Pulmonary Thromboembolism: Pathophysiology and Diagnosis

 $\bullet \bullet \bullet$

Erik Zager Cornell University Department of Emergency and Critical Care

Outline

- Pathophysiology
- Predisposing Factors
 - Associated Disease Processes
- Presentation
 - Clinical Signs
 - Physical Examination
- Diagnostics
 - Minimum Database
 - Diagnostic Imaging
 - Ancillary Tests
- Human Scoring Systems
- Summary

Outline

- Pathophysiology
- Predisposing Factors
 - Associated Disease Processes
- Presentation
 - Clinical Signs
 - Physical Examination
- Diagnostics
 - Minimum Database
 - Diagnostic Imaging
 - Ancillary Tests
- Human Scoring Systems
- Summary

- Pulmonary thromboembolism (PTE) or pulmonary embolism (PE) is an obstruction of pulmonary arteries due to:
 - Thrombus
 - Pulmonary embolism
 - Can be due to any material
 - Most often thought of as blood clot
 - Local formation of clot in pulmonary vasculature
 - Primary pulmonary thrombosis

- Multiple factors involved in pathophysiology of PTE
 - Two Major body systems involved are the pulmonary system and cardiovascular system
- Degree of Severity highly depends on cardiac and pulmonary reserve
 - Smaller obstructions can cause big problems in patients with previously compromised heart or lungs

- Cardiac effects of PTE
 - Increase in pulmonary vascular resistance and pulmonary hypertension leads to increased right ventricular afterload
 - RV becomes dilated/enlarged
 - Can occur acutely
 - Can overwhelm compensatory

mechanisms leading to PEA and sudden death

- Cardiac effects of PTE
 - Decrease in right sided output leads to decreased left sided filling and decreased cardiac output
 - Acute right sided heart changes also impedes left ventricular function
 - ventricular interdependence
 - Left sided functional deficits result in
 - Syncope
 - Systemic hypotension
 - Cardiogenic shock

- Cardiac effects of PTE
 - Right ventricular overload can decrease
 right coronary perfusion pressures
 - Right coronary artery is less
 resistant to right ventricular
 changes than left CA
 - Leads to subendocardial ischemia or infarction and further right sided dysfunction

- Pulmonary effects of PTE
 - Occlusion of pulmonary arterial
 vasculature will result in decreased
 perfusion of lung tissue
 - If ventilation remains constant, then V/Q
 mismatch (high V low Q mismatch)
 occurs with subsequent hypoxemia
 - Reflex and humoral vasoconstriction may occur
 - Some human papers suggest this is

• Pulmonary effects of PTE

Increases in right ventricular and right
 atrial pressures can open foramen ovale
 and cause increased right to left shunting
 and even paradoxical thromboemboli into
 the arterial circuit

- Hypercapnia is rare except in the most severe cases
 - Compensatory mechanisms allow for sufficient ventilation

- Pulmonary effects of PTE
 - Congestive atelectasis
 - Pulmonary edema due to decreased type II pneumocyte surfactant production
 - Possibly only an experimental phenomena

Outline

- Pathophysiology
- Predisposing Factors
 - Associated Disease Processes
- Presentation
 - Clinical Signs
 - Physical Examination
- Diagnostics
 - Minimum Database
 - Diagnostic Imaging
 - Ancillary Tests
- Human Scoring Systems
- Summary

Predisposing Factors

- Any abnormalities in Virchow's triad can lead to thrombosis and PTE
 - Stasis and deep vein thrombosis is
 #1 predisposing factor in humans
- Multiple diseases in veterinary patients cause hypercoagulability

Predisposing Factors

- Any abnormalities in Virchow's triad can lead to thrombosis and PTE
 - Stasis and deep vein thrombosis is
 #1 predisposing factor in humans
- Multiple diseases in veterinary patients cause hypercoagulability

Table 1: Recognized risk factors for pulmonary thromboembolism (PTE) and disease processes with a known association with thromboembolic disease in the dog with proposed mechanisms.

Disease process/ risk factor	Hyper- coagulable state	Vascular flow abnor- malities/ stasis	Endothelial injury/ dysfunction
Corticosteroid administration* ^{4,8,9}	\checkmark		
Diabetes mellitus ¹⁰	\checkmark		
Dirofilariasis ^{11,12}	\checkmark		\checkmark
DIC*3,4,12 (secondary to	\checkmark		
other disease)			
Endocarditis ³ (tricuspid/	\checkmark		\checkmark
Feline infectious	V		\checkmark
peritonitis* ⁵	v		·
Hyperadrenocorticism ^{3,12–14}	V		
Hypothyroidism ¹⁰	V		
IMHA* ^{3,4,15,16}	V		?
Indwelling venous catheters* ^{3,4,12}		\checkmark	\checkmark
Myocardial disease ^{3,5,8}	\checkmark	\checkmark	\checkmark
Neoplasia*3-5,8,9	V	V	
Pancreatitis*4,5,9	\checkmark		\checkmark
Protein-losing enteropathy*4	\checkmark		
Renal amyloidosis/	\checkmark		
PLN* ^{3,4,10,14,17–19}			
Sepsis* ^{3,4,8,9}	\checkmark		\checkmark
Surgery ²⁰	\checkmark	\checkmark	\checkmark
Trauma* ²¹		\checkmark	\checkmark
327			

*Those conditions also associated with an increased risk in the cat are marked. Question mark signifies the role of this mechanism in the associated disease process is uncertain.

Goggs et al, JVECC, 2009

Predisposing Factors

Primary Disease	No. with PTE	Total No. Dogs with Postmortem Examination ^a	Relative % of Primary Disease with PTE ^b
IMHA	5	53	10.6
Neoplasia	12		
Lymphosarcoma/leukemia	5	283	1.8
Brain tumor	3		
Osteosarcoma	1		
Splenic histocytoma	1		
Transitional cell carcinoma (bladder)	1		
Carcinoma (shoulder)	1		
Systemic bacterial disease	6		
Sepsis	4	46	8.7
Pneumonia and/or pyothorax	1	110	0.9
Bacterial endocarditis	1		
Hyperadrenocorticism	2	91	2.7
Amyloidosis	2	27	7.4
Dilated cardiomyopathy	1	63	1.6
Megaesophagus	1		

Table 2. Primary clinical diagnoses in 29 dogs with pulmonary thromboembolism.

PTE, pulmonary thromboembolism; IMHA, immune-mediated hemolytic anemia.

^a Total number of cases with this postmortem diagnosis in the same time period. Data only available for those diseases for which numbers are listed.

^b Number of cases with PTE divided by the total number of cases with this postmortem diagnosis.

Outline

- Pathophysiology
- Predisposing Factors
 - Associated Disease Processes
- Presentation
 - Clinical Signs
 - Physical Examination
- Diagnostics
 - Minimum Database
 - Diagnostic Imaging
 - Ancillary Tests
- Human Scoring Systems
- Summary

Clinical Signs

- In humans, most common signs are
 - Coughing
 - Hemoptysis
 - Chest Pain
 - o Dyspnea
- Veterinary patients less frequently have the first three. Instead, our patients have
 - o Dyspnea
 - Tachypnea
 - Lethargy
- Less commonly
 - Cough, hemoptysis, cyanosis, syncope

Clinical Signs

- Auscultation findings include
 - Pulmonary crackles
 - Harsh lung sounds
 - Or dull lung sounds
 - Pleural effusion possible
 - Or even normal lung sounds...

Outline

- Pathophysiology
- Predisposing Factors
 - Associated Disease Processes
- Presentation
 - Clinical Signs
 - Physical Examination
- Diagnostics
 - Minimum Database
 - Diagnostic Imaging
 - Ancillary Tests
- Human Scoring Systems
- Summary

Minimum Database

- Complete Blood Count
 - No specific findings in CBC will help in directly diagnosing PTE
 - Helpful for looking for predisposing factors
 - IMHA
 - Primary (essential) thrombocytosis may predispose to thromboembolic disease
 - Secondary thrombocytosis does not
 - Markers of DIC should increased index of suspicion for PTE
 - Thrombocytopenia
 - Schistocytosis
- Serum Biochemistry
 - Same as CBC no specific changes for PTE, but helps look for underlying causes

- Chest Radiographs
 - Most common two patterns are
 - Alveolar pattern
 - Regional hypovascular lung pattern

TABLE 1. Radiographic Findings in 21 Dogs with Pulmonary Thrombosis or Embolism

	No. of Dogs
Normal	2
Abnormal	19
Pulmonary pattern	
Alveolar	10
Hyperlucent	6
Combined alveolar and hyperlucent	3
Shape of alveolar opacity*	
Fluffy, indistinct margins	11
Lobar consolidation, distinct margins	5
Triangular, base towards heart	3
Pulmonary vascular changes	14
Primary or loss of lobar artery	11
Loss of lobar vein	`14
Lung volume loss	6
Pleural effusion	14
Cardiomegaly	10
Generalized (3 primary heart failure)	4
Right heart enlargement (1 primary heart	
failure)	6
Main pulmonary artery enlargement	4

Flückiger and Gomez, Vet Radiology, 1984

* 9 dogs had more than one alveolar opacity.

- Chest Radiographs
 - Most common two patterns are
 - Alveolar pattern
 - Regional hypovascular lung pattern

TABLE 1. Radiographic Findings in 21 Dogs with Pulmonary Thrombosis or Embolism

	No. of Dogs
Normal	2
Abnormal	19
Pulmonary pattern	
Alveolar	10
Hyperlucent	6
Combined alveolar and hyperlucent	3
Shape of alveolar opacity*	
Fluffy, indistinct margins	11
Lobar consolidation, distinct margins	5
Triangular, base towards heart	3
Pulmonary vascular changes	14
Primary or loss of lobar artery	11
Loss of lobar vein	`14
Lung volume loss	6
Pleural effusion	14
Cardiomegaly	10
Generalized (3 primary heart failure)	4
Right heart enlargement (1 primary heart	
failure)	6
Main pulmonary artery enlargement	4

* 9 dogs had more than one alveolar opacity.

Goggs et al, JVECC, 2009

- Chest Radiographs
 - Up to 27% can have normal radiographs

TABLE 1. Radiographic Findings in 21 Dogs with Pulmonary Thrombosis or Embolism

	No. of Dogs
Normal	2
Abnormal	19
Pulmonary pattern	
Alveolar	10
Hyperlucent	6
Combined alveolar and hyperlucent	3
Shape of alveolar opacity*	
Fluffy, indistinct margins	11
Lobar consolidation, distinct margins	5
Triangular, base towards heart	3
Pulmonary vascular changes	14
Primary or loss of lobar artery	11
Loss of lobar vein	`14
Lung volume loss	6
Pleural effusion	14
Cardiomegaly	10
Generalized (3 primary heart failure)	4
Right heart enlargement (1 primary heart	
failure)	6
Main pulmonary artery enlargement	4

Flückiger and Gomez, Vet Radiology, 1984

* 9 dogs had more than one alveolar opacity.

- Pulmonary Angiography
 - **Selective**
 - Requires pulmonary artery catheter
 - Bolus of contrast into PA
 - Highlights pulmonary arterial tree
 - Diagnostic
 - Intraluminal filling defects
 - Abrupt pulmonary arterial termination
 - absence of arterial branches
 - Suggestive
 - Loss of vascularity
 - asymmetry
 - Tortuous PA
 - Premature vessel tapering
 - Requires anesthesia for PA catheter

- Non-selective
 - Jugular catheter
 - Much more difficult to interpret due to large amount of vascular highlighting from contrast

Dalen et al, American Heart Journal, 1966

- Scintigraphy
 - Ventilation/perfusion (V/Q) scan
 - May require anesthesia depending on patient
 - Requires radioactive medium and specialized equipment
 - Two separate studies
 - Ventilation study using radionuclide labeled gas for inspiration
 - Perfusion study requiring technetiumlabeled IV infusion
 - Well ventilated, but poorly perfused areas of lungs suggestive of PTE
 - Can do with just perfusion scan compared to thoracic radiographs

Scintigraphy scan in cat with PTE

Pouchelon et al, JSAP, 1997

- Computed Tomography with Pulmonary Angiography (CTPA)
 - Newest additional to the diagnostic imaging of PTE
 - Similar to radiographic pulmonary angiography, but with CT
 - \circ $\hfill Heavy sedation or an$ esthesia may be required for contrast comparison
 - Studies in dogs have been done with experimentally induced PTE, so unknown sensitivity or specificity

- Computed tomography with pulmonary angiography (CTPA) combined with venous phase imaging (CTA-CTV) in humans
 - Positive predictive values and negative predictive values are very highly dependant on the clinical probability of PTE based on scoring system developed for humans

Table 5. Positive and Negative Predictive Values of CTA, as Compared with Previous Clinical Assessment.*

Variable	High Clinical Probability		Intermediate Clinical Probability		Low Clinical Probability	
	No./Total No.	Value (95% CI)	No./Total No.	Value (95% CI)	No./Total No.	Value (95% CI)
Positive predictive value of CTA	22/23	96 (78–99)	93/101	92 (84–96)	22/38	58 (40-73)
Positive predictive value of CTA or CTV	27/28	96 (81–99)	100/111	90 (82–94)	24/42	57 (40–72)
Negative predictive value of CTA	9/15	60 (32–83)	121/136	89 (82–93)	158/164†	96 (92–98)
Negative predictive value of both CTA and CTV	9/11	82 (48–97)	114/124	92 (85–96)	146/151†	97 (92–98)

Stein et al, NEJM, 2006

- Echocardiography
 - Since cardiovascular effects of PTE are often more significant than pulmonary effects, echocardiogram is very important diagnostic
 - Right heart enlargement
 - even in acute PTE
 - Pulmonary hypertension
 - Flattening of interventricular septum
 - Sometimes able to visualize PTE in proximal pulmonary artery/trunk

- Echocardiography
 - Conflicting evidence of usefulness in human medicine
 - Given severe cardiovascular abnormalities
 seen with PTE, can be helpful for ruling out
 other cardiac disease

- Arterial blood gas analysis
 - Allows for determination of oxygenationability, as well as for A-a gradient
 - Study of 29 dogs with PTE, 15 had arterial
 blood gas
 - 100% had increased A-a gradient
 - 80% had hypoxemia
 - 47% had hypocapnia

- Arterial blood gas analysis
 - Calculation of A-a gradient
 - \circ P_AO2 =
 - \circ P_AO2 =
 - \circ P_AO2 P_aO2 should be

- Coagulation Testing
 - > PT and aPTT are often normal
 - depending on underlying disease
 - Antithrombin levels
 - May be reduced in a number of diseases and states that predispose to PTE
 - May be helpful in determining the risk of thrombosis

- Coagulation Testing
 - > PT and aPTT are often normal
 - depending on underlying disease
 - Antithrombin levels
 - May be reduced in a number of diseases and states that predispose to PTE
 - May be helpful in determining the risk of thrombosis

$\bigcirc]$

- Coagulation Testing
 - > PT and aPTT are often normal
 - depending on underlying disease
 - Antithrombin levels
 - May be reduced in a number of diseases and states that predispose to PTE
 - May be helpful in determining the risk of thrombosis

- Coagulation Testing
 - > PT and aPTT are often normal
 - depending on underlying disease
 - Antithrombin levels
 - May be reduced in a number of diseases and states that predispose to PTE
 - May be helpful in determining the risk of thrombosis

- Thromboelastography
 - Risks based on TEG have been establish in human studies
 - Increased overall thromboembolic disease risk in post-surgical people with increased MA
 - Thromboembolic disease includes PTE, myocardial infarction or stroke

- D-Dimers and FDPs
 - Difference between FDPs and D-dimers is crosslinking of fibrin by factor XIIIa
 - \circ ~ FDPs more specific to actual clot formation

- D-Dimers and FDPs
 - Major screening test (high sensitivity)
 in human medicine for PTE or other
 thrombotic disease
 - In patients that do not have high probability calculations
 - Usually not run in patients in high probability groups due to low specificity

- D-Dimers and FDPs
 - Sensitivity and specificity in dogs is
 dependant on cutoff values
 - Using 500 ng/mL is very sensitive (100%, but there is overlap with other disease processes (Sp 70%)
 - Using 2000 ng/mL is very specific (98.5%) for TE disease but lacks sensitivity (36%)

Nelson and Andreasen, JVIM, 2003

- D-Dimers and FDPs
 - TE group was 20 dogs with TE (almost all confirmed with necropsy or direct visualization with echo/ultrasound)
 - \circ 19/20 TE was PTE
 - One multi-organ thrombosis
 - Most common cause of PTE in this study was PLN (5)
 - Followed by IMHA (3)

Nelson and Andreasen, JVIM, 2003

Outline

- Pathophysiology
- Predisposing Factors
 - Associated Disease Processes
- Presentation
 - Clinical Signs
 - Physical Examination
- Diagnostics
 - Minimum Database
 - Diagnostic Imaging
 - Ancillary Tests
- Human Scoring Systems
- Summary

Human Scoring Systems

- Scoring systems in human medicine the cornerstone of diagnostic work-up of PTE
 - First line defence
 - Algorithms based on clinical probability dictate further testing
 - D-Dimers for low probability groups
 - Imaging for high probability groups

Revised Geneva score ⁶⁴		Wells score ⁶⁵			
Variable Points		Variable	Points		
Predisposing factors		Predisposing factors			
Age >65 years	+1				
Previous DVT or PE	+3	Previous DVT or PE	+1.5		
Surgery or fracture within 1 month	+2	Recent surgery or immobilization	+1.5		
Active malignancy	+2	Cancer	+1		
Symptoms		Symptoms			
Unilateral lower limb pain	+3	Symptoms			
Haemoptysis	+2	Haemoptysis	+1		
Clinical signs		Clinical signs			
Heart rate		Heart rate			
75–94 beats/min	+3	>100 beats/min	+15		
>95 beats/min	+5		1 1.5		
Pain on lower limb deep vein at palpation and unilateral oedema	+4	Clinical signs of DVT	+3		
·····		Clinited indexesses			
		Alternative diagnosis less likely than PE	+3		
Clinical probability	Total	Clinical probability (3 levels)	Total		
Low	0-3	Low	0-1		
Intermediate	4-10	Intermediate	2-6		
High	≥11	High	≥7		
		Clinical probability (2 levels)			
		PE unlikely	0-4		
		PE likely	>4		

Human Scoring Systems

Outline

- Pathophysiology
- Predisposing Factors
 - Associated Disease Processes
- Presentation
 - Clinical Signs
 - Physical Examination
- Diagnostics
 - Minimum Database
 - Diagnostic Imaging
 - Ancillary Tests
- Human Scoring Systems
- Summary

Conclusions

- PTE is a very difficult diagnosis with many possible clinical presentations and predisposing disease processes
- Clinical suspicion should be heavily weighted
- Do not forget to think about possibility of PTE
- D-dimers is the most helpful test for ruling out PTE
- CT-Angio may be helpful in more stable animals
- Less stable animals may benefit most from echocardiogram, DIC panel, and chest x-rays