Engineering Teaching Excellence

Teaching future engineering leaders and problem solvers

Kathryn Dimiduk Teaching Excellence Institute Linda J Tompkins Engineering Learning Initiatives

Agenda

Program Overview

Pedagogy – active learning

ETEI – initiatives with faculty

ELI - training of graduate and UG students

Discussion

Empower Teaching Excellence at All Levels

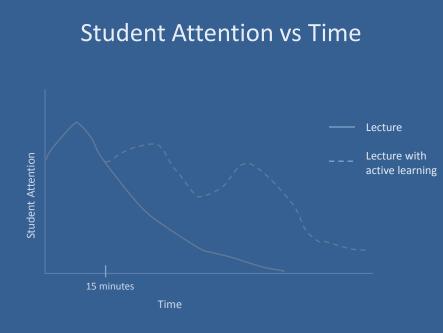
Engineering Teaching Excellence Institute (faculty centered)	Engineering Learning Initiatives (student centered)
Faculty consultations	Academic excellence workshops
-New faculty support	TA training
Teaching innovations	Peer tutoring
McCormick grants	Student instructor trainings
Pilot programs	Graduate teaching specialists
Teaching proposal support	AEW facilitators
01 1 11	Tutors
Classroom & technology support	Math course assistants
Engineering education research	CS consultants
Mid-semester feedback	ENGRG 6780 - Teaching Seminar
	Engineering education research

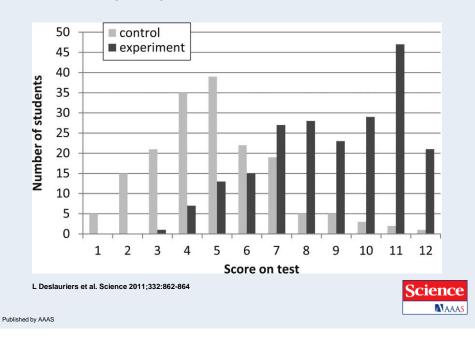
Traditional Teaching Sage on a Stage

Advantages	Disadvantages
Covers material	Short term memory ≤ 5-7 ideas
Scales to large classes	Solid attention ~ 15 minutes
Cost effective	Single learning style
	Increasing distractions
	Limited effectiveness
We learned this way	
	Vulnerable to replacement by
	On-line courses + "best prof"

Multi-tasking While Learning?

Perceived Advantages	Real Disadvantages
Feel:	Reduced deep learning:
less bored	ability to apply learning
more efficient	ability to connect learning
socially engaged	analyze of new ideas
	critical thinking




Figure adapted from Biggs and others

Active Learning Teaching Experiment

(by DeSlauriers, Schelew, and Wieman)

2 Matched physics classes, ~ 270 students each	
Control Class	Experimental Class
Teaching: All traditional lecture	Teaching: Week 1 – 10: traditional Week 11: high engagement
Test on week 11 content	Test on week 11 content
Ave = 41%	Ave = 74%

Fig. 1 Histogram of student scores for the two sections.

Student Engagement

Advantages	Disadvantages
Increased:	Requires:
learning (deeper, long lasting)	new methods
ability to apply knowledge	more thought
content connections	initially more time
retention	
Tap the need to engage:	Student resistance
fellow students	
technology	Change is hard
variety of learning styles	

How does young employee's tendency to be connected, by cell phone or computer, impact their work productivity?

A) It allows them to multitask and thereby be more productive.

- B) They have a work need to be connected at times, but sometimes it is a counterproductive distraction.
- C) They tend to be more distracted and have difficulty focusing on the task at hand.
- D) Don't really know

Participation Activity

Instructions: Go to http://learningcatalytics.com Login: email Password: Cornell Sign in Session ID is _____ Discuss question in small groups Answer question, submit

Move Toward More Active Learning

Empowering Faculty

Training TAs

Embracing Technology

Enlisting student input

Data Empowers Faculty

Mid-semester student surveys

On-line adaptive survey Feedback, not evaluation

Address student concerns real time

Motivates change

ETEI Mid-Semester Surveys

Surveys 2011-12

courses	134
faculty	90
students	1973

MAE, ECE, MSE - department wide CS, CEE, CBE - individual requests

Dominant issue

poor lecture and/or course organization

Lecture Organization

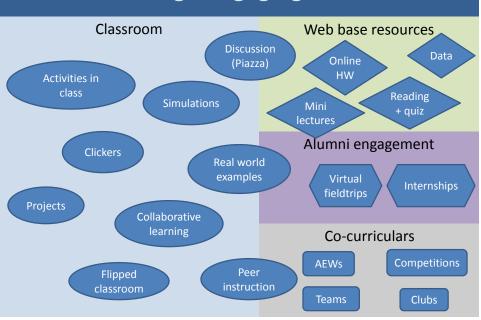
Easy Changes to Add to Lectures

Outline Content headings Logic Flow Identify key points Application(s)

Faculty learn quickly

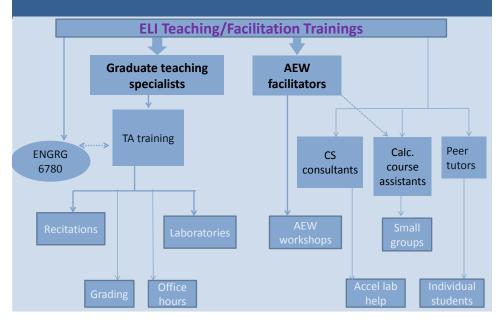
Novice vs Expert Thinking

Faculty experts see:


big picture ideas content links supporting details

Student novices see:

factoids to memorize formulas and recipes to use disorganized mess that fills brain



Active Learning - Engaging Students

ELI: Leveraging Training of Student Instructors

TA Trainers - 8 Graduate Teaching Specialists

Preparation

focused 8 weeks during summer

skill development

teaching &facilitation public speaking presentation skills giving /receiving feedback

program content development/refinement

evaluation feedback from TAs studied, changes made educational pedagogy recent studies in engineering education new ideas

TA Training – 150 New TAs Trained Fall 2012

Teaching workshops (4)

Grading & Assessment Active Learning Learning Styles Classroom Presence

Large Group Presentations (2)

Diversity Notice & Respond

Select-A-Session (2)

Public Speaking Power Point Presentations Piazza Blackboard LaTex Time management International TAs

Microteaching (1)

Mid-semester TA Feedback

Evaluations for all TAs in the college (296 TAs spring 2012) Reports \Rightarrow TA and the professor TAs with "poor" evaluations invited in for consultation Quantitative and qualitative Responses 2473 (spring 12)

"... has a masterful of the material and delivers it effectively, always ensuring that the students understand it" $\,$ Fall 2011 $\,$

TA Mid-Semester Evaluation Data

20 quantitative questions (all have a 4+ mean) (1 = never or poor, 5 = always or excellent)

Question	Mean score
	Spring 2012
My TA demonstrates command of the subject matter	4.41
My TA provides clear and comprehensive explanations	4.20
My TA is actively helpful when students need assistance	4.38
My TA is effective at relating lecture material to what is covered in section or lab	4.16
Overall how would you relate the quality of your TA's teaching	4.25

Empower Teaching Excellence at All Levels

Engineering Teaching Excellence Institute (faculty centered)	Engineering Learning Initiatives (student centered)
Faculty consultations	Academic excellence workshops
-New faculty support	TA training
Teaching innovations	Peer tutoring
McCormick grants	Student instructor trainings
Pilot programs	Graduate teaching specialists
Teaching proposal support	AEW facilitators
Classroom & technology support	Tutors
Engineering education research	ENGRG 6780 - Teaching Seminar
Mid-semester feedback	Engineering education research

Academic Excellence Workshops (AEWs)

Overview

Evaluation & feedback

weekly two-hour small group sessions chem computer science math stats collaborative learning two peer facilitators taught at or above course level

Fall '12: 26 workshops 400 enrolled

observation \rightarrow feedback report

mid-semester online evaluation

Academic Excellence Workshops (AEWs)

Facilitators	Training topics
sophomores, juniors, seniors	learning and teaching styles
-course mastery	teaching in a diverse classroom
-interest in helping peer	communication
-competitive hire	facilitation
two lead facilitators	group dynamics
	leadership
	public speaking

What methodologies does your company use to train your employees and which one is most effective?

Submit short answer by cell phone or computer

ECC Support

Classrooms that work

reliable technology support innovative teaching

Share ideas, knowledge, support

Piazzza

Simulations

Teaching Innovation grants

AEWs

Big picture goals

Summary

Interactive teaching

Increases learning

Plays to current student's strengths and preferences

Improved education across the curriculum

Faculty

TAs

Peer instruction (AEWs and peer tutors)

Discussion Questions

What additional insight can ECC provide on educating new engineers for the 21st century workplace?

What suggestions does ECC have for enhancing "real-world" connections in courses and classrooms?

Engagement Approach Example

Preclass reading assignments (3-4 pages)

Preclass reading quizzes (short on-line T/F quiz)

In-class clicker questions with student-student discussion

Small-group active learning tasks

Targeted in-class instructor feedback