Canine and Feline Transfusion Medicine

Gretchen Lee Schoeffler, DVM, DACVECC
Chief, Section of Emergency and Critical Care / Cornell University Hospital for Animals
Overview

- Blood components
- Blood banking
- Selection of donors
- Blood types
- Cross-matching
- Transfusion reactions
- Clinical use of blood components
- Autotransfusion
Whole Blood

✧ Units
 ✧ K-9 (450 ml/unit)
 ✧ Feline (50-60 ml/unit)

✧ Store at 1-6°C

✧ Cellular components
 ✧ RBCs viable for ~21-28 days
 ✧ All coagulation factors
 ✧ Most factors stable for up to 24 hours
 ✧ Labile factors (V and VIII) stable for ~4 hours
 ✧ Platelets
 ✧ Viable for up to 8 hrs at room temperature
 ✧ Specific additives and protocols must be followed to allow for cold platelet storage

✧ Plasma proteins are present through entire shelf-life

✧ 2 mL/kg will raise PCV by ~1%
Packed Red Blood Cells

✧ Stored at 1-6°C
✧ RBCs should be gently mixed daily
✧ Shelf-life of 28-35 days (75% viability)
✧ Add 0.9% saline if no nutrient solution
✧ 1 mL/kg will raise PCV by ~1%
Fresh Frozen Plasma

✧ Separated and frozen w/i 6 hours of collection
✧ Store at -20°C
✧ Shelf-life of one year
✧ Contains all coagulation factors
 ✧ Labile factors (V and VIII) stable if used within 4 hours of thaw
✧ Albumin and immunoglobulin remain stable for entire shelf-life
✧ Dose (to effect)
 ✧ 10-20 mL/kg for most coagulopathy
 ✧ 45 mL/kg should increase serum albumin by ~1 g/dL*

*Should not be used as 1st line treatment for hypoalbuminemia
Frozen Plasma

✧ Separated and frozen more than 6-8 hours post-collection
✧ Store at -20°C
✧ Shelf-life of 5 years
✧ Contains all factors except V and VIII
✧ Albumin and immunoglobulin remain stable for entire shelf-life
✧ Dose (to effect)
 ✧ 10-20 mL/kg for most coagulopathy
 ✧ 45 mL/kg should increase serum albumin by ~1 g/dL*

*Should not be used as 1st line treatment for hypoalbuminemia
Cryoprecipitate

- Prepared from fresh frozen plasma
- Store at -20°C
- Shelf-life of 1 year from processing date of FFP
- Coagulation factors stable if used w/i 8 hours of thaw
- Contains concentrated amounts of factors
 - VIII
 - vWF
 - Fibrinogen
- Advantage in that the patient can receive large amounts of specific factors without receiving excessive volumes
- Dose of 12-20 mL/kg q 10-12 hours or 1 unit per 10 kg of body weight until active bleeding stops
Cryopoor Plasma

- Prepared from fresh frozen plasma
- Store at -20° C
- Shelf-life of 1 year from processing date of FFP
- Contains the remainder of the other factors, albumin, and IgG
- Coagulation factors stable if used within 8 hours of thaw
- Advantage
 - Patient can receive large amounts of these factors without receiving excessive volumes
Platelet Rich Plasma

- Prepared by differential centrifugation of fresh whole blood within 2 hours of collection
 - Special blood collection bags
 - Special centrifugation requirements

- Shelf-life of ~24 hours

- Storage
 - 20-24°C
 - Constant gentle agitation
 - Storage in certain types of plastic bags

- Dose administered is dependent upon the individual patients needs, but generally doesn’t exceed 6 mL/kg/day
Platelet Concentrate

✧ Platelets are separated from plasma and RBCs
✧ Store at –20° C or below
✧ Shelf-life of 6 months (dependent on product)
✧ Thaw at room temperature with gentle agitation for 1 hour prior to use (no water bath)
✧ Use within 4-6 hours of thaw
✧ Efficacy
 ✧ Acquire a variety of functional defects
 ✧ Defects are not fatal as frozen platelets retain hemostatic function in vivo (human)
 ✧ No in vivo veterinary studies to date demonstrating efficacy or lack thereof
✧ Dose is 1 unit / 10 kg of body weight
✧ Not for routine prophylaxis
Blood Banking

- Collection containers
- Anticoagulants and preservatives
- Donor selection
Blood Collection Containers

- Glass inactivates platelets, factors VIII and XII
- Plastic bags
 - Do not readily break
 - Facilitate separation of components
 - Avoid mechanical trauma to RBCs
 - Less likely to activate platelets and factors
 - Allow for gas exchange
Anticoagulants

✧ Heparin
 ✧ Combines with and potentiates antithrombin
 ✧ Inhibits serine proteases
 ✧ No preservative properties
 ✧ 5-10 units per ml of blood

✧ 3.8% sodium citrate
 ✧ Chelates calcium
 ✧ No preservative properties
 ✧ 1 ml per 9 ml of blood

✧ Acid-Citrate-Dextrose
 ✧ Citrate chelates calcium
 ✧ Preserves cells for 21-28 days
 ✧ 1 ml per 7-9 ml of blood
Anticoagulants & Preservatives

- Citrate-Phosphate-Dextrose-Adenine
 - Commercially available
 - 1 ml per 7 ml of blood

- Viability
 - K-9 pRBCs = 20 days
 - K-9 whole blood = 82% at 35 days
 - Feline whole blood = 85% at 35 days

- Additive Solutions
 - Protein free solutions added to pRBCs
 - Adsol increases pRBCs shelf-life to 38 days
 - Nutricel increases pRBCs shelf-life to 38 days
Selection of Canine Donors

- Weigh at least 25 kg, be 1-7 yrs of age and have a good personality
- Exclude previously transfused dogs
- Normal physical exam and health screen
 - Complete blood count
 - Manual platelet count
 - von Willebrand factor assay
 - Biochemical profile
 - Urinalysis
Selection of Canine Donors

- Infectious disease profile
 - Mycoplasma haemocanis
 - Babesia canis and gibsonii
 - Ehrlichia spp
 - Anaplasma phagocytophilum (previously E. equi)
 - Neorickettsia risticii (previously E. risticii)
 - Leishmania donvani
 - Bartonella vinsonii
 - Heart worm antigen test
 - Brucella canis

- Currently vaccinated on HW preventative and ectoparasite control

- Full dog erythrocyte antigen assay
Selection of Feline Donors

◆ Weigh at least 5 kg, be 1-7 yrs of age and have a good personality

◆ Regardless most cats will need to be sedated

◆ Exclude previously transfused cats

◆ Normal physical exam and health screen
 ◆ Complete blood count
 ◆ Manual platelet count
 ◆ Biochemical profile
 ◆ Urinalysis
 ◆ NTproBNP
Selection of Feline Donors

- Infectious disease profile
 - Feline leukemia virus status
 - Feline immunodeficiency virus status
 - Heartworm antibody / antigen test
 - Bartonella spp
 - Mycoplasma hemofelis
 - Candidatus Mycoplasma hemominutum

- Current vaccination status
- Lives strictly indoors and is currently vaccinated
- Feline erythrocyte antigen assay
Canine Blood Types

- Dogs do not have preformed antibodies to other types and as a result are unlikely to react to a first transfusion.

- The most important of at least 12 blood groups include:
 - DEA 1.1 - strong hemolysin produced post-exposure
 - DEA 1.2 – now known to be a weak expression of 1.1
 - DEA 7 - sensitized dogs exhibit delayed transfusion reactions
 - DEA 4 - >98% of dogs possess and sensitized dogs do not exhibit a reaction

- Dal
 - Present in 93% of US dogs
 - Less commonly present in Dalmatians
 - Sensitized Dal negative dogs could experience acute and delayed hemolytic reactions
Canine Blood Typing

✧ Cards

✧ Alvedia Quick Test
 ✧ Monoclonal AB specific to DEA 1.1 impregnated onto membrane
 ✧ AB will retain DEA 1 positive cells, characterized by a red band on the mid-portion of the membrane
Feline Blood Types

- Cats have preformed circulating antibodies against the other distinct blood type

- Blood types
 - Type A (most common type)
 - 99% of cats in the United States
 - 100% of Siamese, Burmese, Tonkinese, Russian blue
 - Anti-B antibodies - weak (IgG and IgM)
 - Type B (uncommon)
 - 20-50% of exotic shorthair, British shorthair, and Rex
 - 11-20% of Abyssinian, Birman, Persian, Somali, sphinx, Scottish fold
 - Anti-A antibodies - strong hemagglutinins and hemolysins (IgM)
 - Type AB (rare) - no allo-antibodies present
 - Mik antigen
 - Present in 94% of cats tested
 - Mik negative cats could experience acute hemolytic reactions after transfusion of type matched blood
 - Discovery of Mik antigen, provides rationale for cross-matching cats prior to any transfusion

- All donors and recipients MUST be typed and or cross-matched!
Feline Blood Typing

- Cards
- Alvedia Quick Test
Universal Donors

- Dogs
 - DEA 1.1 (weak or strong), and 7 negative
 - DEA 4 positive

- Cats
 - None!
Feline Blood Transfusions

✧ ‘A’ blood given to ‘A’ cat
 ✧ RBC lifespan of ~36.3 days

✧ ‘B’ blood given to ‘A’ cat
 ✧ RBC lifespan of ~2.1 days
 ✧ Can be a significant hemolytic reaction

✧ ‘A’ blood given to ‘B’ cat
 ✧ RBC lifespan of ~1.3 hours
 ✧ Fatal in many of these cats!

✧ ‘AB’ cat should be transfused with ‘AB’ blood but if unavailable should be transfused with ‘A’ type blood
Cross Matching

- Recommended before any RBC transfusion in any species as not all RBC antigen groups have been fully characterized
- Imperative if there is a history of exposure to RBC products
- Reasons to perform a cross match
 - Decrease the risk of transfusion reactions
 - Decrease the risk of sensitization
Cross Matching

- Major mixes donor RBCs with recipient serum
- Minor mixes recipient RBCs with donor serum
- Incompatibility is demonstrated by agglutination and/or hemolysis

Agglutination

Hemolysis
Simple Major Crossmatch

- Two drops recipient serum or plasma
- One drop donor cells – mix
- Check for agglutination and or hemolysis
Immunologic Transfusion Reactions
Acute Hemolytic Rxn

✧ Type II hypersensitivity – antibodies directed against RBC antigens
✧ Mediated by IgG, IgM, and complement
✧ Clinical signs
 ◦ Agitation
 ◦ Tachycardia
 ◦ Tachypnea
 ◦ Pyrexia
 ◦ Vomiting
 ◦ Hypotension or shock
 ◦ Death
 ◦ Hyperbilirubinemia, hemoglobinemia, bilirubinuria or hemoglobinuria
✧ Treatment
 ◦ Stop transfusion immediately
 ◦ IVF, supportive care, monitoring as dictated by clinical signs
Acute Febrile Non-Hemolytic Rxn

- Type II hypersensitivity – antibodies directed against donor leukocytes or platelets

- Clinical signs
 - Increase of at least 1° C body temperature with no other identifiable source of fever
 - Occurs within 30 minutes and lasts up to 20 hrs
 - Vomiting
 - Tachypnea

- Discontinue transfusion – if signs stabilize can consider restarting the transfusion at a slower rate
Acute Hypersensitivity Rxn

- Type I hypersensitivities – allergic (IgE)
- Most commonly associated with plasma transfusions
- Occur within 45 minutes of start of transfusion
- Stimulate mast cells to produce vasoactive substances
 - Urticaria
 - Pruritis
 - Facial edema
 - Rarely may result in death
- Treatment
 - Discontinue transfusion
 - Administer antihistamine (diphenhydramine 1-2 mg/kg IM)
 - Consider epinephrine if reaction is severe (0.01 mg/kg IM)
TRALI

✧ Transfusion related acute lung injury (TRALI)
✧ Rare, not documented in veterinary medicine
✧ Mechanisms of injury
 ◦ Presence of antibodies in the donor plasma reactive to recipient WBC antigens
 ◦ Production of inflammatory mediators during storage of cellular blood components
✧ Clinical signs
 ◦ Acute onset of non-cardiogenic pulmonary edema
✧ Treatment
 ◦ Stop transfusion
 ◦ Supplement oxygen
 ◦ Intermittent positive ventilation in severe cases
Delayed Rxn

- May occur in patients who develop antibodies as a result of previous transfusion
 - Delayed hemolysis
 - Thrombocytopenia (purpura)
- Neonatal isoerythrolysis
- Treatment
 - Supportive care as indicated by patient
Non-Immunologic Transfusion Reactions
Acute Non-Immunologic Rxn

- Clinical syndromes
 - Hypocalcemia
 - Embolism
 - Circulatory overload
 - Bacterial infection
 - Hyperammonemia
 - Hypothermia
 - Hemolysis secondary to physical or thermal damage to RBCs

- Treatment
 - Supportive care as indicated by patient

Delayed Non-Immunologic Rxn

- Disease transmission
- Immunosuppression
Prevention of Complications

✧ Blood typing and cross matching
✧ Use of components
✧ Screening of donors
✧ Appropriate storage and delivery of blood
✧ Prophylactic treatment?
 ✧ Diphenhydramine may be indicated in patients with a previous history of type I transfusion reactions
 ✧ Steroids – there is no scientific justification for their use
 ✧ Do not suppress IgG or IgM
 ✧ Do not prevent binding of IgE to mast cells
Response to Rxn

✧ If allergic reaction is mild and there is no evidence of hemolysis
 ✧ Restart transfusion at slower rate and monitor closely

✧ If signs are severe or hemolysis is evident
 ✧ Supportive care and treatment as indicated by clinical signs
 ✧ Cross match recipient to a different donor
 ✧ Save bag and administration set
 ✧ Recheck labeling and orders to ensure appropriate specie, type, and administration protocol
 ✧ Rtype both recipient and unit
 ✧ Consider culture of unit and re-cross matching of unit to recipient as clinical signs indicate
Administration of Blood Products

✧ Check that correct specie, type, and component is to be administered

✧ Warm gently in incubator or warm water bath at 37°C
 ✧ Warmer temperatures
 ✧ Destroy both stable and labile clotting factors
 ✧ Cause fibrinogen and other proteins to precipitate
 ✧ Destroys the ability of RBC to regain oxygen carrying capabilities

✧ Administer through standard blood filter (170-260μm)

✧ Use free gravity drip or approved peristaltic pumps

✧ Avoid same catheter administration of calcium containing or hypotonic fluids
Administration of Blood Products

✧ Stable patients
 ✧ Initial transfusion rate of 0.25-5.0 ml/kg/hr for the first 15-30 minutes.
 ✧ If no reaction, increase rate to deliver unit over no more than 4 hours

✧ Unstable or emergent patients
 ✧ Bolus as necessary

✧ Monitor
 ✧ Temperature
 ✧ Heart rate
 ✧ Respiratory rate and effort
 ✧ Blood pressure
 ✧ Vomiting
 ✧ Urticaria, angioedema, and pruritus
Clinical Use of Blood Products

✦ Anemia
 ✦ Packed RBCs or whole blood
 ✦ Increase oxygen carrying capacity
 ✦ Transfusion trigger depends upon
 ✦ Rapidity of onset of anemia
 ✦ Clinical signs patient is displaying
 ✦ Lethargy and weakness
 ✦ Anorexia
 ✦ Cold extremities
 ✦ Hypothermia (cats)
 ✦ Tachycardia
 ✦ Pallor
 ✦ Tachypnea
 ✦ Strong pulse quality
 ✦ Presence of continued RBC loss
 ✦ PCV < 15% is nearly always an indication for RBCs
 ✦ Critical illness raises the transfusion trigger (<25%)
Clinical Use of Blood Products

✧ Coagulopathy
 ✧ If concurrent anemia consider fresh whole blood
 ✧ Plasma products allow delivery of large amounts of clotting factors while minimizing risk of volume overload and sensitization to RBCs

✧ Congenital coagulopathy
 ✧ von Willebrand disease – cryoprecipitate
 ✧ Hemophilia A (factor VIII deficiency) – cryoprecipitate
 ✧ Hemophilia B (factor IX deficiency) – cryopoor plasma

✧ Acquired coagulopathy
 ✧ Vitamin K antagonism (II, VII, IX, X) – frozen plasma
 ✧ Liver failure (all factors) – fresh frozen plasma
 ✧ DIC (all factors) – fresh frozen plasma
Clinical Use of Blood Products

✧ Sepsis or SIRS – fresh frozen plasma
 ✧ All factors
 ✧ Antithrombotic proteins
 ✧ Antiproteases
 ✧ Albumin

✧ Hypoproteinemia (hypoalbuminemia)
 ✧ Plasma products are NOT a first-line choice in the treatment of hypoalbuminemia in a non-coagulopathic patient
Autotransfusion

- The process of collecting autologous blood after a bleeding episode

- Advantages
 - Ready source of compatible blood
 - Can be given quickly and inexpensively
 - No need to warm, type, cross match, or worry about infectious disease transmission

- Two methods
 - Simple
 - Cell saver technology
Autotransfusion

- Disadvantages to simple autotransfusion
 - Hemolysis secondary to physical damage to RBCs
 - Coagulopathy – remember clotting factors and platelets are not active
 - May contain large amounts of fibrin degradation products, RBC fragments, activated white blood cells, platelets, and inflammatory mediators
 - May initiate coagulation and exacerbate consumptive coagulopathy leading to DIC
 - Can disseminate neoplasia and bacteria
Autotransfusion

- Cell saver technology
 - Collects
 - Washes
 - Filters out free Hgb, plasma, platelets, WBCs and heparin
 - Results in autologous pRBC

- Simple autotransfusion is indicated when there is active bleeding into a major body cavity and no other sources of RBCs are available
Questions