Canine and Feline Transfusion Medicine

Gretchen Lee Schoeffler, DVM, DACVECC

Chief, Section of Emergency and Critical Care / Cornell University Hospital for Animals

Overview

- ♦ Blood components
- ♦ Blood banking
- ♦ Selection of donors
- ♦ Blood types
- ♦ Cross-matching
- ♦ Transfusion reactions
- ♦ Clinical use of blood components
- ♦ Autotransfusion

Whole Blood

- ♦ Units

 - Feline (50-60 ml/unit)
- ♦ Store at 1-6° C
- ♦ Cellular components
 - ♦ RBCs viable for ~21-28 days
 - All coagulation factors
 - Most factors stable for up to 24 hours
 - ♦ Labile factors (V and VIII) stable for ~4 hours
 - ♦ Platelets
 - ♦ Viable for up to 8 hrs at room temperature
 - \diamond Specific additives and protocols must be followed to allow for cold platelet storage
- ♦ Plasma proteins are present through entire shelf-life
- ♦ 2 mL/kg will raise PCV by ~1%

Packed Red Blood Cells

- ♦ Stored at 1-6°C
- ♦ RBCs should be gently mixed daily
- ♦ Shelf-life of 28-35 days (75% viability)
- ♦ Add 0.9% saline if no nutrient solution
- ♦ 1 mL/kg will raise PCV by ~1%

Fresh Frozen Plasma

- ♦ Separated and frozen w/i 6 hours of collection
- ♦ Store at -20° C
- ♦ Shelf-life of one year
- ♦ Contains all coagulation factors
- ♦ Albumin and immunoglobulin remain stable for entire shelf-life
- ♦ Dose (to effect)
 - ♦ 10-20 mL/kg for most coagulopathy
 - ♦ 45 mL/kg should increase serum albumin by ~1 g/dL*
- *Should not be used as 1st line treatment for hypoalbuminemia

Frozen Plasma

- ♦ Separated and frozen more than 6-8 hours post-collection
- ♦ Store at -20° C
- ♦ Shelf-life of 5 years
- ♦ Contains all factors except V and VIII
- Albumin and immunoglobulin remain stable for entire shelflife
- ♦ Dose (to effect)
 - ♦ 10-20 mL/kg for most coagulopathy
 - ♦45 mL/kg should increase serum albumin by ~1 g/dL*
- *Should not be used as 1st line treatment for hypoalbuminemia

Cryoprecipitate

- Prepared from fresh frozen plasma
- ♦ Store at -20° C
- ♦ Shelf-life of 1 year from processing date of FFP
- ♦ Coagulation factors stable if used w/i 8 hours of thaw
- Contains concentrated amounts of factors
 - ♦ VIII
 - √VVF
 - → Fibrinogen
- Advantage in that the patient can receive large amounts of specific factors without receiving excessive volumes
- Dose of 12-20 mL/kg q 10-12 hours or 1 unit per 10 kg of body weight until active bleeding stops

Cryopoor Plasma

- ♦ Prepared from fresh frozen plasma
- ♦ Store at -20° C
- ♦ Shelf-life of 1 year from processing date of FFP
- Contains the remainder of the other factors, albumin, and IgG
- ♦ Coagulation factors stable if used within 8 hours of thaw
- ♦ Advantage
 - Patient can receive large amounts of these factors without receiving excessive volumes

Platelet Rich Plasma

- Prepared by differential centrifugation of fresh whole blood within 2 hours of collection
 - Special blood collection bags
 - Special centrifugation requirements
- ♦ Shelf-life of ~24 hours
- ♦ Storage

 - ↑ Constant gentle agitation
 - Storage in certain types of plastic bags
- Dose administered is dependent upon the individual patients needs, but generally doesn't exceed 6 mL/kg/day

Platelet Concentrate

- ♦ Platelets are separated from plasma and RBCs
- ♦ Store at –20° C or below
- Shelf-life of 6 months (dependent on product)
- Thaw at room temperature with gentle agitation for 1 hour prior to use (no water bath)
- Use within 4-6 hours of thaw
- ♦ Efficacy
 - Acquire a variety of functional defects
 - ♦ Defects are not fatal as frozen platelets retain hemostatic function in vivo (human)
 - No in vivo veterinary studies to date demonstrating efficacy or lack thereof
- ♦ Dose is 1 unit / 10 kg of body weight
- ♦ Not for routine prophylaxis

Blood Banking

- ♦ Collection containers
- ♦ Anticoagulants and preservatives
- ♦ Donor selection

Blood Collection Containers

- ♦ Glass inactivates platelets, factors VIII and XII
- ♦ Plastic bags
 - ♦ Do not readily break
 - → Facilitate separation of components
 - → Avoid mechanical trauma to RBCs
 - Less likely to activate platelets and factors
 - → Allow for gas exchange

Anticoagulants

- ♦ Heparin
 - Combines with and potentiates antithrombin
 - ♦ Inhibits serine proteases
 - ♦ No preservative properties
 - ♦ 5-10 units per ml of blood
- ♦ 3.8% sodium citrate
 - ♦ Chelates calcium
 - ♦ No preservative properties
 - ↑1 ml per 9 ml of blood
- ♦ Acid-Citrate-Dextrose
 - ♦ Citrate chelates calcium
 - ♦ Preserves cells for 21-28 days
 - ↑1 ml per 7-9 ml of blood

Anticoagulants & Preservatives

- ♦ Citrate-Phosphate-Dextrose-Adenine
 - ↑ Commercially available
 - ↑1 ml per 7 ml of blood
 - → Viability
 - \diamondsuit K-9 pRBCs = 20 days
 - \diamondsuit K-9 whole blood = 82% at 35 days
 - \Rightarrow Feline whole blood = 85% at 35 days

- Protein free solutions added to pRBCs
 - ♦Adsol increases pRBCs shelf-life to 38 days
 - ♦Nutricel increases pRBCs shelf-life to 38 days

Selection of Canine Donors

- Weigh at least 25 kg, be 1-7 yrs of age and have a good personality
- ♦ Exclude previously transfused dogs
- ♦ Normal physical exam and health screen
 - ↑ Complete blood count
 - ♦ Manual platelet count
 - → von Willebrand factor assay
 - → Biochemical profile

Selection of Canine Donors

- ♦ Infectious disease profile
 - ♦ Mycoplasma haemocanis
 - ♦ Babesia canis and gibsonii
 - ♦ Ehrlichia spp
 - ♦ Anaplasma phagocytophilum (previously E. equii)
 - ♦ Neorickettsia risticii (previously E. risticii)
 - ♦ Leishmania donvanii
 - ♦ Bartonella vinsonii
 - ♦ Heart worm antigen test
 - ♦ Brucella canis

♦ Full dog erythrocyte antigen assay

Selection of Feline Donors

- Weigh at least 5 kg, be 1-7 yrs of age and have a good personality
- Regardless most cats will need to be sedated
- ♦ Exclude previously transfused cats
- ♦ Normal physical exam and health screen
 - Complete blood count
 - → Manual platelet count
 - → Biochemical profile

 - ♦ NTproBNP

Selection of Feline Donors

- ♦ Infectious disease profile
 - ♦ Feline leukemia virus status
 - ♦ Feline immunodeficiency virus status
 - ♦ Heartworm antibody / antigen test
 - ♦ Bartonella spp
 - ♦ Mycoplasma hemofelis
 - ♦ Candidatus Mycoplasma hemominitum
- ♦ Current vaccination status
- Lives strictly indoors and is currently vaccinated
- ♦ Feline erythrocyte antigen assay

Canine Blood Types

Dogs do not have preformed antibodies to other types and as a result are unlikely to react to a first transfusion

- ♦ The most important of at least 12 blood groups include
 - ♦ DEA 1.1- strong hemolysin produced post-exposure
 - → DEA 1.2 now known to be a weak expression of 1.1
 - DEA 7 sensitized dogs exhibit delayed transfusion reactions
 - ♦ DEA 4 >98% of dogs possess and sensitized dogs do not exhibit a reaction
- ♦ Dal
 - Present in 93% of US dogs
 - Less commonly present in Dalmatians
 - Sensitized Dal negative dogs could experience acute and delayed hemolytic reactions

Canine Blood Typing

- ♦ Cards
- ♦ Alvedia Quick Test
 - Monoclonal AB specific to DEA 1.1 impregnated onto membrane
 - ♦ AB will retain DEA 1 positive cells, characterized by a red band on the mid-portion of the membrane

Feline Blood Types

- Cats have preformed circulating antibodies against the other distinct blood type
- ♦ Blood types
 - → Type A (most common type)
 - ♦ 99% of cats in the United States
 - ♦ 100% of Siamese, Burmese, Tonkinese, Russian blue
 - Anti-B antibodies weak (IgG and IgM)
 - Type B (uncommon)
 - ♦ 20-50% of exotic shorthair, British shorthair, and Rex
 - 11-20% of Abyssinian, Birman, Persian, Somali, sphinx, Scottish fold
 - Anti-A antibodies strong hemagglutinins and hemolysins (IgM)
 - → Type AB (rare) no allo-antibodies present
 - Mik antigen
 - Present in 94% of cats tested
 - Mik negative cats could experience acute hemolytic reactions after transfusion of type matched blood
 - ♦ Discovery of Mik antigen, provides rationale for cross-matching cats prior to any transfusion
- All donors and recipients MUST be typed and or cross-matched!

Feline Blood Typing

- ♦ Cards
- ♦ Alvedia Quick Test

Universal Donors

- ♦ Dogs
 - ♦ DEA 1.1 (weak or strong), and 7 negative
 - ♦ DEA 4 positive
- ♦ Cats
 - ♦ None!

Feline Blood Transfusions

- - ♦ RBC lifespan of ~36.3 days
- - ♦ RBC lifespan of ~2.1 days
 - → Can be a significant hemolytic reaction
- - ♦ RBC lifespan of ~1.3 hours
 - → Fatal in many of these cats!
- 'AB' cat should be transfused with 'AB' blood but if unavailable should be transfused with 'A' type blood

Cross Matching

- Recommended before any RBC transfusion in any species as not all RBC antigen groups have been fully characterized
- Imperative if there is a history of exposure to RBC products
- ♦ Reasons to perform a cross match
 - ♦ Decrease the risk of transfusion reactions
 - → Decrease the risk of sensitization

Cross Matching

- ♦ Major mixes donor RBCs with recipient serum
- ♦ Minor mixes recipient RBCs with donor serum
- Incompatibility is demonstrated by agglutination and or hemolysis

Simple Major Crossmatch

- ♦ Two drops recipient serum or plasma
- ♦ One drop donor cells mix
- Check for agglutination and or hemolysis

Acute Hemolytic Rxn

- ♦ Type II hypersensitivity antibodies directed against RBC antigens
- ♦ Mediated by IgG, IgM, and complement
- ♦ Clinical signs
 - Agitation

 - Tachypnea
 - Pyrexia
 - ♦ Vomiting
 - Hypotension or shock
 - ♦ Death
 - Hyperbilirubinemia, hemoglobinemia, bilirubinuria or hemoglobinuria
- ♦ Treatment
 - Stop transfusion immediately
 - ♦ IVF, supportive care, monitoring as dictated by clinical signs

Acute Febrile Non-Hemolytic Rxn

- → Type II hypersensitivity antibodies directed against donor leukocytes or platelets
- ♦ Clinical signs
 - ♦ Increase of at least 1° C body temperature with no other identifiable source of fever
 - ♦ Occurs within 30 minutes and lasts up to 20 hrs
 - → Vomiting
 - → Tachypnea
- ♦ Discontinue transfusion if signs stabilize can consider restarting the transfusion at a slower rate

Acute Hypersensitivity Rxn

- ♦ Type I hypersensitivities allergic (IgE)
- ♦ Most commonly associated with plasma transfusions
- ♦ Occur within 45 minutes of start of transfusion
- Stimulate mast cells to produce vasoactive substances
 - ♦ Urticaria
 - ♦ Pruritis
 - ♦ Facial edema
 - → Rarely may result in death
- ♦ Treatment
 - Discontinue transfusion
 - → Administer antihistamine (diphenhydramine 1-2 mg/kg IM)
 - Consider epinephrine if reaction is severe (0.01 mg/kg IM)

TRALI

- ♦ Transfusion related acute lung injury (TRALI)
- ♦ Rare, not documented in veterinary medicine
- ♦ Mechanisms of injury
 - Presence of antibodies in the donor plasma reactive to recipient WBC antigens
 - Production of inflammatory mediators during storage of cellular blood components
- ♦ Clinical signs
 - Acute onset of non-cardiogenic pulmonary edema
- ♦ Treatment
 - ♦ Stop transfusion
 - Supplement oxygen
 - ♦ Intermittent positive ventilation in severe cases

Delayed Rxn

- May occur in patients who develop antibodies as a result of previous transfusion
 - ♦ Delayed hemolysis
 - ♦ Thrombocytopenia (purpura)
- ♦ Neonatal isoerythrolysis
- ♦ Treatment
 - Supportive care as indicated by patient

Acute Non-Immunologic Rxn

- ♦ Clinical syndromes
 - Hypocalcemia
 - ♦ Embolism
 - Circulatory overload
 - Bacterial infection
 - Hyperammonemia
 - Hypothermia
 - Hemolysis secondary to physical or thermal damage to RBCs
- ♦ Treatment
 - Supportive care as indicated by patient

Delayed Non-Immunologic Rxn

- ♦ Disease transmission
- ♦ Immunosuppression

Prevention of Complications

- Blood typing and cross matching
- ♦ Use of components
- ♦ Screening of donors
- Appropriate storage and delivery of blood
- ♦ Prophylactic treatment?
 - Diphenhydramine may be indicated in patients with a previous history of type I transfusion reactions
 - Steroids there is no scientific justification for their use
 - ♦Do not suppress IgG or IgM
 - ♦Do not prevent binding of IgE to mast cells

Response to Rxn

- If allergic reaction is mild and there is no evidence of hemolysis
 - Restart transfusion at slower rate and monitor closely
- If signs are severe or hemolysis is evident
 - Supportive care and treatment as indicated by clinical signs
 - Cross match recipient to a different donor
 - ♦ Save bag and administration set
 - ♦ Recheck labeling and orders to ensure appropriate specie, type, and administration protocol
 - ♦ Retype both recipient and unit
 - ♦ Consider culture of unit and re-cross matching of unit to recipient as clinical signs indicate

Administration of Blood Products

- Check that correct specie, type, and component is to be administered
- ♦ Warm gently in incubator or warm water bath at 37°C
 - ♦ Warmer temperatures
 - ♦ Destroy both stable and labile clotting factors
 - ♦ Cause fibrinogen and other proteins to precipitate
 - ♦ Destroys the ability of RBC to regain oxygen carrying capabilities
- ♦ Administer through standard blood filter (170-260µm)
- Use free gravity drip or approved peristaltic pumps
- Avoid same catheter administration of calcium containing or hypotonic fluids

Administration of Blood Products

- ♦ Stable patients
 - ♦ Initial transfusion rate of 0.25-5.0 ml/kg/hr for the first 15-30 minutes.
 - ♦ If no reaction, increase rate to deliver unit over no more than 4 hours
- ♦ Unstable or emergent patients
 - ♦ Bolus as necessary
- ♦ Monitor
 - ♦ Temperature
 - ♦ Heart rate
 - → Respiratory rate and effort
 - ♦ Blood pressure
 - ♦ Vomiting
 - → Urticaria, angioedema, and pruritus

Clinical Use of Blood Products

♦ Anemia

- ♦ Packed RBCs or whole blood
- Increase oxygen carrying capacity
- → Transfusion trigger depends upon
 - ♦ Rapidity of onset of anemia
 - ♦ Clinical signs patient is displaying
 - Lethargy and weakness
 Tachycardia
 - ♦ Anorexia
 ♦ Pallor
 - ♦ Cold extremities
 ♦ Tachypnea
 - ♦ Hypothermia (cats)
 ♦ Strong pulse quality
 - ♦ Presence of continued RBC loss
 - ♦ PCV < 15% is nearly always an indication for RBCs
 - ♦ Critical illness raises the transfusion trigger (<25%)

Clinical Use of Blood Products

♦ Coagulopathy

- ♦ If concurrent anemia consider fresh whole blood
- Plasma products allow delivery of large amounts of clotting factors while minimizing risk of volume overload and sensitization to RBCs
- Congenital coagulopathy
 - ♦von Willebrand disease cryoprecipitate
 - ♦ Hemophilia A (factor VIII deficiency) cryoprecipitate
 - ♦ Hemophilia B (factor IX deficiency) cryopoor plasma
- → Acquired coagulopathy
 - ♦ Vitamin K antagonism (II, VII, IX, X) frozen plasma
 - ♦ Liver failure (all factors) fresh frozen plasma
 - ♦DIC (all factors) fresh frozen plasma

Clinical Use of Blood Products

- ♦ Sepsis or SIRS fresh frozen plasma
 - ♦ All factors
 - → Antithrombotic proteins
 - → Antiproteases

- ♦ Hypoproteinemia (hypoalbuminemia)
 - Plasma products are NOT a first-line choice in the treatment of hypoalbuminemia in a non-coagulopathic patient

Autotransfusion

- The process of collecting autologous blood after a bleeding episode
- ♦ Advantages
 - Ready source of compatible blood
 - ♦ Can be given quickly and inexpensively
 - No need to warm, type, cross match, or worry about infectious disease transmission
- ♦ Two methods
 - ♦ Simple
 - ← Cell saver technology

Autotransfusion

- Disadvantages to simple autotransfusion
 - Hemolysis secondary to physical damage to RBCs
 - Coagulopathy remember clotting factors and platelets are not active
 - May contain large amounts of fibrin degradation products, RBC fragments, activated white blood cells, platelets, and inflammatory mediators
 - May initiate coagulation and exacerbate consumptive coagulopathy leading to DIC
 - → Can disseminate neoplasia and bacteria

Autotransfusion

- ♦ Cell saver technology
 - ♦ Collects
 - ♦ Washes
 - → Filters out free Hgb, plasma, platelets, WBCs and heparin
 - → Results in autologous pRBC
- Simple autotransfusion is indicated when there is active bleeding into a major body cavity and no other sources of RBCs are available

Questions

