WOUND HEALING

MARIANA A. PARDO

EMERGENCY AND CRITICAL CARE RESIDENT

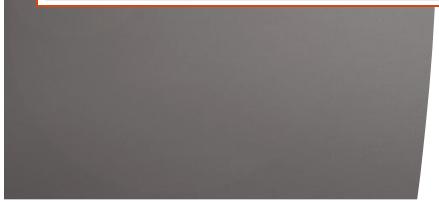
2016

- Wound Classification
- Types of Wound Healing
- Stages of Healing
- Factors Affecting Healing
- Wound Management
 - Cleansing
 - Debridement
 - Dressings
 - Drains
- Techniques that Promote Healing
 - Negative Pressure Wound Therapy
 - Low Level Laser Therapy
 - Hyperbaric Oxygen Therapy

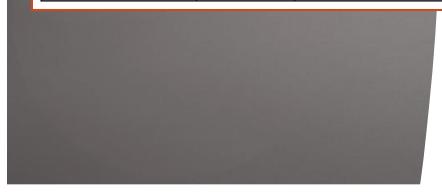
Disturbance in the normal skin anatomy and function; tissue injury resulting in the "loss of continuity of epithelium with or without the loss of underlying connective tissue"

Wound Healing Society

Wound Classification based on Microbial Contamination


Category I. Clean wounds	Non-traumatic wounds not involving the respiratory, oropharyngeal, gastrointestinal or urogenital organs and with no inflammatory processes (Figure 1.).
Category II. Clean-contaminated wounds	Non-traumatic wounds where respiratory, oropharyngeal, gastrointestinal or urogenital organs are opened without spillage of contents, clean wound in which a drain is placed, small breach of the aseptic technique.
Category III. Contaminated wounds	Traumatic wounds < 4 hours old; inflammatory processes without purulent exudate; procedures that are contaminate with contents of gastrointestinal organs or infected urine; serious breach of aseptic technique.
Category IIII. Dirty wounds	Traumatic wounds > 4 hours old; inflammatory processes with purulent exudate or necrotic tissue; perforation of the gastrointestinal organs or infected urogenital organs; serious faecal contamination.

Wound Classification based on Bone Fracture

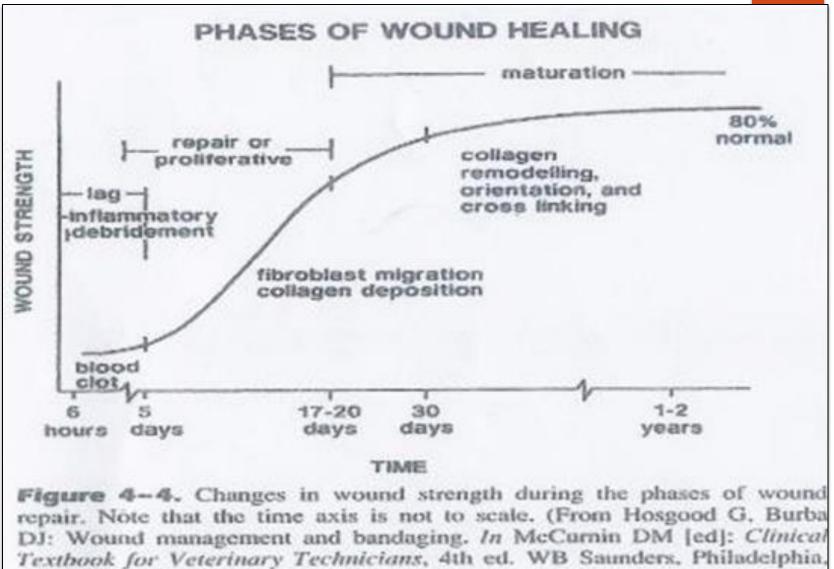

Gradel	Small break in the skin caused by bone penetrating through
GradeII	Soft tissue trauma contiguous with the fracture, often caused by external
	trauma (i.e., bite wound)
Grade III	Extensive soft tissue injury, commonly in addition to a high degree of
	comminution of the bone (i.e., gun shot wounds)

Garzotto 2015

Types of Wound Healing

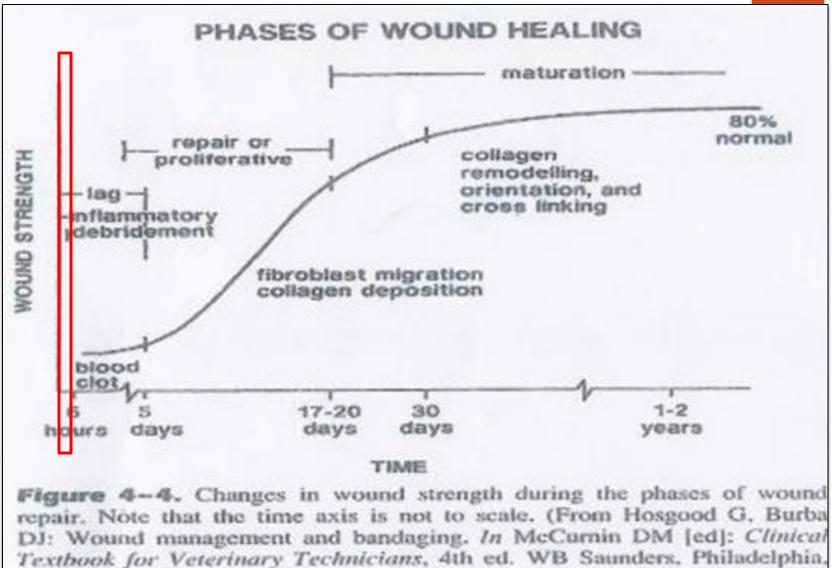
First Intention	< 12 hr	No separation wound edges Clean, recent wound	
		Minimal scar formation	
Second Intention	> 24 hr	Wound left open and allowed to	Infection, excessive trauma, tissue
		heal from the inner layer to the	loss, or imprecise approximation of
		outer surface	tissue
Delayed Primary	> 3-4 days	Debridement of nonviable tissues	Contaminated, dirty and infected
Intention		and open wound management until	traumatic wounds with extensive
		1ary closure is possible	tissue loss and a high risk of
			infection

Stages of Primary Wound Healing


Hemostasis Stage

Inflammatory or Debridement Stage

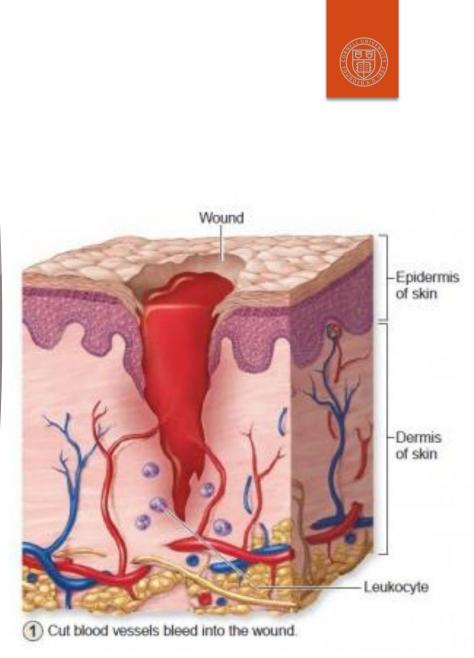
Repair or Proliferative Stage


Maturation or Remodeling Stage

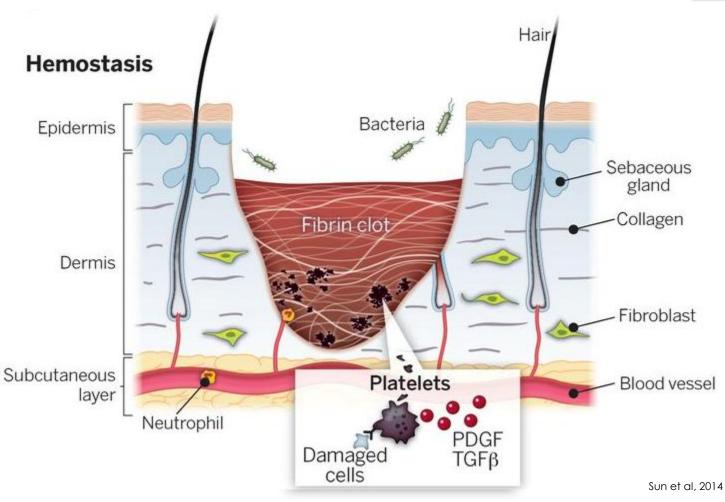
1998, p 477.)

1998, p 477.)

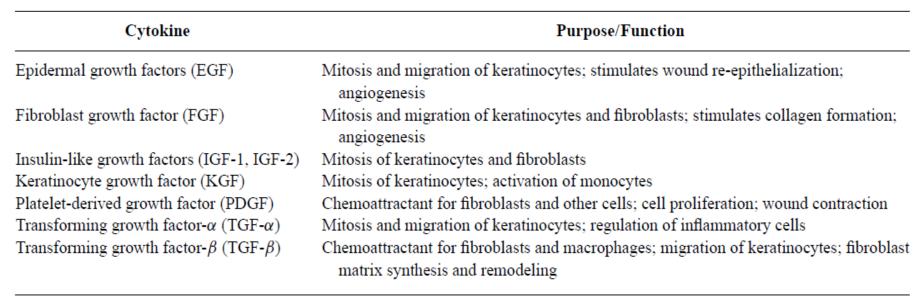
Hemostasis Stage


0-6 hours

Platelet Aggregation


Platelet Degranulation

Vasoconstriction


Fibrin Clot

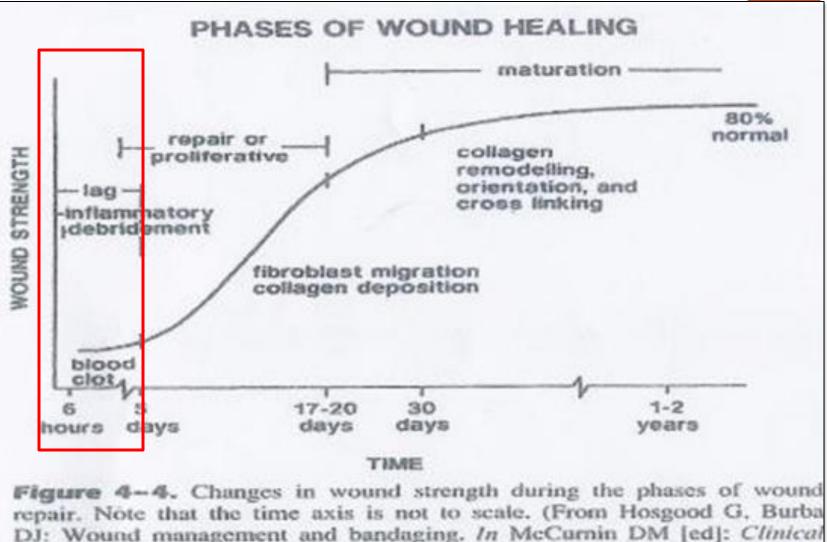

Platelet-Mediated Growth Factors

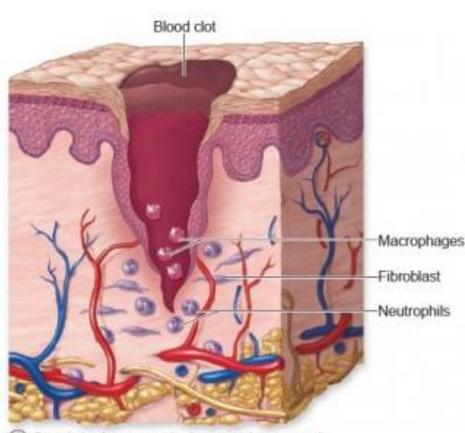
Table 3. Platelet-Mediated Growth Factors Involved in Wound Healing

Strodtbeck, 2001

DJ: Wound management and bandaging. In McCurnin DM [ed]: Clinical Textbook for Veterinary Technicians, 4th ed. WB Saunders, Philadelphia, 1998, p 477.) Inflammatory or Debridement Stage

6 hours – 5 days

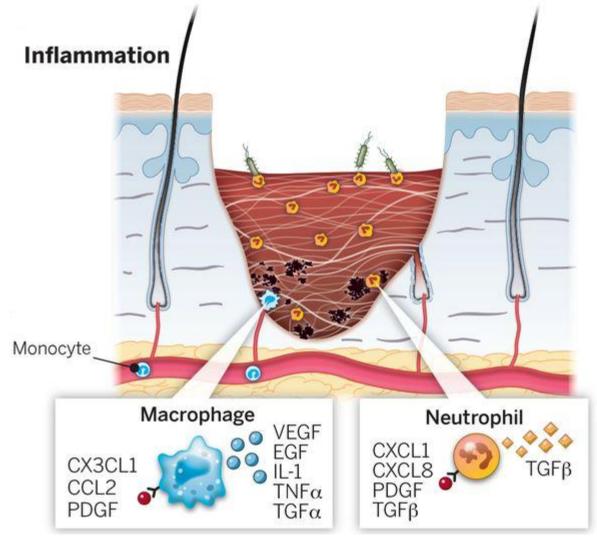
Neutrophil Infiltration


Monocyte Infiltration

Differentiation to Macrophages

Increased Endothelium Permeability and Perfusion

Wound Debridement



Blood clot forms, and leukocytes clean wound.

http://biology-forums.com/index.php?action=gallery;sa=view;id=15063

Sun et al, 2014

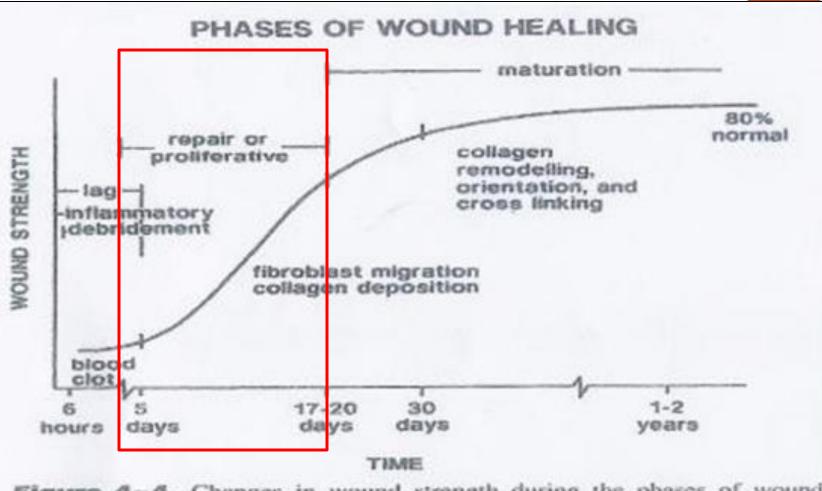
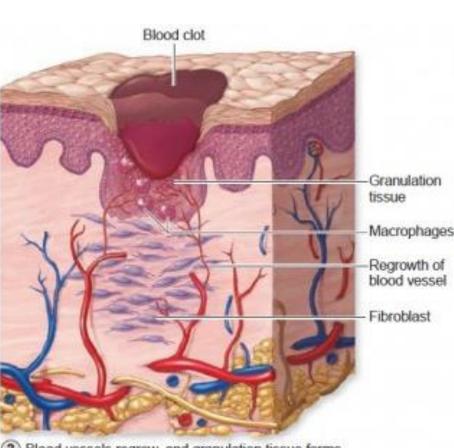


Figure 4-4. Changes in wound strength during the phases of wound repair. Note that the time axis is not to scale. (From Hosgood G, Burba DJ: Wound management and bandaging. In McCurnin DM [ed]: Clinical Textbook for Veterinary Technicians, 4th ed. WB Saunders, Philadelphia, 1998, p 477.)

Repair or Proliferative Stage

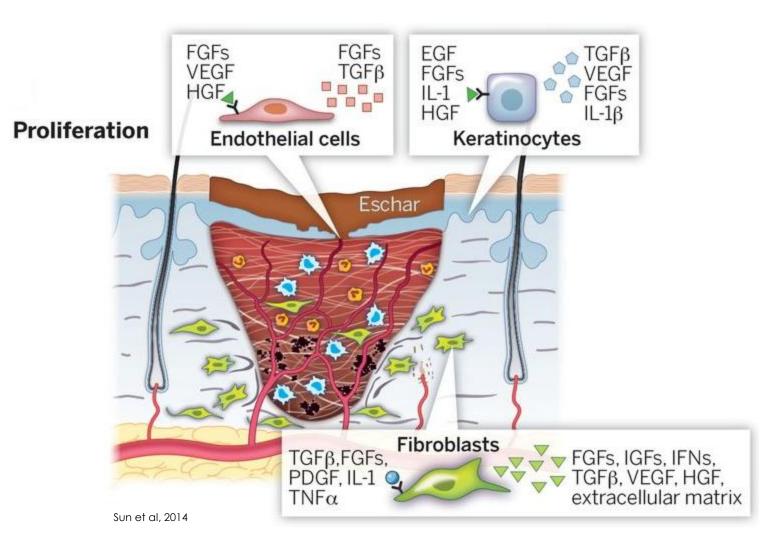

5 - 21 days

Angiogenesis

Re-epithelialization

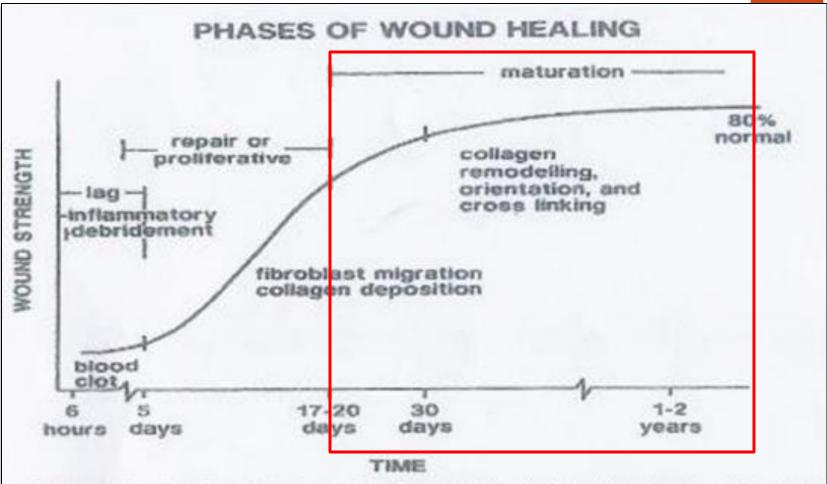
Collagen Synthesis

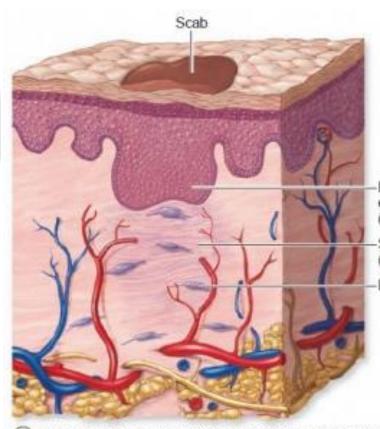
Extracellular Matrix Formation



Blood vessels regrow, and granulation tissue forms.

http://biology-forums.com/index.php?action=gallery;sa=view;id=15063



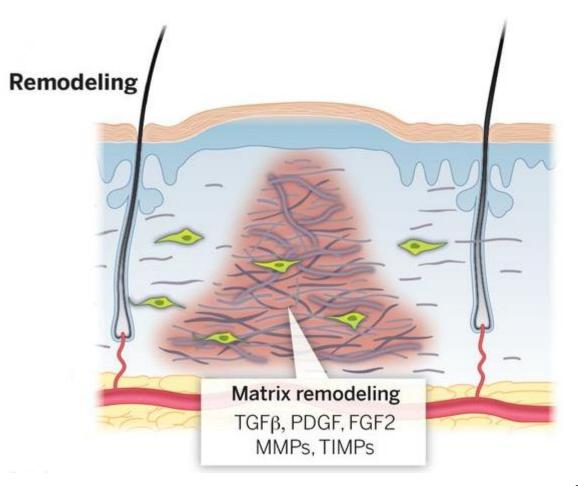

Figure 4-4. Changes in wound strength during the phases of wound repair. Note that the time axis is not to scale. (From Hosgood G, Burba DJ: Wound management and bandaging. In McCurnin DM [ed]: Clinical Textbook for Veterinary Technicians, 4th ed. WB Saunders, Philadelphia, 1998, p 477.)

Maturation Stage

21 days to months

Collagen Cross-Linking

Vascular Maturation


Regenerated epithelium (epidermis)

Scar tissue (fibrosis) Fibroblast

Epithelium regenerates, and connective tissue fibrosis occurs. http://biology-forums.com/index.php?action=gallery;sa=view;id=15063

Sun et al, 2014

Factors Affecting Wound Healing

Wound-specific variables	Systemic variables	Medications and exposures	Diseases and conditions
Body site	Nutrition	Cancer chemotherapeutic agents	Diabetes
Infection	Age	Nonsteroidal anti inflammatory agents	Autoimmune diseases
Vascular supply	Sex	Glucocorticoids	Venous stasis
Oxygenation	Psychological stress	Radiation therapy	Predisposition to keloids
Mechanical stress	Immobility	Smoking	Some genetic skin diseases
Desiccation		Alcohol and recreational drugs	Immunocompromised state (AIDS, cancer)
Edema			Obesity, vasculitis, neuropathy, some infectious diseases

Table 1. Factors that affect wound healing.

Sun et al, 2014

Factors Affecting Wound Healing

latrogenic:

- Hypotonic solutions (water)
- Highly concentrated antiseptic solutions: cytotoxic
- Removal of granulation tissue

Factors Affecting Wound Healing

Veterinary Surgery 44 (2015) 2-8

Prospective Surgical Site Infection Surveillance in Dogs

Ryen Turk¹, Bsc, Msc, Ameet Singh², DVM, DVSc, Diplomate ACVS, and J. Scott Weese¹, DVM, DVSc, Diplomate ACVIM

¹ Department of Pathobiology and ² Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Canada


	SSI Odds ratio	SSI Confidence Interval	SSI <i>P</i> -Value	Surgical Site abnormality Odds ratio	Surgical Site abnormality Confidence Interval	Surgical Site abnormality <i>P</i> value
TPLO	1.37	0.50-3.79	.542	1.52	0.61-3.84	.372
Implant	5.61	2.01-15.63	.001	1.46	0.69-3.07	.323
Hypotension	27.67	2.14-358.32	.011	8.64	0.074-100.45	.085
Class (Clean:dirty)	14.60	1.31-162.15	.029	4.77	0.51-44.29	.170
Class (Clean:clean contaminated)	2.15	0.66–7.00	.204	1.30	0.60-2.84	.504

Wound Cleansing

Delivery

- Solution
- Pressure
- Continuous vs Pulsatile
- Volume

Additives Antibiotics Antiseptics

Wound Cleansing: Solution

Veterinary Surgery 26:460-466, 1997

The Effects of Wound Lavage Solutions on Canine Fibroblasts: An In Vitro Study

EUGENE A. BUFFA, BVSC, MMedvet (CHIR), MRCVS, ANTON M. LUBBE, BVSC (HONS), MMedvet (CHIR), FRANK J. M. VERSTRAETE, Drmedvet, BVSC (HONS), MMedvet (CHIR), DIPLOMATE AVDC, DIPLOMATE ECVS, and STEVEN F. SWAIM, DVM, MS

- Tap Water: alkaline pH, hypotonic, cytotoxic trace elements produced severe fibroblast injury at all time points (0.5, 1, 2.5, 5,10 minutes)
- Normal Saline: acidic pH, lack of a buffering system produced fibroblast injury at 10 min

LRS: ideal lavage solution

Wound Cleansing: Pressure

AJVR, Vol 71, No. 11, November 2010 Evaluation of fluid pressures of common wound-flushing techniques

Trent T. Gall, DVM, MS, and Eric Monnet, DVM, PhD

- Solution bottles with holes on cap do not provide adequate flushing pressure
- 35 ml syringe w/any size needle will produce >7-8 psi, which can damage tissues
- Ideal method: 1L fluid bag pressurized to 300 mmHg generates 7-8 psi

Wound Cleansing: Volume

American Journal of Infection Control 42 (2014) 525-9

Surgical wound irrigation: A call for evidence-based standardization of practice

Sue Barnes RN, BSN, CIC^a, Maureen Spencer RN, MEd, CIC^b, Denise Graham^c, Helen Boehm Johnson MD^{d,*}

50 to 100 mL per centimeter of laceration length or square centimeter of a wound

Heavy contamination and debris may require larger volumes

Wound Cleansing: Antibiotics

American Journal of Infection Control 42 (2014) 525-9

Surgical wound irrigation: A call for evidence-based standardization of practice

Sue Barnes RN, BSN, CIC^a, Maureen Spencer RN, MEd, CIC^b, Denise Graham^c, Helen Boehm Johnson MD^{d,*}

Antibiotics in irrigation solutions do NOT appear to significantly improve clinical outcomes

May lead to anaphylaxis, bacterial resistance, systemic absorption and toxicity

Increased cost

Wound Cleansing: Antiseptics

Effects of Chlorhexidine Diacetate and Povidone-Iodine on Wound Healing in Dogs

ISIS R. SANCHEZ, DVM, MS, STEVEN F. SWAIM, DVM, MS, KENNETH E. NUSBAUM, DVM, PhD, ANNE S. HALE, DVM, RALPH A. HENDERSON, DVM, MS, DiplomateACVS, and JOHN A. MCGUIRE, PhD

0.05% chlorhexidine was bactericidal vs 1% iodine which was not
Chlorhexidine > healing and contraction compared to iodine

Veterinary Surgery, 21, 2, 107–112, 1992 Effects of Four Preparations of 0.05% Chlorhexidine Diacetate on Wound Healing in Dogs

SCOTT LOZIER, DVM, MS, ERIC POPE, DVM, MS, Diplomate ACVS, and JOHN BERG, DVM, PhD

0.05% chlorhexidine in sterile water, saline and LRS =100% bacterial kill
No significant differences in wound contraction or epithelialization

Wound Debridement

- Surgical Debridement: selective, fast, revitalizing the wound
- Mechanical Debridement: nonselective, can damage granulation tissue and wound bed
- Autolytic Debridement: selective, slow, promotes natural endogenous debridement
- Enzymatic Debridement: selective, uses exogenous enzymes for debridement

Wound Dressings

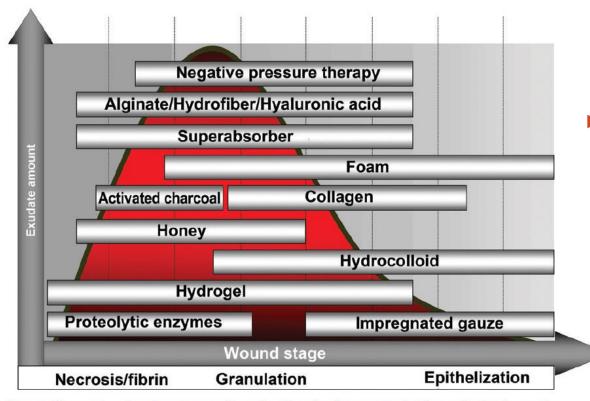


Figure 1 Phase- and exudate-dependent use of wound products for the treatment of patients with chronic wounds.

 Appropriate dressing should be chosen dependent on:

- Healing phase
- Exudate amount

Wet-to-Dry Dressings

ADVANCES IN SKIN & WOUND CARE · MARCH/APRIL 2002

Hanging Wet-to-Dry Dressings Out to Dry

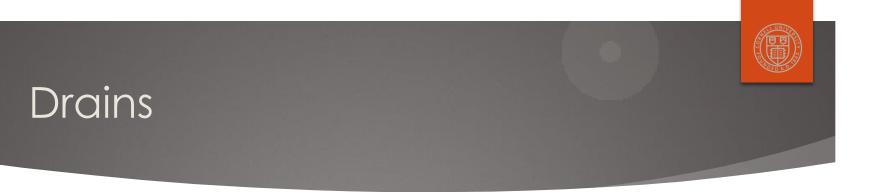
Liza G. Ovington, PhD, CWS • President • Ovington & Associates, Inc, Pittsburgh, PA.

"The scientific literature supports mechanical debridement by wetto-dry dressings only when the benefit of removing non-viable tissue from the wound bed outweighs the risks of detrimental disruption of healthy granulating tissue in the wound bed (such as when >50% nonviable tissue is present in the wound bed)." Cowen et al, 2009.

Why Gauze Dressings Should NOT Be Used


- A gauze dressing placed in the wound does little to impede fluid evaporation and allows a loss of tissue temperature, resulting in impaired healing.
- Wet-to-dry debridement is not selective and often also removes healthy tissues, causing reinjury and significant pain.
- Both retrospective and prospective clinical studies have shown that infection rates in wounds dressed with gauze are actually higher than in wounds dressed with transparent films or hydrocolloids.
- In today's reimbursement climate, twice-daily and 3-times daily dressings are not feasible, not just from a reimbursement perspective, but also as an ineffective way to reach the most positive outcomes.
- Removing a dried dressing from a wound disperses significant amounts of bacteria into the air. Research has determined that airborne dispersal of bacteria was greatest from dry gauze dressings; however, even removing moist gauze dressings released bacteria.
- · Semiocclusive dressings are more financially feasible from a total cost perspective.

Drains

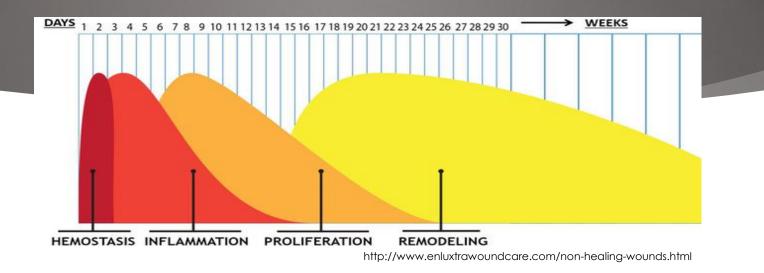

Classification

- Active: Jackson-Pratt
- Passive: Penrose
- Indications
 - Contaminated or dirty wounds
 - Large amount of dead space
- Do not place directly under wound closure
- Do not exit from the wound itself
- Most drains removed in 3-5 days

A: Incorrect placement

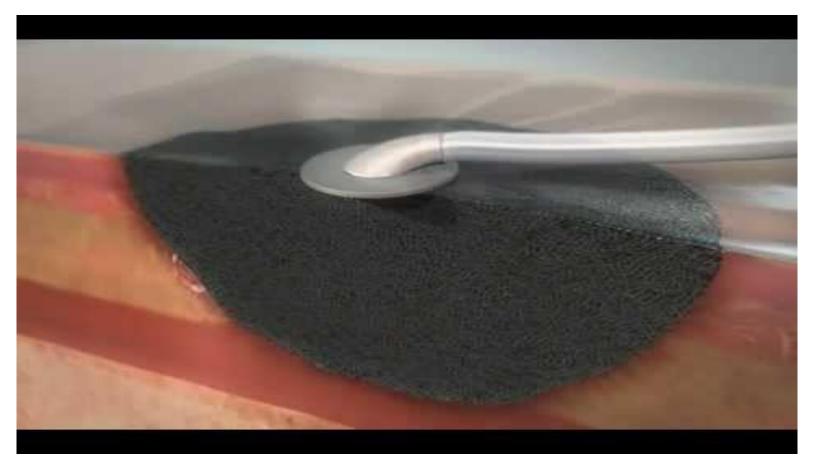
B: Correct placement

JAVMA, Vol 245, No. 2, July 15, 2014


Evaluation of fluid production and seroma formation after placement of closed suction drains in clean subcutaneous surgical wounds of dogs: 77 cases (2005–2012)

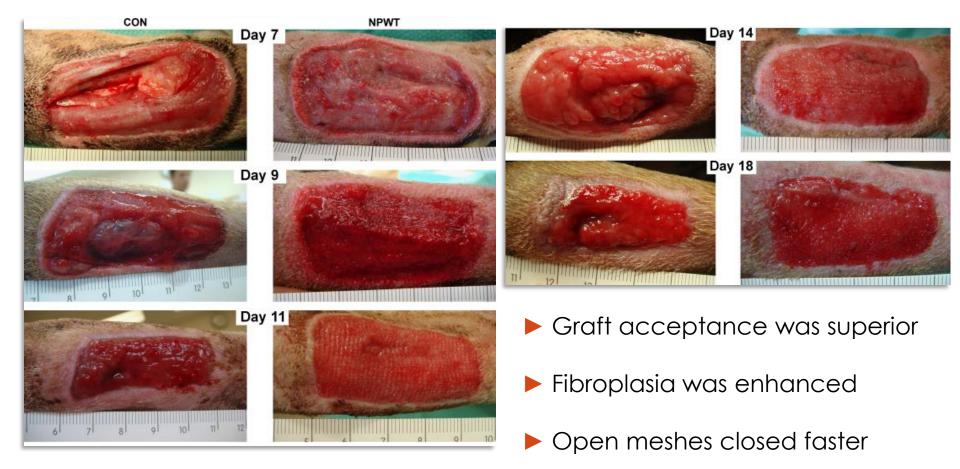
Stephanie L. Shaver, DVM; Geraldine B. Hunt, BVSc, MVetClinStud, PhD; Scott W. Kidd, DVM

- < 0.2 mL/kg/h (4.8 mL/kg/d) at the time of drain removal were significantly less likely to form a seroma, may be a useful clinical benchmark for drain removal
- 6.6% had surgical site infection, unknown if these had contaminated drain



Techniques that Promote Healing

Negative Pressure Wound Therapy


https://www.youtube.com/watch?v=MDo1dhH7Ktw

Effects of Negative Pressure Wound Therapy on Healing of Open Wounds in Dogs

Marco Demaria¹, DVM, Bryden J. Stanley¹, BVMS, MVetSc, Diplomate ACVS, Joe G. Hauptman¹, DVM, MS, Diplomate ACVS, Barbara A. Steficek², DVM, PhD, Diplomate ACVP, Michele C. Fritz¹, BSc, LVT, John M. Ryan³, MVB, MRCVS, Nathaniel A. Lam¹, DVM, Trevor W. Moore¹, DVM, and Heather S. Hadley¹, DVM

¹Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, ²Diagnostic Center for Population and Animal Health, College of Veterinary Medicine, Michigan State University, East Lansing, MI and ³Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK

Veterinary Surgery 43 (2014) 380–387 Negative Pressure Wound Therapy: Experience in 45 Dogs

Kathryn A. Pitt, BS, DVM, MS, and Bryden J. Stanley, BVMS, MVetSc, Diplomate ACVS

Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan

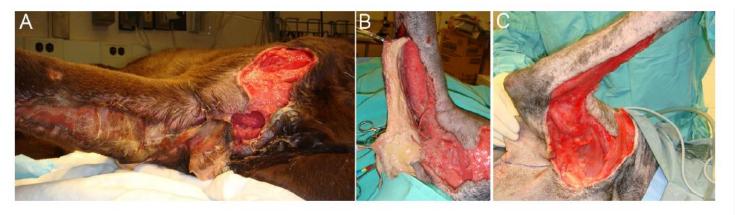
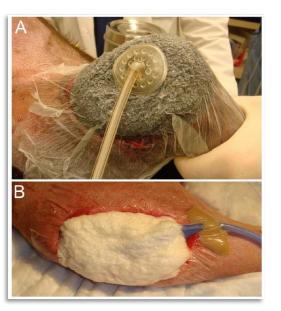
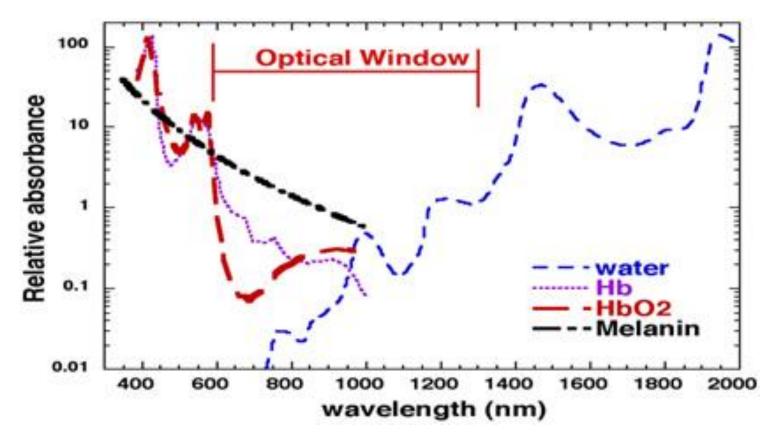
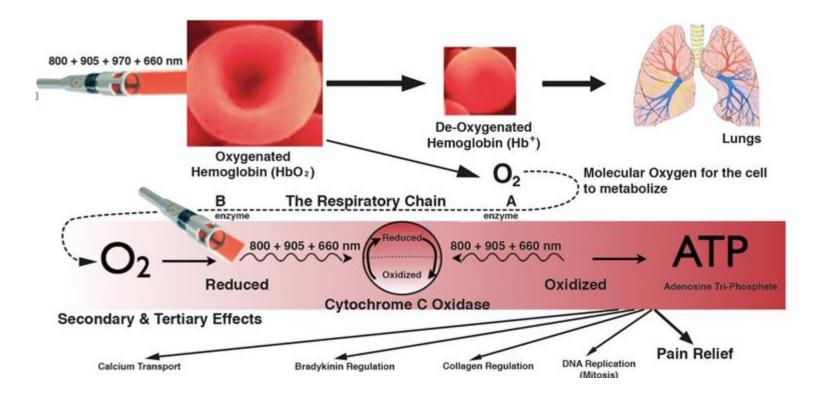




Figure 4 (A) Necrotic wound on the right brachium and antebrachium caused by an untreated impalement in a 2-year male neutered Labrador retriever. (B) During debridement, before placement of NPWT. (C) Wound appearance after 3 days of NPWT, immediately before reconstruction. Note the early appearance of granulation tissue in the wound.


- Mean 3 days with NPWT
- NPWT wounds closed < time vs traditional management in traumatic injuries
- Changed every 3 days
- Successful at home care in 3 patients

http://spie.org/newsroom/technical-articles-archive/1669-low-level-laser-therapy-an-emergingclinical-paradigm?highlight=x2404

Veterinary Surgery 44 (2015) 988-996

The Effect of Low-Level Laser Therapy on the Healing of Open Wounds in Dogs

Lindsey M. Kurach¹, Bryden J. Stanley¹, Krista M. Gazzola¹, Michele C. Fritz¹, Barbara A. Steficek², Joe G. Hauptman¹, and Kristen J. Seymour¹

¹Department of Small Animal Clinical Sciences and ²Diagnostic Center for Population and Animal Health, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan

No apparent beneficial effects of LLLT

Low-level laser therapy reduces time to ambulation in dogs after hemilaminectomy: a preliminary study

W. E. Draper, T. A. Schubert, R. M. Clemmons and S. A. Miles

LLLT group (3-5 days) vs control group (14 days)

Journal of Athletic Training 2004;39(3):223-229

Low-Level Laser Therapy Facilitates Superficial Wound Healing in Humans: A Triple-Blind, Sham-Controlled Study

J. Ty Hopkins*; Todd A. McLoda†; Jeff G. Seegmiller‡; G. David Baxter§

- 22 healthy patients, 2 1.3 cm abrasions
- I wound LLLT vs sham therapy, the other wound was left untreated, daily Tx 10 days, photos daily and on day 20
- LLLT resulted in enhanced healing
- LLLT resulted in indirect healing effect on surrounding tissues

Figure 1. Experimental wounds before treatment on day 1.

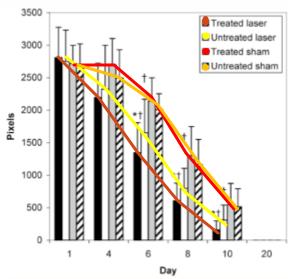
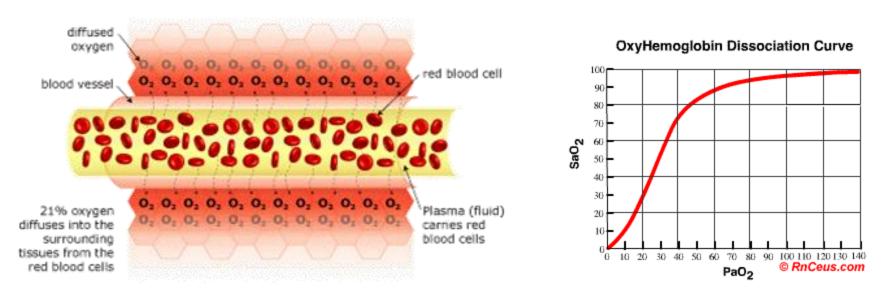


Figure 2. Average wound areas (pixels) of all groups over time. *Different from sham group for both treated and untreated wounds (P > .05). †Different from the untreated wound in the laser group.

J Vet Emerg Crit Care 2010; 20(3): 289–297)

Hyperbaric oxygen therapy. Part 2: application in disease

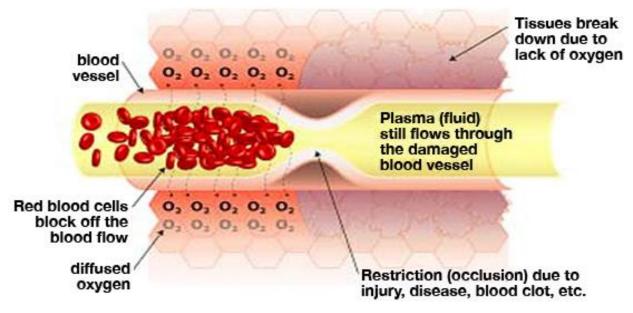
Melissa L. Edwards, DVM, DACVECC


- Hyperoxygenation: ↑ from 21% to 100% O₂ delivery, ↑ in free O₂ in plasma
- Vasoconstriction: decrease in edema
- Bactericidal and AB Synergy
- Superoxide Dismutase Stimulation: antioxidant production

 Inflammation and Immune Modulation: PaO₂ <30 mmHg ↓ bactericidal action neutrophils

Angiogenesis

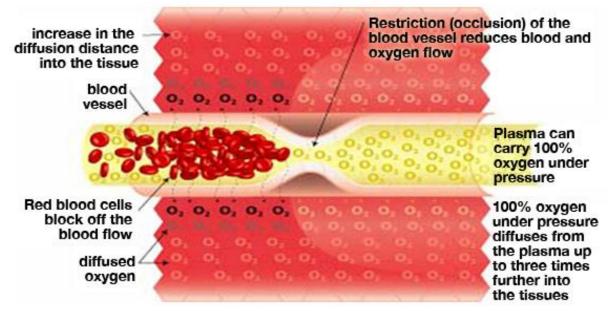
 Increases Fibroblast, Collagen and Bone Production



http://wesleyhyperbaric.com.au/hbot-diagrams/

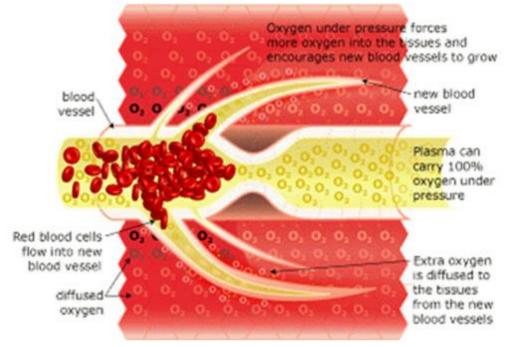
Normal Blood Flow

Increase in normal O₂ delivery is limited to Hb saturation



http://wesleyhyperbaric.com.au/hbot-diagrams/

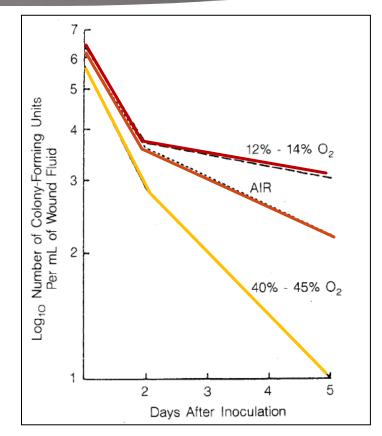
Compromised Blood Flow



http://wesleyhyperbaric.com.au/hbot-diagrams/

Hyperbaric Oxygen

Increased pressure will cause more O₂ to go into solution, and therefore more oxygen will be transported in the plasma



http://wesleyhyperbaric.com.au/hbot-diagrams/

Neovascular Regeneration

- Hypoxic wounds are more susceptible to infection, delayed healing
- Transcutaneous tissue PO₂ can be used to assess tissue oxygenation
- ► Hypoxia leads to ↓ ROS production, important in oxidative eradication of bacteria

Journal of the American College of Clinical Wound Specialists (2015) 6, 9-13

Clinical Effectiveness of Hyperbaric Oxygen Therapy in Complex Wounds Supaporn Opasanon, MD, FRCST, FICS, FACS^{a,*}, Warut Pongsapich, MD, Dr Med^b, Sitthichoke Taweepraditpol, MD^c, Bhoom Suktitipat, MD, PhD^{d,e}, Apirag Chuangsuwanich, MD^c

- 40 patients with complex wounds (defined as non-healing wounds, treated unsuccessfully with standard wound care for 6 months)
- HBOT Mon-Fri, for 8 weeks
- 78% healed wounds after 8 weeks
- 5 HBO treatments, wound size <29.7%</p>
- 10 HBO treatments, wound size <17%</p>

Table 2Wound Size Reduction: Comparison of the WoundSize Between Each 5 Visits. The Wound Size Reduction wasCalculated as a Proportion of Wound Size Reduced From thePrevious Visit.

HBO (sessions)	Difference	<i>p</i> -Value
1–5	-29.659	< 0.001
5–10	-16.907	<0.001
10-15	-8.565	0.141
15–20	-12.304	0.022
20-25	-5.647	0.224
25-30	-9.669	0.012
30-35	3.205	0.591
35–40	-18.104	0.073

Water Moccasin Envenomation 1HBOT session

Courtesy of Dr. Justin Schmalberg DVM, DACVN, CVA

Cutaneous Pythium, HBOT over 7 months

Courtesy of Dr. Justin Schmalberg DVM, DACVN, CVA

Conclusions

- Healing stage of the wound should be evaluated to make clinical decisions
- Wounds should not ALL receive the same management
- Complex wounds (infected, chronic, etc.) should be evaluated for enhanced healing techniques if available

Name the 4 stages of Wound Healing

Hemostasis Inflammation/Debridement Repair/Proliferation Maturation

Name the Stage of Wound Healing Inflammation/ Debridement

Name the Stage of Wound Healing Repair/ Proliferation

Name the Stage of Wound Healing Hemostasis

Name the Stage of Wound Healing Inflammation/ Debridement

References

- Barnes, Sue, et al. "Surgical wound irrigation: a call for evidence-based standardization of practice." American journal of infection control 42.5 (2014): 525-529.
- Balsa, Ingrid M., and William TN Culp. "Wound Care." Veterinary Clinics of North America: Small Animal Practice (2015).
- Dissemond, Joachim, et al. "Modern wound care-practical aspects of non-interventional topical treatment of patients with chronic wounds." JDDG: Journal der Deutschen Dermatologischen Gesellschaft 12.7 (2014): 541-554.
- Draper, W. E., et al. "Low-level laser therapy reduces time to ambulation in dogs after hemilaminectomy: a preliminary study." *Journal of Small Animal Practice* 54.1 (2013): 57-57.
- Gall, Trent T., and Eric Monnet. "Evaluation of fluid pressures of common wound-flushing techniques." American journal of veterinary research 71.11 (2010): 1384-1386.
- Garzotto, C. Wound Management. In: Silverstein, D., Hopper, K. Small Animal Critical Care Medicine. 2nd ed. 2015. pp:734-743.
- Guo, Shujuan, and Luisa A. DiPietro. "Factors affecting wound healing." Journal of dental research 89.3 (2010): 219-229.
- Hunt, T. The physiology of wound healing. Annals of emergency medicine 17.12 (1988): 1265-1273.
- Kurach, Lindsey M., et al. "The Effect of Low-Level Laser Therapy on the Healing of Open Wounds in Dogs." Veterinary Surgery 44.8 (2015): 988-996.
- Molan, Peter C. "Potential of honey in the treatment of wounds and burns." American Journal of Clinical Dermatology 2.1 (2001): 13-19.
- Opasanon, Supaporn, et al. "Clinical Effectiveness of Hyperbaric Oxygen Therapy in Complex Wounds." Journal of the American College of Clinical Wound Specialists (2015).
- Savva-Bordalo, J., et al. "Clinical effectiveness of hyperbaric oxygen therapy for BK-virus-associated hemorrhagic cystitis after allogeneic bone marrow transplantation." Bone marrow transplantation 47.8 (2012): 1095-1098.
- Strodtbeck, Frances. "Physiology of wound healing." Newborn and infant nursing reviews 1.1 (2001): 43-52.
- Sun B., Siprashvili Z., KhavariP. Advances in skin grafting and treatment of cutaneous wounds. Science (2014), vol. 346:6212, pp. 941-945.
- Turk, Ryen, Ameet Singh, and J. Scott Weese. "Prospective surgical site infection surveillance in dogs." Veterinary Surgery 44.1 (2015): 2-8.

Wound Solutions

0.05% Chlorhexidine solution:

25 ml of 2% chlorhexidine solution + 1000 ml electrolyte solution

0.1% Povidone-lodine solution:

10 ml of 10% povidone-iodine solution + 1000 ml electrolyte solution (inactivated by organic material)

Tris-EDTA solution: (Pseudomonas aeruginosa, Escherichia coli, and Proteus vulgaris)

1.2 g of EDTA + 6.05 g of tris + 1000 ml sterile water. Na added until pH is 8, autoclaved for 15 minutes. Can be added to 0.01% chlorhexidine gluconate solution.

Table 5 Stages of wound healing

Stage or Phase	Approximate Time	Characteristics	Goal of Bandage
Inflammatory	0–5 d	Inflammatory cells eliminate contaminants and nonviable tissue. Platelets release growth factors to attract fibroblasts, which produce fibrin and collagen. Fluid extravasation may cause edema.	Maintain a moist wound environment to promote autolytic debridement. Protect the wound from external contaminants. Provide support to tissues.
Repair	5–21 d	Inflammatory cells and mediators diminish. Collagen and neovascularization form granulation tissue, which provides a barrier to infection. Epithelialization may begin once there is granulation tissue. Myofibroblasts in granulation tissue cause wound contraction.	Maintain a moist wound environment to stimulate granulation tissue, epithelialization, and wound contraction. Bandage may need to support tissues, depending on location and severity of tissue damage.
Maturation	21 d to weeks or months	Collagen reorganizes and forms cross-links to strengthen the tissue. Tissue structures are reformed.	Wound is typically no longer open and has contracted/ epithelialized. Bandage is no longer needed, unless to support weakened tissues.

Honey Dressing Considerations

Table III. Some practical considerations using honey in clinical practice

The various beneficial effects of honey on wound tissues will be reduced or lost if small amounts of honey become diluted by large amounts of exudate The frequency of dressing changes required depends on how rapidly the honey is being diluted by exudate

More honey is required on deeper infections, to obtain an effective level of antibacterial activity diffusing deep into the wound tissues

Typically, 20ml of honey (25 to 30g) is used on a 10cm x 10cm absorbent dressing pad

Most commonly, dressing are changed daily, but up to 3 times daily may be needed at first for heavily exuding wounds

The antibacterial and anti-inflammatory action of honey soon reduces the amount of exudation from the wound – twice-weekly dressing changes may be suitable later

A heavy flow of exudate tends to wash the honey to the outer surface of the dressing, thus allowing the dressing to stick to the wound: more frequent dressing changes prevent this

If a non-adherent dressing is used under the honey dressing, it has to have sufficient porosity to allow the components of the honey to diffuse through to the wound bed (paraffin-impregnated dressings prevent diffusion from the honey)

Honey at body temperature is fluid and tends to run off wounds (fig. 2). Absorbent dressing pads preimpregnated with honey are the most convenient way of applying honey to surface wounds (fig. 3)

Filling abscesses, cavities and depressions in the wound bed with honey before applying the honey dressing pad ensures honey is always in contact with the wound bed (fig. 4)

Occlusive or absorbent secondary dressings are needed to prevent honey oozing out from the wound dressing. Occlusive dressings have the advantage of preventing honey from soaking away from the wound (the high osmolarity of honey prevents maceration of the skin)

Where there is no problem with containing exudate, fluid honey can be held in place on a wound by an adhesive polyurethane film dressing

For varicose ulcers, multi-layer pressure bandaging can be used over honey-impregnated dressing pads

Care Strategy	Wound Healing Event Trageted	Scientific Rationale
Maintain normal serum calcium levels	Collagen maturation; wound contraction	Actin-myosin contractility is calcium dependent ³⁹
Maintain normal perfusion	Metabolic activities within the wound microenvironment	Maximizes oxygen delivery to the wound bed
Maintain adequate oxygenation	Collagen synthesis; fibroblast proliferation; keratinocyte mitosis	Collagen synthesis and secretion depends on oxygen-dependent enzyme reactions ¹⁹ ; increases tissue resistance to infection ²
Maintain iron stores and/or provide ferrous iron	Collagen synthesis and remodeling	Ferrous iron is a co-factor for collagen hydroxylation reactions ¹⁹
Cover injuries with an occlusive hydrocolloid dressing	Keratinocyte migration; sequestering of growth factors	The hydrocolloid dressing provides a temporary cover under which wound exudate can collect; this allows the wound bed to be bathed with growth-factor rich fluid that facilitates keratinocyte migration; the application of an occlusive hydrocolloid may decrease the risk of wound infection ⁴⁰⁻⁴³
Keep the infant in a neutral thermal environment	Inflammatory cell activity; Leukocyte activity	Hypothermia decreases leukocyte mitotic activity ⁴⁴ ; the ideal wound temperature is 37°C ⁴⁴
Maintain renal function	Production of granulation tissue; Fibroblast and keratinocyte proliferation	Animal data shows that acute renal failure leads to inadequate granulation tissue production ^{45–47} ; chronic renal failure is associated with decreases in plasma fibronectin concentration ³⁷
Prevent sepsis/infections	Inflammatory response; collagen synthesis; epithelialization	Infection prolongs the inflammatory process, which delays wound healing; prolonged exposure to inflammatory cytokines also produces tissue damage ²
Avoid the use of corticosteroids	Every aspect of wound healing	Corticosteroids have a substantial impact on every stage of wound healing; they reduce macrophage migration, suppress the inflammatory response decrease keratinocyte and fibroblast proliferation, impair capillary budding, decrease ECM production, decrease protein synthesis, delay epithelialization, and block the release of vasoactive factors ^{2,6,48,49}

Maximize protein in parenteral and/or enteral nutrition	Collagen synthesis; wound contraction and remodeling	Additional protein is needed to meet the demands of wound healing ^{49,50}
Provide vitamins A, and C and B-complex vitamins (thiamine, niacin, riboflavin, folate, B ₁₂)	Epithelialization; collagen synthesis; cell metabolism	Vitamin A promotes epithelial integrity; the B-complex vitamins are important for anabolic reactions such as wound healing; vitamin C is a co-factor for collagen synthesis and is important for normal immune function ^{49,50}
Provide zinc and copper	Collagen synthesis	Zinc is a co-factor for collagen synthesis, ¹⁹ epithelialization, and fibroblast proliferation ⁶ Copper is a co-factor for collagen cross-linking reactions ⁶
Maintain euvolemia	Tissue oxygenation	Normal perfusion is needed to maintain the wound microenvironment and the developing ECM ⁵¹
Provide adequate pain management	Wound perfusion; all aspects of wound healing	Connective tissue perfusion is sensitive to autonomic nervous activity ¹⁸ ; pain results in catecholamine release that can lead to vasoconstriction and impaired wound perfusion, ² pain also stimulates corticosteroid release that can interfere with wound healing

Strodtbeck et al, 2001

CYTOKINE	ABBREVIATION	SOURCE	FUNCTIONS
Platelet-derived growth factor	PDGF	Platelets, macrophages, endothelial cells, keratinocytes	Chemotactic for PMNs, macrophages, fibroblasts, and smooth muscle cells; activates PMNs, macrophages, and fibroblasts; mitogenic for fibroblasts and endothelial cells; stimulates production of MMPs, fibronectin, and HA; stimulates angiogenesis and wound contraction; remodeling
Transforming growth factor-β (including isoforms β1, β2, and β3)	TGF-β	Platelets, T-lymphocytes, macrophages, endothelial cells, keratinocytes, fibroblasts	Chemotactic for PMNs, macrophages, lymphocytes, and fibroblasts; stimulates TIMP synthesis, keratinocyte migration, angiogenesis, and fibroplasia; inhibits production of MMPs and keratinocyte proliferation; induces TGF-β production
Epidermal growth factor	EGF	Platelets, macrophages	Mitogenic for keratinocytes and fibroblasts; stimulates keratinocyte migration
Transforming growth factor-α	TGF-α	Macrophages, T-lymphocytes, keratinocytes	Similar to EGF
Fibroblast growth factor-1 and -2 family	FGF	Macrophages, mast cells, T-lymphocytes, endothelial cells, fibroblasts	Chemotactic for fibroblasts; mitogenic for fibroblasts and keratinocytes; stimulates keratinocyte migration, angiogenesis, wound contraction, and matrix deposition
Keratinocyte growth factor (also called FGF-7)	KGF	Fibroblasts	Stimulates keratinocyte migration, proliferation, and differentiation
Insulin-like growth factor	IGF-1	Macrophages, fibroblasts	Stimulates synthesis of sulfated proteoglycans, collagen, keratinocyte migration, and fibroblast proliferation; endocrine effects similar to those of growth hormone
Vascular endotheliał cell growth factor	VEGF	Keratinocytes	Increases vasopermeability; mitogenic for endothelial cells

Growth Factors in the Wound Healing Process and Cells That Produce Them

Modified from Schwartz SI, editor: Principles of surgery, ed 7, New York, 1999, McGraw-Hill.

From Ethridge R, Leong M, Phillips L: Wound healing. In Townsend C, Beauchamp R, Evers B, Mattox K, editors: Sabiston textbook of surgery, ed 18, St Louis, 2007, Saunders/Elsevier.

HA, Hyaluronic acid; MMPs, matrix metalloproteinases; PMNs, polymorphonuclear leukocytes; TIMP, tissue inhibitor of matrix metalloproteinase.

TIME - Principles of wound bed preparation

Clinical observations	Proposed pathophysiology	WBP clinical actions	Effect of WBP actions	Clinical outcome
issue non-viable or deficient	Defective matrix and cell debris impair healing	Debridement: »Autolytic, sharp surgical, enzymatic, mechanical or biological	Restoration of wound base and functional extracellular matrix proteins	Viable wound base
nfection or Inflammation	High bacterial counts or prolonged inflammation	Remove infected foci Top <i>ical/systemic:</i> ++Antimicrobials ++Anti-inflammatories +>Protease inhibition	Low bacterial counts or controlled inflammation:	Bacterial balance and reduced inflammation
eisture imbalance	Desiccation slows epithelial cell migration	Apply moisture-balancing dressings	Restored epithelial cell migration, desiccation avoided	Moisture balance
	Excessive fluid causes maceration of wound margin	Compression, negative pressure or other methods of removing fluid	Oedema, excessive fluid controlled, maceration avoided	
idge of wound — non-advancing or undermining	Non-migrating keratinocytes Non-responsive wound cells and abnormalities in extra- cellular matrix or abnormal protease activity	Re-assess cause or consider corrective therapies:	Migrating keratinocytes and responsive wound cells. Restoration of appropriate protease profile	Advanding edge of wound

