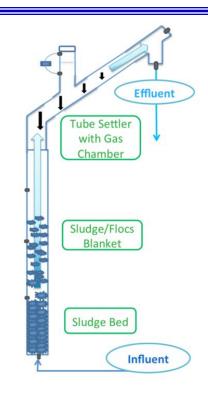
Previous Work and Challenges

- Summer 2013 Goals and Challenges
 - > Remove COD, turbidity, and pathogens
 - Energy neutral reactor through collection of biogas
 - Challenges: Poor treatment efficacy
 - Biomass washout, granular disintegration, scaling



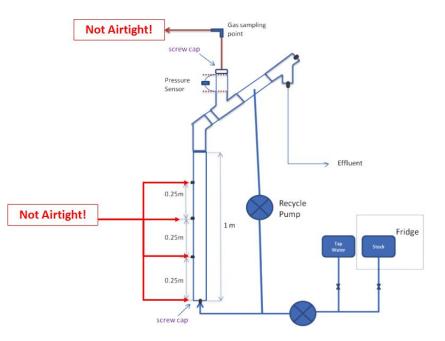
Previous Work and Challenges

- ➢ Fall 2013 Goals and Challenges
 - New gas chamber sealing method
 - Models for particle fluidization and settling
 - Dissolved methane tests
 - Characterization of granules
 - Confocal microscopy and chemical staining
 - Challenges: inability to collect significant data for gas production
 - ➤ Leaks, lengthy startup time



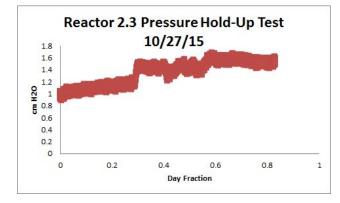
Fall 2013 Gas sampling method

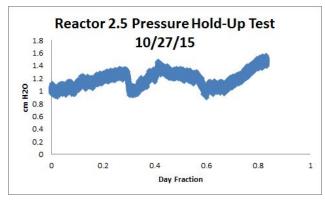
Previous Work and Challenges

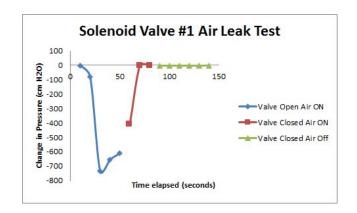

- Spring 2014 Goals and Challenges
 - Gas chromatography to monitor methane production: Bag test
 - Fixing leaks: Teflon tape, parafilm and epoxy
 - > Operational changes:
 - ➤ Heating
 - Double strength of wastewater
 - Double hydraulic retention time (HRT)
 - Reduce pump flow rate to half
 - Challenges: inconsistencies between theoretical and experimental gas production, inconsistent COD feed concentration delivery, and vessel leakage

Semester Goals

- Determine effectiveness of current design with respect to:
 - ➤ treating influent COD
 - producing biogas
 - minimizing biogas losses due to leaks and dissolved methane

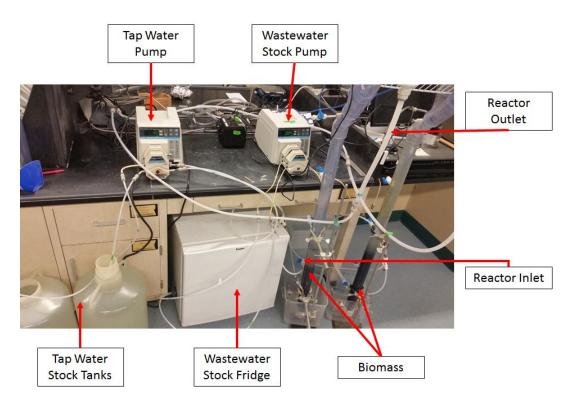

Methods


- 1. Testing Air Loss
 - -Soap Test: High pressure over short duration
 - -Pressure test: operational pressure over long duration
- 2. Valve Tests



Air Loss and Valve Test Results

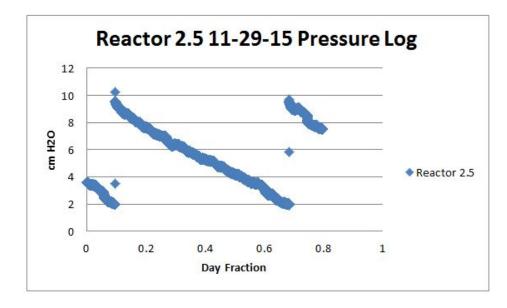
Water Level Change (cm/d)	0.75
ID of PVC 40 (cm)	4.09
Area of PVC (cm ²)	13.13
Volume Lost (mL/d)	9.85
Biogas Production (mL/d)	250
Biogas Lost (%)	3.94



Methods

3. Inoculation

a. Tubing, Pumps,Stock, Tanks, Fridge


4. Biogas Production Measurement

Biogas Production Results

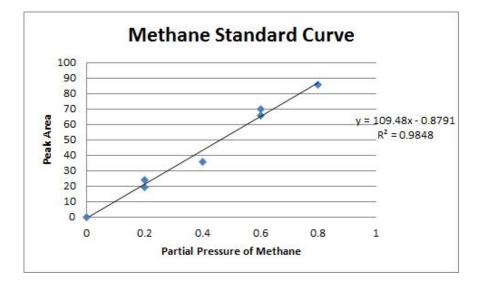
Biogas Production Measurement

1st event					
low P value	2.14	cm H2O			
high P value	10.26	cm H2O			
Difference	8.12	cm H2O			
Area PVC	13.14	cm^2			
Volume offgas	106.69	mL			

2nd event					
low P value	4.02	cm H2O			
high P value	12.50	cm H2O			
Difference	8.48	cm H2O			
Area PVC	13.14	cm^2			
Volume offgas	111.40	mL			

Total Gas Produ	Total Gas Production 11-29-15				
218.1	mL				

5. COD analysis


6. Gas Chromatography

COD and GC Results

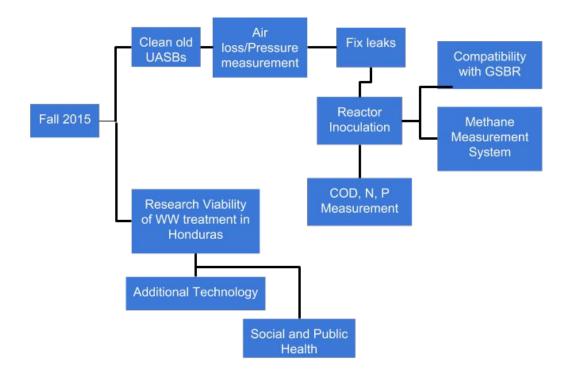
	Total Gas	Volume Fraction	Volume Methane	Influent COD	Effluent COD		% Theoretical Methane
Date	Production (mL)	Biogas	Produced (mL)	(mg/L)	(mg/L)	% COD Treated	Production
11/29/2015	218.1	~65	147.5	789	129	84%	59%
11/30/2015	149.4	~65	97.1	632	72.9	88%	48%
12/1/2015	142.9	65.5	93.3	2360	109	95%	12%

AguaClara COD and GC Results

	Influent COD (mg/L)	Effluent COD (mg/L)	% COD Treated
Reactor 2.5			
29-Nov	789	129	84%
30-Nov	632	72.9	88%
1-Dec	2360	109	95%
Reactor 2.3			
29-Nov	333	57.8	83%
30-Nov	128	43.7	66%
1-Dec	305	-0.549	100%

Reactor 2.5

	Total Gas	Volume Fraction	Volume Methane	Influent COD	Effluent COD		% Theoretical Methane
Date	Production (mL)	Biogas	Produced (mL)	(mg/L)	(mg/L)	% COD Treated	Production
11/29/2015	218.1	~65	147.5	789	129	84%	59%
11/30/2015	149.4	~65	97.1	632	72.9	88%	48%
12/1/2015	142.9	65.5	93.3	2360	109	95%	12%

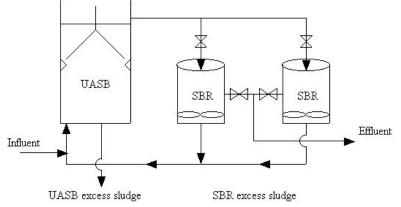


	Fall 2013 Rctr 2.4	Fall 2013 Rctr 2.6	Spring 2014 Rctr 2.4	Fall 2015 Rctr 2.5
Methane Prod. (mL/day)	1 <mark>16.</mark> 8	139.5	227.5	141.8

- Leaks quantified at ~4% theoretical biogas/day production
- Instrumentation setup and reactors inoculated
- > Biogas production monitored via pressure sensor offgassing
- ➤ COD removal quantified ~85%
- Methane production ranged from 12-59% theoretical value

AguaClara Challenges/Future Work

Future Work


- Modify reactor design
 - ➢ Air tightness
- Wastewater stock delivery
- Process Controller modifications

- ➤ UASB-GSBR coupling
- UASB treatment of Nitrogen, phosphorus and, possibly, fecal indicator bacteria (harmless E.coli)
- Oxygen stress tests

AguaClara Questions/Comments?

Thank you!

References

- 1. http://epi.yale.edu/the-metric/help-us-improve-our-global-wastewater-indicator
- 2. http://www.filtsep.com/view/40993/wastewater-treatment-technology-for-developing-countries
- 3. Chong, S., Sen, T., Kayaalp, A., & Ang, H. (2012). The performance enhancements of upflow anaerobic sludge blanket (UASB) reactors for domestic sludge treatment A State-of-the-art review. *Water Research*, 3434-3470.
- 4. Aiyuk, S., Amoako, J., Raskin, L., Haandel, A., & Verstraete, W. (2004). Removal of carbon and nutrients from domestic wastewater using a low investment, integrated treatment concept. *Water Research*, 3031-3042.
- 5. Yu, H., Tay, J., Fang, H., (2001). The Roles of Calcium in Sludge Granulation During UASB Reactor Start-Up. *Wat. Res.*, 4, 1052-1060.
- 6. Mes, T., Stams, A., Reith, J., Zeeman, G., (2003). Methane production by anaerobic digestion of wastewater and solid wastes. From Bio-Methane & Bio-Hydrogen: Status and Perspectives of Biological Methane and Hydrogen Production (Chapter 4).
- 7. Aiyuk, S., Forrez, I., Lieven, D., K., A, Haandel, A., Verstraete, W., (2006). Anaerobic and complementary treatment of domestic sewage in regions with hot climates A review. *Bioresource Technology*, 97, 2225-2241.
- 8. Experimental Thermal and Fluid Science. (2006). *Science Direct, 30*(4), 329-336. Retrieved September 30, 2014, from <u>http://www.sciencedirect.</u> com/science/article/pii/S0894177705000993
- 9. Weber-Shirk, M. (2014, September 14). Flow Control and Measurement. Retrieved September 30, 2014, from https://confluence.cornell. edu/display/cee4540/Syllabus