Dermatologic Emergencies: Identification and Treatment

Kathleen M. Kersey, DVM, DACVECC
Veterinary Specialists of South Florida
Cooper City, Florida

Millie Rosales, DVM, DACVD
Miami Veterinary Dermatology
Miami, Florida

Brian K. Roberts, DVM, DACVECC
St. Matthew’s University
Cayman Islands

Abstract: Skin disease is one of the most common reasons dogs and cats are taken to the veterinarian. While many dermatologic conditions cause mild, localized signs, some, such as erythema multiforme, toxic epidermal necrolysis, cutaneous vasculitis, cutaneous drug eruptions, and thermal burns, can cause severe cutaneous signs and may have serious systemic consequences. These patients may present on an emergency basis and require intensive monitoring, diagnostics, and care. Lack of familiarity with these conditions may delay diagnosis and appropriate treatment. Pyotraumatic dermatitis may also prompt owners to seek emergency veterinary care due to the severe appearance of associated lesions.

Skin disease is one of the primary reasons owners take a pet to the veterinarian.1 Signs often consist of pruritus and primary and secondary lesions (e.g., pustules, papules, crusting, alopecia). However, pets affected by severe diseases such as erythema multiforme (EM), toxic epidermal necrolysis (TEN), vasculitis, and cutaneous drug eruptions (CDE) may also develop systemic signs. These patients may present to the veterinarian on an emergency basis. There is little information in the veterinary literature about these dermatopathies. In addition, many veterinarians are unfamiliar with these diseases, making identification difficult and delaying treatment.

Erythema Multiforme

EM is an uncommon, acute, inflammatory condition of the skin and/or mucous membranes that can cause significant morbidity.2 The pathogenesis has not been fully elucidated but is proposed to be a host-specific, cell-mediated hypersensitivity reaction to various antigens.7 It has been reported in dogs secondary to administration of specific drugs (TABLE 1), infection (staphylococcal dermatitis, parvovirus), neoplasia, dietary components (beef and/or soy, chicken and/or egg), and idiopathic causes.2 In one review of 44 cases of EM in dogs, 10 (22.8%) were idiopathic.7 Reported causes in cats include administration of specific drugs (TABLE 1), herpesvirus infection, and application of d-limonene-based shampoo.3,9

EM can range from mild to severe. The term erythema multiforme minor is used when ≤1 mucosal surface and <50% of total body surface area (TBSA) are affected. Erythema multiforme major is similar, but >1 mucosal surface is affected. In both forms of EM, epidermal detachment, in which the epidermis separates from the dermis, may be present and comprises <10% of TBSA.10 Lesions vary in appearance and consist of erythematous macules or papules that spread peripherally and clear centrally, producing serpiginous or annular lesions (“target lesions”). However, such lesions are not classic target lesions as described in humans, and the use of this term in veterinary EM cases is controversial. Vesicles or bullae, urticarial plaques, or a combination of lesions may also be present.3 The center of the lesion may become necrotic and slough, leaving behind erythematous erosions and ulcers (FIGURE 1). The most commonly involved sites in dogs include the ventrum, mucocutaneous junctions, oral cavity, pinnae, and footpads. Lesions in cats are typically ulcerative or vesiculobullous and are found on the trunk and mucocutaneous junctions. Some animals present with these lesions; others are evaluated for systemic signs (e.g., pyrexia, inappetence, lethargy) without obvious initial skin involvement.3 Diagnostic differentials are listed in BOX 1.3,11

TABLE 1: Common Causes of Erythema Multiforme

<table>
<thead>
<tr>
<th>Condition</th>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM</td>
<td>Drug allergy, infection, autoimmune disease, idiopathic</td>
</tr>
<tr>
<td>TEN</td>
<td>Antigenic stimuli, drugs, infections, autoimmune</td>
</tr>
<tr>
<td>Vasculitis</td>
<td>Allergies, autoimmune, infections, drugs</td>
</tr>
<tr>
<td>CDE</td>
<td>Allergies, drug reactions, infections, autoimmune</td>
</tr>
</tbody>
</table>

FIGURE 1: Target lesions in erythema multiforme

BOX 1: Diagnostic Differentials for Erythema Multiforme

- Drug allergy
- Infection
- Autoimmune disease
- Idiopathic
A thorough history, physical examination, and skin biopsy is necessary. Single-cell keratinocyte apoptosis with lymphocyte satellitosis in all layers of the epidermis is characteristic of EM. Treatment is directed at removal of the underlying cause, if present (i.e., discontinue the offending drug, treat the underlying infection, and/or avoid suspect dietary antigens). A complete blood count and serum chemistry panel should be evaluated and compared, and blood lactate level should be measured. Hospitalization and intravenous (IV) fluid therapy consisting of crystalloids, colloids, and/or plasma to replace fluid, electrolytes, and proteins lost via large cutaneous defects may be required. Additional supportive care in the form of antibiotics, analgesia, nutritional support, and wound management should also be initiated in severe cases. The use of immunosuppressive agents (e.g., glucocorticoids, cyclosporine, azathioprine) is controversial but may be beneficial in idiopathic cases in which they are not contraindicated (e.g., infection). Human immunoglobulin has been successful in treating refractory CDE (severe EM, TEN, Stevens-Johnson syndrome) in one cat and four dogs. Mild cases of EM may spontaneously regress over a few weeks. Chronic, idiopathic, or relapsing cases may require lifelong therapy. Patients with widespread skin lesions or extensive oral and mucosal involvement have a poor to guarded prognosis and may die of septicemia, disseminated intravascular coagulation, or other causes.

Table 1. Drugs Implicated in Select Dermatologic Conditions in Dogs and Cats

<table>
<thead>
<tr>
<th>Condition</th>
<th>Drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythema multiforme</td>
<td>Penicillins, Cephalosporins, Trimethoprim-sulfamethoxazole, Levamisole, Levotyroxine, d-Limonene-based flea dip</td>
</tr>
<tr>
<td>Toxic epidermal necrolysis</td>
<td>Levamisole, Cephalaxin, 5-Fluorocytosine, Ampicillin, Flea dips</td>
</tr>
<tr>
<td>Cutaneous vasculitis</td>
<td>Itraconazole, Metronidazole, Trimethoprim-sulfamethoxazole, Vincristine, Phenobarbital</td>
</tr>
<tr>
<td>Cutaneous drug eruptions</td>
<td>Sulfonamides (especially if potentiated with trimethoprim), Penicillins, Cephalosporins, Levamisole, Diethylcarbamazine, Topical agents</td>
</tr>
</tbody>
</table>

This is not a comprehensive list.

Figure 1. Erythematous erosions and ulcerations in a 3-year-old mixed-breed dog with erythema multiforme of unknown etiology. (A) Lesions along mucocutaneous junctions. (B) Lesions on the ventral abdomen. *Courtesy of UC Davis School of Veterinary Medicine*
Dermatologic Emergencies: Identification and Treatment

Toxic Epidermal Necrolysis (TEN)

TEN is a rare mucocutaneous disorder affecting dogs, cats, and humans. Reported causes in dogs and cats include administration of specific drugs (TABLE 1), bacterial infections, hepatopathy, neoplasia, and idiopathy. Although the exact pathophysiology is unknown, an immunologic role is suspected.

TABLE 1

<table>
<thead>
<tr>
<th>Causes of TEN in Dogs and Cats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythema multiforme</td>
</tr>
<tr>
<td>Bacterial folliculitis</td>
</tr>
<tr>
<td>Demodicosis</td>
</tr>
<tr>
<td>Dermatophytosis</td>
</tr>
<tr>
<td>Urticaria</td>
</tr>
<tr>
<td>Autoimmune diseases (pemphigus vulgaris, bullous pemphigoid, systemic lupus erythematosus)</td>
</tr>
<tr>
<td>Vasculitis</td>
</tr>
<tr>
<td>Thermal or chemical burn</td>
</tr>
<tr>
<td>Epitheliotropic lymphoma</td>
</tr>
<tr>
<td>Cutaneous drug eruptions</td>
</tr>
<tr>
<td>Other pustular and vesicular disorders</td>
</tr>
</tbody>
</table>

Cutaneous Vasculitis

Vasculitis is an uncommon disorder that causes inflammation within blood vessel walls, resulting in disruption of the vessel architecture, altered blood flow, and ischemic injury to end tissues. In most cases, the proposed pathophysiology involves a type III hypersensitivity reaction with immune complex deposition along the endothelium. A type I reaction may be important during the initial stages of the disease. Activation of the complement cascade results in decreased effective circulating volume secondary to fluid losses, and perfusion parameters (venous blood gas, lactate, blood pressure, urine output, heart rate) should be monitored. Use of glucocorticoids is controversial. Human immunoglobulin has been used successfully. Resolution of signs may take 2 to 3 weeks if the underlying cause is corrected. However, the prognosis is often guarded to poor and depends on the severity of the lesions. Mortality rates in humans can be as high as 30% to 50%, with sepsis being the primary cause of death.

Figure 2. Crusts and erosions in a dog with cutaneous vasculitis of unknown etiology. Courtesy of Dr. Randy Thomas, Southeast Veterinary Dermatology and Ear Clinic

Figure 3. Erythema, crusts, erosions, and ulcerations along the ear pinna margins in a dog with cutaneous vasculitis. Courtesy of Dr. Thomas
Dermatologic Emergencies: Identification and Treatment

Table 2. Treatment and Supportive Care of Selected Dermatologic Emergencies

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Drug</th>
<th>Dosage</th>
<th>Indication for Use</th>
<th>Disease/Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunosuppressants</td>
<td>Prednisone</td>
<td>2–4 mg/kg PO q24h</td>
<td>Immunosuppression; reserved for idiopathic cases of EM/TEN</td>
<td>EM, TEN, CV</td>
</tr>
<tr>
<td></td>
<td>Cyclosporine(^a)</td>
<td>5–10 mg/kg PO q12–24h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Azathioprine(^b)</td>
<td>2.2 mg/kg PO q24h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dapsone(^c)</td>
<td>1 mg/kg PO q8h(^p)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sulfasalazine(^b)</td>
<td>20–40 mg/kg PO q8h(^p)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibiotics(^c)</td>
<td>Amoxicillin-clavulanic acid</td>
<td>13.75 mg/kg PO q12h</td>
<td>Prevent secondary infection/ sepsisemia in patients with compromised epidermal barrier</td>
<td>EM, TEN, CDE, burns</td>
</tr>
<tr>
<td></td>
<td>Ampicillin-sulbactam</td>
<td>22–30 mg/kg IV q8h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cephalexin</td>
<td>22 mg/kg PO q12h(^{13})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cefazolin</td>
<td>20 mg/kg IV q8h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enrofloxacin</td>
<td>5 mg/kg PO, IV q24h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crystalloids</td>
<td>Plasma-Lyte (Baxter Healthcare)</td>
<td>90 mL/kg/h: shock (dogs)</td>
<td>Hypovolemic/maldistributive shock; dehydration; maintain effective circulating volume</td>
<td>EM, TEN, CDE, burns</td>
</tr>
<tr>
<td></td>
<td>0.9% NaCl</td>
<td>60 mL/kg/h: shock (cats)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lactated Ringer solution</td>
<td>Weight (kg) × % estimated dehydration: replacement</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normosol (Hospira)</td>
<td>60–66 mL/kg/d: maintenance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colloids</td>
<td>Hetastarch</td>
<td>5–15 mL/kg: shock (dogs)</td>
<td>Hypovolemic/maldistributive shock; hypoproteinemia, low colloidal oncotic pressure</td>
<td>EM, TEN, CDE, burns</td>
</tr>
<tr>
<td></td>
<td>Pentastarch</td>
<td>5–10 mL/kg: shock (cats)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dextran-70</td>
<td>10–20 mL/kg/d: maintenance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opioids</td>
<td>Fentanyl</td>
<td>2–5 µg/kg/h IV or transdermal patch</td>
<td>Analgesia</td>
<td>EM, TEN, CDE, burns</td>
</tr>
<tr>
<td></td>
<td>Hydromorphone</td>
<td>0.05–0.2 mg/kg IV q4–6h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buprenorphine</td>
<td>0.005–0.02 mg/kg IV, buccal (cats)</td>
<td>q6–12h</td>
<td></td>
</tr>
<tr>
<td>Nutrition</td>
<td>Enteral (nasoepisophagedal, nasogastric, esopisophagedal)</td>
<td>Supportive care; promote wound healing</td>
<td>EM, TEN, CDE, burns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parenteral (PPN, TPN)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>Pentoxifylline</td>
<td>10–15 mg/kg PO q8h(^{13})</td>
<td>Immunomodulation; antiinflammatory; antithrombotic</td>
<td>CV</td>
</tr>
<tr>
<td></td>
<td>Human IVIG</td>
<td>1 g/kg IV over 4h(^{12,13})</td>
<td>Immunomodulation</td>
<td>EM, TEN</td>
</tr>
</tbody>
</table>

\(^a\)Bioequivalent to Neoral (Novartis; modified cyclosporine).
\(^b\)Not recommended for use in cats due to the possibility of serious adverse effects.
\(^c\)Ideally, choice of antibiotics should be based on cytology at a minimum, but also on results of culture and sensitivity testing, if possible.

in endothelial necrosis, thrombosis, vascular occlusion, hemorrhage, and ischemia of recipient tissues.\(^{11,12}\) The skin and visceral organs may be affected. Causes of cutaneous vasculitis include administration of specific drugs (TABLE 1), vaccines (most commonly rabies), infections (viral [feline immunodeficiency virus, feline leukemia virus, feline infectious peritonitis], rickettsial [Rocky Mountain spotted fever, ehrlichiosis, borreliosis], bacterial, parasitic [dirofilaria]), food hypersensitivity, insect bites, and neoplasia.\(^{13,20}\) At least 50% of veterinary cases are idiopathic.\(^{15,20}\) The extremities, ears, tails, footpads, oral mucosa, and nasal planum are commonly affected.\(^{15,20}\) Cutaneous signs are variable: erosions, ulceration, edema, plaques, alopecia, and necrosis.\(^{16,20}\) Systemic manifestations such as pyrexia, lethargy, anemia, gastroenteritis,
Key Points

- Serpiginous or annular lesions are characteristic of erythema multiforme.
- Successful treatment of erythema multiforme, toxic epidermal necrolysis, cutaneous vasculitis, cutaneous drug eruptions, and pyotraumatic dermatitis requires removal of the underlying cause or drug.
- Supportive care for severe erythema multiforme, toxic epidermal necrolysis, cutaneous drug eruptions, and thermal burns consists of aggressive fluid therapy (crystalloids, colloids), antibiotics, wound management, analgesia, and nutritional support.
- Fleas and flea-bite hypersensitivity are the most common causes of pyotraumatic dermatitis.

Cutaneous Drug Eruptions

CDE are adverse reactions to any oral, parenteral, or topical drug. They are reactive to any oral, parenteral, or topical drug.4,11-31 Successful treatment of CDE is multifactorial and may include analgesia, and nutritional support. Wound management, fluid therapy (crystalloids, colloids), antibiotics, and topical therapy (e.g., benzoyl peroxide, chlorhexidine) to help prevent secondary infection and promote healing. Supportive care (IV fluids, systemic antibiotics, nutritional support) may be warranted in more severe cases (TABLE 2). Glucocorticoid therapy is controversial but may be required in some cases to control pruritus and achieve complete resolution of cutaneous signs. The offending drug and any related drugs should be avoided in the future. The overall prognosis is good unless extensive epidermal necrosis or multiple organ involvement is present.4,11,31

Thermal Burns

Thermal burns are relatively uncommon in veterinary patients and occur after accidental or deliberate exposure to a heat source.13,35 Reported causes include building fires, electric heating blankets, improperly grounded electrocautery units, hot-air dryers, and never use electrical appliances near small animals.

TABLE 1

- Primary treatment consists of discontinuation of the drug in question; cutaneous lesions typically resolve within 2 to 4 weeks after discontinuation. Lesions should be treated with topical agents (e.g., benzoyl peroxide, chlorhexidine) to help prevent secondary infection and promote healing. Supportive care (IV fluids, systemic antibiotics, nutritional support) may be warranted in more severe cases (TABLE 2).

TABLE 2

- Primary treatment consists of discontinuation of the drug in question; cutaneous lesions typically resolve within 2 to 4 weeks after discontinuation. Lesions should be treated with topical agents (e.g., benzoyl peroxide, chlorhexidine) to help prevent secondary infection and promote healing. Supportive care (IV fluids, systemic antibiotics, nutritional support) may be warranted in more severe cases (TABLE 2). Glucocorticoid therapy is controversial but may be required in some cases to control pruritus and achieve complete resolution of cutaneous signs. The offending drug and any related drugs should be avoided in the future. The overall prognosis is good unless extensive epidermal necrosis or multiple organ involvement is present.
Figure 4. Thermal burns in a 4-month-old mixed-breed dog. (A) 10 days after the dog was in a house fire. (B) The same dog 14 days after suffering burns. Penrose drains have been placed in the sterile abscesses seen over the lumbar area in A. An eschar is present along the caudal half of the dorsum. Courtesy of Veterinary Specialists of South Florida Surgery Department

Burns are classified according to the depth of the burn and TBSA involved. Superficial (first-degree) burns are restricted to the epidermis and are erythematous, dry, and painful to the touch. Partial-thickness (second-degree) burns involve the epidermis and outer dermis. Depending on the depth of the burn, the skin may be black to yellow-white; hair follicles may or may not be intact; and the area may be painful to the touch or may exhibit decreased pain sensation. In full-thickness (third-degree) burns, the entire epidermis, dermis, and, potentially, underlying connective tissue, muscle, and bone are affected. Prognosis depends on the depth and extent of the burn, which may take 3 to 14 days to fully “declare” itself. TBBSA affected can be estimated by using the “rule of 9s” established for human burn patients: the head and neck are approximately 9% of TBSA, each forelimb is 9%, each hindlimb is 18%, and the thorax and abdomen are each 18%. Severe burns covering ≥50% TBSA require intense, long-term nursing care, incur large expenses, and generally have a poor prognosis; euthanasia may be warranted.

Patients with severe thermal burns may present with hemodynamic compromise from hypovolemic shock. Burn wound edema can result in massive fluid and plasma protein losses during the first 12 to 24 hours due to increased vascular permeability, thus necessitating aggressive crystalloid fluid resuscitation (TABLE 2). However, patients suffering thermal burns from house fires will likely also have lung damage from smoke inhalation, and fluid therapy should be used judiciously. Specific fluid replacement formulas have been adapted from those used for human burn patients. After 12 to 24 hours, vascular permeability stabilizes and use of synthetic colloids may counteract the loss of plasma proteins. Oxygen supplementation should be provided as needed. If >20% TBSA is involved, significant hematologic, electrolyte, and metabolic abnormalities may develop, including anemia, hyper- or hyponatremia, hyper- or hypokalemia, and metabolic or respiratory acidosis. Clinicians should anticipate these changes and monitor and treat appropriately. Analgesia is of utmost importance, and single-agent (e.g., opioids) or combination therapy (e.g., a morphine, lidocaine, and ketamine constant-rate infusion) may be required. Burn patients are in a hypermetabolic state; early and aggressive nutritional support is required to offset protein catabolism and promote wound healing. If the patient is unable or unwilling to eat on its own, enteral (via nasogastric, esophagostomy, or gastrostomy tube) nutrition should be initiated.

Proper wound management is imperative for preventing infection, protecting the wound, and facilitating healing. If the patient presents within 2 hours of injury, the site should be cooled with cold water or saline (37°F to 63°F) for 30 minutes to reduce heat retention and the depth of the burn. With the patient stable and sedated or anesthetized, the hair over the area should be carefully clipped, a broad-spectrum topical ointment (e.g., silver sulfadiazine, nitrofurazone) applied to the area, and a sterile occlusive dressing placed. Daily wound care consists of conservative debridement, lavage, topical therapy, and bandage replacement, typically under general anesthesia, and continues until wound closure. Healing is rapid for superficial burns and occurs through reepithelialization over approximately 7 days. In superficial partial-thickness burns, the wound may reepithelialize in 10 to 21 days with minimal scar formation. In deep partial-thickness burns, healing may occur through contraction and reepithelialization; however, because severe scarring is typical, surgical closure is recommended. Full-thickness burns often require surgical intervention in the form of skin flaps, advancement techniques, skin grafts, or vacuum-assisted closure.

Pyotraumatic Dermatitis
Pyotraumatic dermatitis (acute moist dermatitis, “hot spot”) is a rapidly developing superficial to deep skin infection that occurs secondary to self-inflicted trauma from licking, chewing, or scratching. Although the condition is not life-threatening, the sudden onset, pruritic nature, and hemorrhagic appearance often provoke owners to seek veterinary care on an emergency basis. Fleas and flea-bite hypersensitivity are the most common inciting cause when patients present with caudal truncal distribution, but other ectoparasites (e.g., scabies, lice, ticks), hypersensitivity (e.g., adverse food reactions, atopic dermatitis), otitis externa, folliculitis, contact dermatitis, trauma, anal sac disease, swimming (in densely

![Image](image-url)
agent or astringent (e.g., 5% aluminum acetate) should be applied every 8 to 12 hours for 2 to 7 days. To control pruritus, a topical or systemic corticosteroid should be used for 5 to 10 days. Antibiotics should be initiated and continued for 1 to 4 weeks. Many studies have shown resolution of clinical signs with topical antibiotic therapy (e.g., fusidic acid, neomycin)38,41 However, systemic antibiotics (e.g., cephalosporins, potentiated penicillins, potentiated sulfonamides) should be used for lesions with cytologic evidence of infection or positive culture results that do not show improvement with topical therapy alone.38,39 An Elizabethan collar, T-shirt, or socks should be used to protect the affected area and prevent further self-induced injury.38 The prognosis is good if the underlying cause can be corrected or controlled.38

Conclusion

Dermatologic emergencies are uncommon, but they may become life-threatening. In some cases, patients may present with vague systemic signs, with skin lesions developing later. Large cutaneous defects may lead to sepsis or significant plasma protein losses. Certain dermatopathies (e.g., severe EM, TEN, vasculitis, CDE, burn injuries) can cause metabolic, electrolyte, and hematologic abnormalities. Veterinarians should be aware of these conditions so that a proper diagnosis can be made and appropriate therapy instituted.

References

14. Nuttall TJ, Malham T. Successful intravenous human immunoglobulin treatment of...
Dermatologic Emergencies: Identification and Treatment

1. What is the characteristic histopathology finding used to diagnose EM?
 a. full-thickness coagulation necrosis of the dermis with minimal dermal inflammation
 b. single-cell keratinocyte apoptosis with lymphocyte satellitosis
 c. leukocyte adherence to blood vessel walls
 d. suppurative inflammation with mixed bacteria present

2. Which of the following has/have been used to treat EM?
 a. immunosuppressive agents (e.g., glucocorticoids, cyclosporine)
 b. dietary trial
 c. human immunoglobulin
 d. all of the above

3. Which of the following has/have been reported to cause TEN?
 a. adverse drug reaction
 b. bacterial infections
 c. neoplasia
 d. all of the above

4. Which statement is false with regard to TEN?
 a. Patients often develop systemic signs (e.g., pyrexia, anorexia) before cutaneous lesions.
 b. Massive fluid, electrolyte, and protein losses occur with large dermal involvement.
 c. Mortality rates in humans can be as high as 30% to 50%.
 d. Resolution of signs typically takes 3 to 4 months.

5. The most common proposed pathophysiology of cutaneous vasculitis is a type ____ hypersensitivity reaction.
 a. I
 b. II
 c. III
 d. IV

6. Which statement is false with regard to cutaneous vasculitis?
 a. The extremities, ear tips, tail, footpads, oral mucosa, and nasal planum are the most commonly affected sites.
 b. Rabies vaccine–induced vasculitis has been reported.
 c. Diagnosis is based on skin biopsy and strong clinical suspicion.
 d. Chronic lesions (>24 hours after onset) are the most diagnostic.

7. Which of the following therapies is/are important in managing burn patients?
 a. aggressive fluid resuscitation
 b. nutritional support
 c. wound care
 d. all of the above

8. Which statement is false with regard to burn wound management?
 a. If the patient presents within 12 hours of injury, the site should be cooled with cold water or saline to reduce heat retention.
 b. A topical ointment, such as silver sulfadiazine or nitrofurazone, should be applied to help prevent infection.
 c. Debridement, lavage, and bandage changes are performed on a daily basis initially.
 d. Wound care must continue until wound closure.

9. The most common inciting cause of pyotraumatic dermatitis is
 a. atopy.
 b. fleas and flea-bite hypersensitivity.
 c. otitis externa.
 d. contact dermatitis.

10. Which of the following may be involved in the pathogenesis of CDE?
 a. release of mast cell and basophil mediators
 b. type III hypersensitivity reaction
 c. interference with arachidonic acid metabolism
 d. all of the above