Common components of all anesthetic units:
 a. source of oxygen
 b. regulator for oxygen (this may be part of the gas supply system)
 c. flowmeter for oxygen
 d. vaporizer

Used with a **breathing circuit** and **anesthetic waste gas scavenging system** for delivery of anesthetic to the patient

Anesthetic machines have **2 gas supplies:**
 a. small, high-pressure tanks attached directly to the machine
 b. hospital’s central pipeline supply

<table>
<thead>
<tr>
<th>Size</th>
<th>Gas</th>
<th>Color Code (U.S.)</th>
<th>Capacity and Pressure (at 70°F)</th>
<th>Empty Cylinder Weight (pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Oxygen</td>
<td>Green</td>
<td>660 L</td>
<td>14</td>
</tr>
<tr>
<td>E</td>
<td>Nitrous oxide</td>
<td>Blue</td>
<td>1900 psi</td>
<td>14</td>
</tr>
<tr>
<td>G</td>
<td>Nitrous oxide</td>
<td>Blue</td>
<td>1590 psi</td>
<td>97</td>
</tr>
<tr>
<td>H</td>
<td>Oxygen</td>
<td>Green</td>
<td>12,800 L</td>
<td>97</td>
</tr>
<tr>
<td>H</td>
<td>Nitrous oxide</td>
<td>Blue</td>
<td>6900 L</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>Nitrous oxide</td>
<td>Blue</td>
<td>2200 psi</td>
<td>119</td>
</tr>
</tbody>
</table>

MODERN ANESTHETIC MACHINE

Gas flow
- Anesthesia delivery apparatus: (1) gas delivery system, (2) vaporizer, (3) breathing circuit, (4) waste gas scavenging system
- High-, intermediate-, and low-pressure areas in the anesthetic machine

Flowmeter
- Controls the rate of gas delivery to the low-pressure area of the anesthetic machine and determines the fresh gas flow (FGF) to the anesthetic circuit
- Flowmeters are gas specific and calibrated at 760 mmHg and 20°C

Vaporizers
- Vaporizers change liquid anesthetic into vapor and meter the amount of vapor leaving the vaporizer
- They work by splitting the carrier gas to flow into the vaporizing chamber (where it picks up anesthetic vapor) or to the bypass channel where it does not

- Factors that alter vaporizer output: temperature, flow, and pressure
- Most modern precision compensated vaporizers will maintain consistent output at flows between 0.5 and 10 L/min and temperatures between 15 and 35°C
- Three main styles of vaporizers: (1) Ohmeda Tec, (2) Drager Vapor, (3) Penlon Sigma series
Use of the wrong anesthetic in an agent-specific vaporizer
- Results in lower or higher anesthetic output (as a result of varying vapor pressures)

Oxygen flush valve
- Flush valves are designed to rapidly deliver large volumes of non-anesthetic containing gas to the patient breathing circuit in emergency situations
- Bypasses the flowmeter and vaporizer

Common gas outlet
- Gas reaching the common gas outlet has traveled from the gas supply (cylinder or pipeline), through the regulator, flowmeter, and vaporizer

Breathing system
- Primary purposes: (1) direct oxygen to the patient, (2) deliver anesthetic gas to the patient, (3) remove carbon dioxide from inhaled breaths (or prevent significant rebreathing of carbon dioxide), (4) provide a means of controlling ventilation.
- Two groups: those designed for rebreathing of exhaled gases (rebreathing or partial rebreathing system) and those designed to be used under circumstances of minimal to no rebreathing (non-rebreathing systems)

Rebreathing (Circle systems)
- Designed to produce a unidirectional flow of gas through the system and has a means of absorbing CO2 from exhaled gases
- Components include: fresh gas inlet, inspiratory one-way valve, breathing tubes, expiratory one-way valve, APL valve, reservoir bag, and carbon dioxide absorber

a. Full rebreathing: circle system using flow rates equal to, or nearing, the metabolic oxygen consumption of the patient, between 3 and 14 mL/kg/min
b. Partial rebreathing: circle system using a flow rate greater than metabolic oxygen consumption (e.g., 20 mL/kg/min) but less than that required to prevent rebreathing.
c. Non-(minimal) rebreathing: circle system using flow rates greater than 200 mL/kg/min (flow rates that would normally not be used in most circumstances). For use in very small patients that need high flow rates (<5kg).
Questions

1. Name three factors that can affect vaporizer pressure.

2. True or False. Partial rebreathing is a circle system that uses flow rates equal to, or nearing, the metabolic oxygen consumption.

3. A green H medical gas cylinder contains how many liters of gas?
 a. 660L of oxygen
 b. 6900L of oxygen
 c. 1590L of Nitrous oxide
 d. 15800L of nitrous oxide

4. Name the 4 common components to all anesthetic units

Answers

1. Name three factors that can affect vaporizer pressure

 Temperature, flow, and pressure

2. True or False. Partial rebreathing is a circle system that uses flow rates equal to, or nearing, the metabolic oxygen consumption

 1. Full rebreathing: circle system using flow rates equal to, or nearing, the metabolic oxygen consumption of the patient, between 3 and 14 mL/kg/min
 2. Partial rebreathing: circle system using a flow rate greater than metabolic oxygen consumption (e.g., 20 mL/kg/min) but less than that required to prevent rebreathing.
 3. Non-(minimal) rebreathing: circle system using flow rates greater than 200 mL/ kg/min (flow rates that would normally not be used in most circumstances). For use in very small patients that need high flow rates (<5kg).

3. A green H medical gas cylinder contains how many liters of gas?
 a. 660L of oxygen
 b. **6900L of oxygen**
 c. 1590L of Nitrous oxide
 d. 15800L of nitrous oxide

<table>
<thead>
<tr>
<th>Size</th>
<th>Gas</th>
<th>Gas Symbol</th>
<th>Color Code</th>
<th>Capacity and Pressure (at 70°F)</th>
<th>Empty Cylinder Weight (pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Oxygen</td>
<td>O₂</td>
<td>Green</td>
<td>660 L</td>
<td>14</td>
</tr>
<tr>
<td>E</td>
<td>Nitrous oxide</td>
<td>N₂O</td>
<td>Blue</td>
<td>1900 psi</td>
<td>14</td>
</tr>
<tr>
<td>E</td>
<td>Nitrous oxide</td>
<td>N₂O</td>
<td>Blue</td>
<td>1590 L</td>
<td>14</td>
</tr>
<tr>
<td>G</td>
<td>Nitrous oxide</td>
<td>N₂O</td>
<td>Blue</td>
<td>13,800 L</td>
<td>745 psi</td>
</tr>
<tr>
<td>H</td>
<td>Oxygen</td>
<td>O₂</td>
<td>Green</td>
<td>6900 L</td>
<td>119</td>
</tr>
<tr>
<td>H</td>
<td>Nitrous oxide</td>
<td>N₂O</td>
<td>Blue</td>
<td>2,200 psi</td>
<td>119</td>
</tr>
</tbody>
</table>

 psi, pounds per square inch.

4. Name the 4 common components to all anesthetic units
 a. **source of oxygen**
 b. regulator for oxygen (this may be part of the gas supply system)
 c. flowmeter for oxygen
 d. vaporizer

 Used in conjunction with a breathing circuit and anesthetic waste gas scavenging system for delivery of anesthetic to the patient