Use of intravenous lidocaine to prevent reperfusion injury and subsequent multiple organ dysfunction syndrome

Benjamin H. Cassutto, DVM and Roger W. Gfeller, DVM, DACVECC

Abstract

Objective: The objective of this article is to review the human and veterinary literature and provide evidence for the potential beneficial effects of intravenous (IV) lidocaine hydrochloride in preventing post-ischemic–reperfusion injury, the systemic inflammatory response syndrome (SIRS), and subsequent multiple organ dysfunction syndrome (MODS).

Human data synthesis: Lidocaine is a local anesthetic and antiarrhythmic agent that has been used for years in human and veterinary medicine for the treatment of ventricular dysrhythmias associated with blunt cardiac trauma, myocardial ischemia, and cardiac surgery. More recently, the drug has been touted as a scavenger of reactive oxygen species (ROS), and has been used to prevent reperfusion dysrhythmias after treatment of myocardial infarction, cross-clamping of the aorta, and in trauma medicine.

Veterinary data synthesis: Although no clinical experiments with prophylactic intravenous lidocaine exist in veterinary medicine, there is a large body of evidence from experimental animals that support the use of lidocaine as a Na\(^+\)/Ca\(^2+\) channel blocker, superoxide and hydroxyl radical scavenger, inflammatory modulator, and potent inhibitor of granulocyte functions. Lidocaine is being used in some clinical situations in an attempt to prevent the SIRS in veterinary trauma patients.a,b

Conclusions: A large body of experimental evidence exists supporting the use of lidocaine as an anti-oxidant and inflammatory modulator useful in preventing reperfusion injury. With the lack of cost-effective and safe treatments for reperfusion injury in veterinary and human trauma medicine, the use of IV lidocaine to prevent the ensuing inflammatory response and MODS makes it an attractive addition to existing treatments. Therefore, it is essential that prospective clinical trials involving lidocaine as a treatment for prevention of reperfusion injury be performed in companion animals to demonstrate its safety and efficacy.

Keywords: inflammation, local anesthetics, oxygen radicals, trauma

Introduction: Pathophysiology of Reperfusion Injury

As the rapidly emerging field of veterinary emergency medicine and critical care enters a new century, great advances in the treatment of shock and inadequate tissue perfusion have been made. In a fashion similar to human medicine, these advances have led to the paradoxical realization that during reperfusion, molecules (most accurately termed ‘reactive oxygen species’ (ROS)) are formed and released into previously ischemic tissues. Reactive oxygen species have an unpaired electron in the outer shell; thus, they are highly unstable (and destructive). When ROS interact with cell membranes, they damage proteins, DNA, and RNA, and cause lipid peroxidation of these membranes which leads to cell death. This cellular damage caused...
by the liberation of ROS and other inflammatory mediators after reperfusion of previously viable ischemic tissues is defined as ischemia–reperfusion (I-R) injury.1

The mechanisms involved in the generation of ROS and subsequent I-R injury have been well described in the literature.1,2 The best described of these mechanisms include (1) generation of superoxide radicals following the conversion of xanthine dehydrogenase (XD) to xanthine oxidase (XO), (2) hydroxyl radical production via the iron-catalyzed Haber–Weiss reaction, (3) superoxide radicals from polymorphonuclear neutrophils (PMNs), and (4) endothelial and mitochondrial dysfunction from activated leukocytes. A brief introduction to I-R and how it relates to multiple organ dysfunction syndrome (MODS) follows.

Prolonged tissue ischemia results in certain well-known cellular metabolic changes, such as decreases in oxidative phosphorylation and a failure to resynthesize energy-rich phosphates. Breakdown of purines such as ATP during ischemia leads to excessive calcium influx. Increases in intracellular calcium due to Na+/Ca2+ exchange inhibition during ischemia, particularly in calcium-sensitive tissues such as the heart and brain, lead to the formation of ROS and subsequent I-R injury. One postulated mechanism for this ROS formation after calcium influx is the XD/XO pathway. Calcium ion redistribution from the mitochondria to the cytosol during ischemia is believed to activate calpain, the enzyme that converts XD to XO (Figure 1).2 Reperfusion of tissue with oxygen then leads to the formation of large amounts of superoxide radical.1 This calcium accumulation during ischemia is postulated to come from increased movement of calcium from the sarcoplasmic reticulum and from the extracellular space into the cytosol. One mechanism for increased cytosolic calcium is through the Na+/Ca2+ exchanger. Inadequate energy substrate leads to failure of the Na+/K+ ATPase pump and increased extracellular Na+, which then drives the Na+/Ca2+ exchanger in reverse, increasing both intracellular Na+ and Ca2+. The formation of superoxide radical after calcium influx then quickly leads to the formation of other toxic radicals such as hydroxyl radical, hypochlorous acid (HOCl), hydrogen peroxide (H2O2), and peroxynitrite radicals, which are released into the systemic circulation. The most toxic of these radicals is the hydroxyl radical, which is formed through the iron-catalyzed Haber–Weiss reaction (Figure 1). Hydroxyl radical and other ROS are potent oxidizing agents that directly damage cellular membranes by oxidizing or denaturing proteins and lipids. Lipid peroxidation occurs when any free radical abstracts a methylene hydrogen atom from an unsaturated fatty acid and then forms a subsequent lipid alkyl radical.2 The reaction of these radicals with the intracellular unsaturated fatty acids present in the cell produces unstable end products that further damage cell membranes.2 In addition, ROS stimulate leukocyte activation and chemotaxis through the liberation of phospholipase A2 (PLA2) to form arachidonic acid, which then leads to the secretion of more inflammatory mediators downstream (e.g., prostaglandins, leukotrienes, thromboxanes, platelet activating factor (PAF)) (Figure 1).1 Finally, these activated leukocytes interact with the vascular endothelium via a series of distinct steps characterized by leukocyte ‘rolling’, firm adherence of leukocytes to the endothelium and endothelial transmigration.1 I-R injury initiates an increase in the expression of various endothelial adhesion molecules, which results in intermittent leukocyte–endothelial binding or ‘leukocyte rolling’. Subsequent interaction of leukocyte β2 integrins such as CD11a/CD18 with constitutively expressed endothelial adhesion molecules results in firm leukocyte adherence and aggregation.1 Activated leukocytes then transmigrate through endothelial cell junctions and, on reaching the extravascular compartment, they release even more toxic ROS, proteases and elastases, resulting in increased microvascular permeability, edema, thrombosis, and parenchymal cell death.1

Clinical Syndromes Associated With I-R Injury

The generation of ROS and other inflammatory mediators into the systemic circulation in response to I-R injury results in various clinical manifestations such as cardiac dysrhythmias,1,3 central nervous system (CNS) injury,1,4 and gastrointestinal injury,5 leading to MODS and death. MODS is a leading cause of death in critically ill human and veterinary patients1,6 and may be a consequence of I-R injury of the intestine,

![Figure 1: Mechanisms of ROS formation. XD = xanthine dehydrogenase; XO = xanthine oxidase; SOD = superoxide dismutase; H2O2 = hydrogen peroxide; PLA2 = phospholipase A2; PAF = platelet-activating factor.][1]
liver, and skeletal muscle, as well as aortic occlusion-reperfusion and the resuscitation from circulatory shock.1 After the generation of ROS into the systemic circulation, intestinal I-R injury causes increased intestinal permeability and subsequent microbial invasion through bacterial translocation.1,7 This results in the clinical manifestations of the systemic response (known as systemic inflammatory response syndrome or SIRS), including fever, tachycardia, tachypnea, neutrophilia, or neutropenia.6 The target organs for this systemic response are the heart, lungs, brain, intestine, other abdominal organs (liver, kidney), the vasculature, and the coagulation system. This sequence of pathologic events then leads to the above-mentioned MODS, which is frequently heralded by pulmonary injury leading to respiratory distress, respiratory failure, and death.1

Animal Models of Reperfusion Injury

As we have learned more about how ROS and other inflammatory mediators are formed and gain access to systemic circulation, it has become clear that if these deleterious biochemical processes could be slowed or arrested, a substantial decrease in tissue injury and subsequent MODS would be seen. This has led to many different animal models of I-R injury and its clinical manifestations in order to begin to ascertain if any treatments could arrest the effect of I-R on various tissues and organs. Various different compounds (XO inhibitors, iron chelators, antioxidants, 21-aminosteroids, mannitol, dimethylsulfoxide) have been shown to decrease the formation of ROS or have the ability to ‘scavenge’ ROS, thereby decreasing lipid peroxidation and cell death.2

Clinically relevant veterinary diseases, which have also been documented as models of I-R injury, include traumatic brain injury, which causes CNS I-R injury;1,7 I-R after cardiopulmonary resuscitation,6 gastric-dilation volvulus (GDV), which causes both cardiac and intestinal I-R injury;9 strangulation obstruction in the horse,10 and neonatal necrotizing enterocolitis (NNEC), which occurs after hypothermia or hypoxia in foals and pigs.11

Potential for therapeutic intervention

There are numerous classes of drugs or other agents that can have an effect on arresting I-R injury; however, most of the evidence of their mechanism of action comes from various animal model studies. Antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH) are all known to decrease the formation of toxic ROS through ‘scavenging’ them or interfering with major enzyme pathways previously discussed. In one study involving cardiac I-R injury, SOD and CAT restricted the activation of ROS by 16–18%.2 Anti-oxidant vitamins such as vitamin E lessen the effects of lipid peroxidation by interrupting the chain reaction and intercepting radicals by binding to the cell membrane,7 and have been shown in numerous studies to attenuate I-R.1

The most current theory of I-R injury in the brain is that sequential pathologic mechanisms such as Na+/Ca2+ exchange inhibition, followed by N-methyl-D-aspartate (NMDA) receptor activation, glutamate release, ROS formation, and PMN infiltration, are all responsible for secondary I-R-mediated brain injury.12 In a canine incomplete global ischemia model, investigators tested the hypothesis that a novel competitive NMDA receptor antagonist GPI 3000 (GPI) would ameliorate metabolic injury and that the effectiveness of the iron chelator and antioxidant, desferoxamine (DFO), would be augmented by combined therapy with GPI after incomplete global cerebral ischemia. Their results indicated that both NDMA antagonism and iron chelation were needed for recovery from I-R.13 Altered Na+/Ca2+ exchange, elevated intracellular calcium levels during ischemia, and subsequent ROS formation during reperfusion may be the initial events in the I-R pathway. In a recent study, the effects of SEA0400, another novel Na+/Ca2+ exchange inhibitor, on reperfusion injury in vitro and in vivo were examined. SEA0400 attenuated a Ca2+ challenge-induced ROS production and reduced infarct volumes in an experimental model of brain I-R injury.14

In experimental models of canine GDV (an excellent model of intestinal and cardiac reperfusion injury), hydroxyl radical production and PMN infiltration of ischemic tissues were implicated as causes of the gastric/cardiac necrosis. Previous studies have shown that administration of certain compounds ameliorates gastric and cardiac necrosis in surgically induced GDV.9,15 Pharmacologic intervention studies in GDV have shown that DFO (a potent iron chelator and hydroxyl radical scavenger) and U74006F (a 21-aminosteroid), if given before decompression and subsequent reperfusion, significantly ameliorate the gastric and cardiac effects of reperfusion injury.9,15 This was evidenced by increased survival rate, decreased levels of tissue malondialdehyde (an indicator of lipid peroxidation), and decreased pathologic evidence of gastric and cardiac tissue injury. Furthermore, administration of DFO to dogs with experimentally induced GDV completely prevented myocardial necrosis, which was evident in 5 out of 6 controls, thereby supporting the fact myocardial necrosis may be due to the iron-catalyzed Haber–Weiss reaction and subsequent hydroxyl radical release during reperfusion (Figure 1).15
It is likely that some of the mechanisms of I-R injury that occur in the canine heart after GDV involve an increase in Ca\(^{2+}\) accumulation (as is true in the brain), and subsequent activation of XO by the mechanisms previously discussed. Experimental work in canine, porcine, and rabbit myocardial ischemia models demonstrates that pretreatment of the subjects with Ca\(^{2+}\) channel blockers such as nifedipine and clevidepine, or Na\(^+\)/H\(^+\) exchange inhibitors, decreases postsischemic ventricular dysrhythmias and infarct size.\(^{16-19}\) It is theorized that Ca\(^{2+}\) follows Na\(^+\) into ischemic tissues, so that Na\(^+\)/H\(^+\) exchange inhibition by drugs that inhibit either Na\(^+\)/Ca\(^{2+}\) or Na\(^+\)/H\(^+\) likely causes a similar inhibition of Ca\(^{2+}\) accumulation.\(^{18}\) It is evident from these experiments, as well as others, that suppression of Ca\(^{2+}\) accumulation in myocardial tissue inhibits myocardial infarct size.

In equine medicine, although strangulating obstruction of the bowel is likely mediated through I-R injury and ROS formation,\(^{19}\) studies with various compounds (DMSO, allopurinol, 21-aminosteroids) have failed to ameliorate the injury.\(^{20,21}\) Although neutrophils have been shown to accumulate in the equine colon after I-R and cause injury, and are felt to be a significant source of ROS in the intestine,\(^{22}\) no studies have been performed with any compounds, which would lessen the effects of the neutrophil infiltration and subsequent tissue injury.

Neonatal necrotizing enterocolitis (NNEC) is a devastating intestinal ischemic disease of preterm infants, which also occurs in newborn piglets and neonatal foals.\(^{11}\) Experimental models have implicated intestinal I-R as part of its pathogenesis after significant hypoxia or hypothermia, which causes decreased intestinal blood flow and ischemia. In a hamster model with NNEC, 4 hours of mild hypothermia caused a 63% decrease in intestinal XD, along with significant histopathologic evidence of intestinal tissue injury, which was postulated to come from XO-induced superoxide release. Transmission electron microscopy of intestinal tissue verified that reperfusion injury caused significant bacterial translocation in hamster large intestinal segments.\(^{23}\) It is postulated that in susceptible organs such as the intestine, I-R injury causes certain leukocyte–endothelial cell interactions, which lead to a disruption of the epithelial barrier, increased intestinal permeability, bacterial translocation, and an overwhelming inflammatory response in the general circulation.\(^1\) In an attempt to ascertain whether previously demonstrated intestinal injury in neonatal piglet models of NNEC was due to XO-induced superoxide generation, neonatal piglets were pretreated with allopurinol (an XO inhibitor) and then subjected to global hypoxia and reoxygenation. The results of this study actually showed a 2-fold worsening of histological intestinal injury score at 48 hours after hypoxia, indicating that mechanisms of I-R other than XO-induced superoxide release may be responsible for the intestinal injury, increased permeability, and bacterial translocation which are thought to be involved in NNEC.\(^d\)

Pharmacologic therapy to prevent these deleterious leukocyte–endothelial cell interactions in susceptible tissues would be aimed at inhibiting the accumulation of pro-inflammatory mediators, altering neutrophil activation, or attenuating integrin expression. In a mouse model of ischemia/reperfusion injury, a potent neutrophil inhibitor (PR 39) decreased leukocyte rolling and adherence in ischemic mesentery, and also decreased myocardial PMN accumulation.\(^{24}\) More current research into the pathogenesis of intestinal I-R injury and NNEC has revealed that PAF plays a role in gut barrier dysfunction and the development of NNEC.\(^{25,26}\) In a rat intestinal I-R model, pretreatment with the PAF antagonist lexipafant prevented intestinal albumin leakage and bacterial translocation.\(^{26}\) In various models of myocardial I-R, these PAF antagonists have been shown to protect against reperfusion injury, and have even passed safety and efficacy trials in humans. Evidence suggests that myocardial injury in these models is due to the release of inflammatory mediators such as PAF, thromboxanes, leukotrienes, and endothelins released during ischemia and distributed throughout the heart during reperfusion.\(^{27}\)

Lidocaine: Pharmacology

Lidocaine (Xylocaine)\(^e\) is a local anesthetic with muscle relaxant and weak antihistaminic properties.\(^{28}\) Lidocaine is currently used in veterinary and human medicine as a local anesthetic, and for the treatment of ventricular dysrhythmias associated with blunt

Figure 2: Mechanisms of lidocaine action. See Figure 1 for an explanations of the abbreviations. ⭐ = lidocaine action.
cardiac trauma, myocardial ischemia, and cardiac surgery.28 The most common adverse effects reported are dose related (serum level) and mild. Central nervous system signs include drowsiness, depression, ataxia, muscle tremors, nausea, and vomiting (usually transient). Adverse cardiac effects are usually associated with PR and QRS interval prolongation and QT interval shortening. Lidocaine may increase ventricular rates if used in patients with atrial fibrillation. If an IV bolus is given too rapidly, hypotension may occur; however, this is usually limited to high plasma concentrations.29

Local anesthetics commonly used in veterinary medicine are classified into 2 groups (amino-esters or amino-amides), depending on the link between an aromatic molecule and their tertiary amine. Amino-amide local anesthetics such as lidocaine, mepivacaine,4 and bupivacaine8 all share this amide linkage. The amino-esters are metabolized into p-aminobenzoic acid, which causes allergies in human patients. This does not occur with the amino-amides.30 All local anesthetics including lidocaine inhibit the propagation of nerve impulses by binding to Na+ channel receptor sites in the nerve membrane, thereby slowing the rate of depolarization and preventing propagation of action potentials. More specifically, in the heart, lidocaine is classified as a class 1B (membrane stabilizing) antiarrhythmic agent, which is distinguished by its ability to reduce the rate of phase 0 depolarization and conduction velocity in injured cardiac cells. It does so by binding to fast Na+ channels, while having a minimal effect on action potential duration, and refractory period compared to class 1A drugs.30 This effect of lidocaine to bind to Na+ channels is important in relation to its ability to prevent I-R injury in the heart and brain.

Pharmacokinetics

Lidocaine is not effective orally as it has a high first-pass effect. If very high oral doses are given, toxic symptoms occur (due to active metabolites) before therapeutic levels can be reached. Following a therapeutic IV bolus dose, the onset of action is generally within 2 minutes and the duration of action is 10–20 minutes.29 If a constant infusion is begun without an initial IV bolus, it may take up to an hour for therapeutic levels to be reached. Intramuscular injections may be given every 1.5 hours in the dog, but because monitoring and adjusting dosages are difficult, it should be reserved for cases where IV infusions are not possible.

After injection, lidocaine is rapidly distributed from the plasma into highly perfused organs (kidney, liver, lungs, heart) and is distributed widely throughout body tissues and into milk. It has a high affinity for fat and adipose tissue, and is bound to plasma proteins, primarily α\textsubscript{1}-acid glycoprotein.27 Lidocaine binding to this protein is highly variable and concentration dependent in the dog and may be higher in dogs with inflammatory disease.29 The volume of distribution (V\textsubscript{d}) is 4.5 L/kg in the dog. Lidocaine is rapidly metabolized in the liver to active metabolites (mono ethylglycylxlyldide (MEGX) and glyclyxlyidide (GX)). The terminal half-life of lidocaine in humans is 1.5–2 hours and has been reported to be 0.9 hours in the dog.29 The half-lives of lidocaine and MEGX may be prolonged in patients with cardiac failure or hepatic disease. Less than 10% of a parenteral dose is excreted unchanged in the urine.29

Lidocaine and I-R Injury

Recently, experiments in various animal models of ischemia and reperfusion injury have yielded more specific biochemical information relating to the ability of lidocaine to prevent ROS formation and lipid peroxidation. Possible mechanisms of these actions for lidocaine include (1) inhibition of Na+/Ca2+ exchange and Ca2+ accumulation during ischemia, (2) scavenging of hydroxyl radical, (3) decreased release of superoxide from granulocytes, and (4) decreased PMN activation, migration into ischemic tissues, and subsequent endothelial dysfunction (Figure 2). The following information will outline the scientific evidence that lidocaine indeed does work by these 4 mechanisms. Lidocaine, when used in various shock states, may help prevent the formation of ROS and therefore decrease tissue lipid peroxidation, cell death, and development of MODS.

Current published human information: In human medicine, lidocaine has traditionally been used as the agent of choice for suppression of ventricular tachycardia and fibrillation after cardioversion. Its use in human medicine is justified due to its low incidence of toxicity and high degree of antiarrhythmic effect.28 More recently, most likely due to concurrent studies on its antioxidant properties, intravenous IV lidocaine has been used to prevent reperfusion injury-associated dysrhythmias, which may occur after thrombolysis for myocardial infarction.31 In the GUSTO-I and GUSTO-IIB clinical trials, the use of prophylactic IV lidocaine caused a statistically significant decrease in death rate at 24 hours, and revealed a trend toward lower inhospital mortality and death at 30 days.31 Intravenous lidocaine has also been studied in clinical trials for its ability to prevent reperfusion dysrhythmias after
coronary bypass and aortic cross-clamp. In the control group, the incidence of reperfusion ventricular fibrillation after coronary bypass was 70%, which was reduced to 11% in the lidocaine-treated group. The authors attributed a higher cardiac output in the treated group to a lower incidence of reperfusion dysrhythmias.\(^{32}\) Furthermore, in another clinical study,\(^{33}\) lidocaine combined with adenosine was shown to reduce infarct size in patients with myocardial infarction.

The most recent human studies have been in vitro studies that attempt to demonstrate lidocaine's antioxidant and anti-inflammatory effects on PMNs. It has been theorized that much of the myocardial necrosis that occurs after cardiac repair, and subsequent reperfusion is mediated by ROS formation and subsequent PMN infiltration.\(^{34}\) In these in vitro studies, PMNs are stimulated to secrete superoxide, which can then be measured by photometric techniques. In 2 different studies, lidocaine suppressed the superoxide production by activated PMNs as measured by chemiluminescence.\(^{35,36}\) In another study involving PAF-primed PMNs, local anesthetics in the same class as, and including lidocaine inhibited superoxide radical production at clinically relevant concentrations.\(^{37}\)

Lidocaine also markedly inhibited the chemiluminescence of XO enzyme, which indicates that it may also inhibit XO, and thereby the production of superoxide during reperfusion.\(^{37}\) Although lidocaine has been used prophylactically to prevent dysrhythmias related to myocardial infarction, its use in human trauma medicine for the treatment of other conditions that cause reperfusion injury, SIRS, and MODS is anecdotal at best. At a major university trauma center,\(^{38}\) lidocaine was given along with other antioxidants to patients admitted to the ICU for varying shock states and other septic conditions. Although no randomized study was performed and other antioxidants were administered, the authors selected lidocaine in these patients, because of a body of scientific evidence that they referenced in their review article, demonstrating the ability of lidocaine to inhibit PLA\(_2\), block the production of tumor necrosis factor (TNF), PAF and subsequent PMN activation, and inhibition of cytokine release from PMNs.\(^{38}\)

Veterinary and animal model studies: There are no clinical experiments involving the prophylactic use of lidocaine to prevent reperfusion injury in dogs and cats. Recently, however, there has been an increasing amount of anecdotal discussion involving the use of lidocaine in the treatment of head trauma\(^{h}\) and to prevent reperfusion injury associated with GDV.\(^{1}\) This anecdotal use of lidocaine most likely stems from the large body of evidence in animal models, which demonstrates its ROS scavenging and anti-inflammatory properties. In published experiments, lidocaine is theorized to ameliorate the negative effects of ROS, prevent tissue lipid peroxidation, and subsequent end organ damage by the following mechanisms: (1) Na\(^+\)/Ca\(^{2+}\) exchange inhibition; (2) ROS scavenging of both superoxide and hydroxyl radical resulting in cytoprotection; and (3) prevention of deleterious leukocyte–endothelial cell interactions (see Figure 2 for a summary of these mechanisms).

Lidocaine and Na\(^+\)/Ca\(^{2+}\) Exchange Inhibition

Recent animal experimentation has been conducted to study the ability of lidocaine (and other related compounds) to limit Na\(^+\)/Ca\(^{2+}\) loading in various tissues. Various models of myocardial reperfusion injury have shown that pretreatment of ischemic tissues with lidocaine and other Na\(^+\)/Ca\(^{2+}\) exchange inhibitors reduces the formation of ventricular dysrhythmias and infarct size.\(^{39,40}\) It was theorized that decreased Na\(^+\) and Ca\(^{2+}\) accumulation in cardiac tissue was at least, in part, responsible for these beneficial effects.

In various rat models of myocardial ischemia/reperfusion, preischemic treatment with lidocaine resulted in (1) enhancement of posts ischemic contractile recovery, (2) a decrease in ventricular dysrhythmias, (3) suppression of tissue Na\(^+\), K\(^+\), Ca\(^{2+}\), and Mg\(^{2+}\) accumulation, and (4) attenuation of the release of creatine kinase and ATP metabolites in a dose-dependent manner.\(^{39,40}\) In an experiment using various antiarrhythmic agents, lidocaine suppressed the \(V_{\text{max}}\) value of the rat left ventricular muscle cell (a marker of Na\(^+\) channel blockade) in a dose-dependent manner.\(^{41}\) The degree of posts ischemic contractile recovery seen in the presence of lidocaine and other antiarrhythmic agents was inversely related to tissue Na\(^+\) and Ca\(^{2+}\) accumulation after reperfusion. This suggests that the class I antiarrhythmic agents in this study inhibit Na\(^+\) overload in ischemic/reperfused myocardial cells.\(^{41}\) In another model of myocardial ischemia/reperfusion injury, R56865 (a Na\(^+\)/Ca\(^{2+}\) exchange inhibitor) was administered to guinea pigs. When given even during reperfusion, R56865 delayed sustained fibrillation and improved ionic homeostasis in myocardial cells.\(^{42}\) In a similar experiment, lidocaine was administered 5 minutes before the induction of global ischemia/reperfusion and resulted in a significantly decreased incidence of ventricular fibrillation and tachycardia, with a concomitant decrease in Na\(^+\) and Ca\(^{2+}\) accumulation.\(^{43}\) Another novel Na\(^+\)/Ca\(^{2+}\) inhibitor, KB-R7943, inhibited Na\(^+\)/Ca\(^{2+}\) exchange in cardiac sarcolemmal reticular vesicles in the canine heart.\(^{42}\) Lidocaine showed a similar
beneficial effect to this novel drug on pretreatment recovery of ischemic myocardium.44

Lidocaine has also been shown to protect neuronal tissue from ischemic damage by similar mechanisms. Current theories of brain ischemia/reperfusion injury include release of intracellular Ca2+ and neurotoxic chemicals such as glutamate, which then promote ROS generation from neuronal tissue.12 In the ischemic gerbil hippocampus, preschismic administration of lidocaine delayed the onset of ischemia-induced membrane depolarization and inhibited the release of intracellular Ca2+, thereby protecting neurons from histological evidence of ischemia. This effect of lidocaine was presumably related to inhibiting the release of Ca2+ from intracellular stores and by inhibiting its influx from the extracellular space.45 In similar rat models of brain ischemia, lidocaine was shown to inhibit increases of cytosolic Ca2+ and intracellular glutamate, both having been implicated in causing release of ROS molecules and subsequent neuronal cell death. Administration of IV lidocaine before reperfusion in various I-R models (1) reduced Na+ and Ca2+ release from mitochondria,46 (2) suppressed glutamate accumulation in hippocampal and cortical tissue,47 (3) prevented histological damage to hippocampal slices without blocking action potentials,48 and (4) reduced infarct size, improved neurologic outcome and body weight.49

The reduction of cellular depolarization, Na+ and Ca2+ loading during ischemia may explain the neuroprotective action of lidocaine in these in vitro studies and also in animal models. Increased intracellular Ca2+ in ischemic neuronal tissue is postulated to activate phospholipases, which leads to the dissolution of lipid membranes and the subsequent release of free fatty acids and arachidonic acid (AA) metabolites.12 These AA metabolites (prostaglandins, leukotrienes, thromboxanes, PAF) and more ROS generation lead to increased vascular permeability, PMN activation, and initiate local vascular endothelial injury.12 It is possible that lidocaine, if given before reperfusion in ischemic neuronal tissue, may stop cellular Ca2+ accumulation and ameliorate injury.

Furthermore, since cytosolic Ca2+ has been theorized to be necessary as a co-factor for the conversion of XD to XO (Figure 1), it is possible that the phenomenon of Ca2+ exchange inhibition by lidocaine causes a decrease in the formation of superoxide radicals through the preservation of myocardial and neuronal XD. As previously discussed, lidocaine has been shown to inhibit markedly the chemiluminescence of the XO enzyme.37 Therefore, the use of lidocaine as a stabilizing treatment during shock may prevent injury to the heart and brain during the reperfusion period, through the preservation of XD and a concomitant decrease in superoxide radical formation. In vivo experiments evaluating the effect of lidocaine on XO-induced superoxide production are needed in order to define fully this potentially valuable antioxidant effect.

ROS and lidocaine-induced cytoprotection

Lidocaine may be involved in mechanisms of reperfusion injury other than inhibition of Na+/Ca2+ exchange through the blocking of Na+ channels and subsequent reduction of superoxide radical formation. As previously discussed, numerous experiments in both gastric and cardiac models of reperfusion injury have implicated hydroxyl radical formation and generation of superoxide from neutrophils as potent mediators of lipid peroxidation and cell death (Figure 1).

Previous studies of experimentally induced GDV have shown that lidocaine reliably reduced gastric and cardiac histopathologic and ultrastructural tissue damage and arrhythmias5 caused by decreased tissue perfusion. Specifically, IV bolus infusion of 2.2 mg/kg lidocaine, followed by constant rate infusion of 66 \textmu g/kg/min to 5 dogs before decompression in a similar experimental GDV model reduced gastric and cardiac ultrastructural cell damage by 40%.50,51 It was postulated that the decreased mitochondrial swelling and cardiac myocyte injury in lidocaine-treated subjects, which was demonstrated on transmission electron microscopy, was due to its ability to protect mitochondrial oxidative phosphorylation and decreased membrane permeability.50,51 In a small pilot study carried out by the author, the use of perioperative lidocaine in dogs with clinical GDV reduced the formation of multifocal ventricular dysrhythmias from 75% in untreated animals to 18% in those receiving lidocaine before decompression.k Since it is postulated that ROS formation and PMN infiltration are responsible for the myocardial injury and subsequent dysrhythmias that occur in GDV patients,9,15 it is possible that administration of lidocaine before reperfusion ameliorates this injury in both experimental and clinical settings. Recent experiments have demonstrated that lidocaine is an effective hydroxyl radical scavenger, while also decreasing superoxide release from granulocytes (Figure 2). Experiments involving rat lung ischemia/reperfusion demonstrate that lidocaine significantly attenuates injury, while decreasing the formation of cyclooxygenase products, which are downstream markers of lipid peroxidation.52 Recently, experimental techniques (such as electron spin resonance) that detect ROS through the use of compounds called ‘spin trapping agents’ have been optimized. Large magnets are used to detect the suspected radical in blood or
tissues, attached to the spin trapping agent. In a landmark electron spin resonance experiment, lidocaine was proven to inhibit the formation of a hydroxyl radical adduct linked to a 'spin trapping agent' in a dose-dependent manner. Lidocaine also caused a dose-dependent inhibition of NADPH-dependent lipid peroxidation when bovine lung microsomes were incubated with NADPH in the presence of Fe(3+) -ADP. Furthermore, in a rabbit model of 30-minute myocardial ischemia and 48 hours of reperfusion (a similar time frame as GDV patients), pretreatment with lidocaine reduced infarct size by 50% compared with controls. This reduction also significantly decreased tissue PMN infiltration and superoxide production by rabbit neutrophils. In similar experiments by the same author, performed to clarify the effect of lidocaine on PMN functions, lidocaine caused a reduction of infarct size in the rabbit myocardium. Lidocaine also caused a significant decrease in malondialdehyde concentration, but no decrease in tissue PMN infiltration and hemorrhage and decreased PMN chemiluminescence. Specifically, the effects of lidocaine on PMN activation in whole blood were measured by chemiluminescence. A significant reduction in the chemiluminescence response to the chemoattractant FMLP was obtained with rabbit and human blood, when pretreated with lidocaine. This study demonstrates the profound effect that lidocaine had on neutrophil function. Other in vivo studies in 3 different species (rabbit, pig, human) have shown that lidocaine inhibited superoxide production and suppressed the respiratory burst in PMNs. Lidocaine was also shown to inhibit phagocytosis and subsequent superoxide and H2O2 production in RAW 264.7 macrophages. Furthermore, when lidocaine was compared to bretylium tosylate in a porcine model of myocardial ischemia/reperfusion injury, it significantly decreased myocardial infarct size, while also reducing the in vitro release of superoxide from porcine granulocytes. In a model of canine brain I-R injury for only 60 minutes of reperfusion, dogs pretreated with lidocaine showed a significant decrease in malondialdehyde concentration, but no decrease in PMN activation. One hour of reperfusion, however, may not have been a long enough time period to observe significant suppression of the respiratory burst by lidocaine.

It is clear from these experiments that lidocaine protects organs from ROS injury via scavenging of the hydroxyl radical and decreasing production of superoxide from granulocytes of certain species. Further research should be performed in order to more clearly elucidate the biochemical mechanisms by which lidocaine inhibits ROS formation and subsequent myocardial, gastric and neuronal reperfusion injury.

Lidocaine and endothelial dysfunction

Once ROS have been generated, their presence in ischemic tissues begins a vicious cycle of PMN activation and expression of PMN chemoattractants and inflammatory cytokines leading to even more neutrophil infiltration of ischemic tissues. Accumulation of activated PMNs in ischemic tissue leads to physical disruption of the endothelial and epithelial barriers, widening of endothelial and epithelial intracellular tight junctions, increase in tissue permeability (caused by lipid peroxidation), and cell death.

Lidocaine has been shown to reduce the release of these inflammatory cytokines (PAF, PLA2, IL-6, IL-8) from macrophages and PMNs. It has also been shown to reduce PMN adhesion to endothelial surfaces in vivo, and inhibits upregulation of PMN CD11/CD18 in vitro. In a model of canine aortic graft transplantation, lidocaine was added to the donor flush and given to the recipient at thoracotomy. Compared to controls, dogs receiving lidocaine had a significantly decreased bronchoalveolar lavage PMN count and allograft myeloperoxidase activity, indicating that less PMN activation had occurred. Furthermore, in lidocaine-treated animals, PMN CD11b expression was maintained at basal levels after 2 hours post-reperfusion. In another model of rabbit lung injury, lidocaine pretreatment reduced superoxide production, PMN infiltration, and IL-6 and IL-8 levels in lung tissue exposed to hydrochloric acid. Furthermore, lidocaine has been shown in in vitro studies to inhibit chemoattractant-induced superoxide release and FMLP(formyl-methionyl-leucyl-phenylalanine)-induced CD11 upregulation in a dose-dependent manner. In a more recent experiment, lidocaine and other local anesthetics also inhibited adhesion, phagocytosis, and the production of superoxide radical and hydrogen peroxide in rat neutrophils that were isolated by peritoneal lavage after stimulation with glycogen. With regard to sepsis, lidocaine significantly inhibited leukocyte–endothelial cell adhesion and macromolecular leakage in rat postcapillary venules, suggesting that the drug may have a role in preventing endothelial damage in sepsis, which occurs frequently in traumatized dogs and cats. In order to ascertain the role of lidocaine as an inhibitor of PLA2 in acute respiratory distress syndrome, the drug was administered to rabbits before induction of acute lung injury. Pretreatment with lidocaine attenuated the amount of histopathologic lung injury, the amount of PMN accumulation, and decreased the peripheral neutrophil and platelet counts.

Application to human/veterinary emergency and critical care: Intravenous lidocaine, if administered before reperfusion, prevents Na+/Ca2+ accumulation,
Inhibits cytokine release —
Inhibits neutrophil functions —
Hydroxyl radical scavenger —
Calcium channel blocker —

PLA₂ is clear that further clinical trials should be performed, especially to ascertain the role of lidocaine in PLA₂ inhibition, TNF-α secretion, and subsequent endothelial dysfunction. With the current controversy in both human and veterinary medicine over the use of glucocorticosteroids in disease states that cause SIRS, due to their apparent gastrointestinal and endocrine side effects, the substitution of IV lidocaine for the glucocorticoids may give clinicians an effective and safe treatment alternative.

Conclusions and recommendations for future studies: In summary, in experimental models, administration of lidocaine before significant reperfusion decreases ROS formation, neutrophil activation, chemotaxis, and the ensuing lipid peroxidation that occurs in vital organs (heart, lung, brain, intestine) during reperfusion. Controlled clinical trials involving lidocaine and its use in actual diseases and syndromes (head and spinal cord trauma, GDV, equine strangulating obstruction, hypovolemic/septic shock, respiratory distress, endotoxemia) are needed in both human and veterinary medicine. Specifically, in vivo experiments involving lidocaine’s effect on XO-induced superoxide production are needed in order to elucidate this valuable potential antioxidant effect. In clinical settings, blocking the influx of intracellular and cytosolic Ca²⁺ by lidocaine administration may decrease lipid peroxidation via decreased superoxide radical production, not only in the heart but also in other organs (intestine, lung, brain), where it has been proven that this pathway causes significant lipid peroxidation and organ damage. For life-threatening conditions such as GDV and equine intestinal strangulating obstruction, experimental studies such as those discussed above should be repeated with lidocaine, with specific emphasis on its hydroxyl radical and superoxide scavenging abilities as well as survival, morbidity, and mortality. Furthermore, well-designed clinical experiments involving perioperative use of lidocaine in the canine and equine patient should be performed to see what effect it would have on morbidity and mortality. In summary, it is clear from these experiments that clinical trials involving lidocaine therapy for cerebral and other organ ischemia are needed in dogs, cats, and horses in order to ascertain if these cytoprotective effects are evident in trauma patients. With the paucity of therapies that are either safe or effective, the use of lidocaine may become an attractive alternative in emergency medicine’s arsenal of therapies for hemodynamically unstable patients in which MODS contributes to their morbidity and mortality.

Table 1: Lidocaine – potential therapeutic effects

<table>
<thead>
<tr>
<th>Therapeutic/clinical effect</th>
<th>Relevance to reperfusion injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium channel blocker – local anesthetic/antiarrhythmic</td>
<td>Decreased Na⁺/Ca²⁺ exchange</td>
</tr>
<tr>
<td>Calcium channel blocker – antiarrhythmic</td>
<td>Decreased xanthine oxidase activity</td>
</tr>
<tr>
<td>Decreased neuronal excitotoxicity/glutamate release</td>
<td>Decreased secondary brain injury</td>
</tr>
<tr>
<td>Hydroxyl radical scavenger – anti-inflammatory</td>
<td>Decreased lipid peroxidation</td>
</tr>
<tr>
<td>Inhibits neutrophil functions – anti-inflammatory</td>
<td>Decreased superoxide release</td>
</tr>
<tr>
<td>Inhibits cytokine release – anti-inflammatory</td>
<td>Decreased endothelial dysfunction</td>
</tr>
</tbody>
</table>

decreases neuronal excitotoxicity, decreases the formation of ROS (superoxide, hydroxyl radical), and prevents ROS-induced PMN infiltration, cytokine-induced PMN adhesion, and endothelial dysfunction in both in vivo and in vitro models (see Table 1 for a summary of therapeutic effects). Although it has already been shown that prophylactic lidocaine administration prevents reperfusion dysrhythmias and myocardial infarction in humans, its uses in other causes of hypovolemia, hypoperfusion, and sepsis are less clear. Although our veterinary patients rarely experience myocardial infarction, they are subject to other diseases (cerebral and spinal cord trauma, hypovolemic shock, GDV, cardiac and pulmonary contusions, strangulating intestinal obstruction) in which ischemia and reperfusion injury are likely to initiate ROS formation. The prophylactic use of lidocaine in these situations may prevent ROS-induced lipid peroxidation and the systemic inflammatory response that ensues. As shown in experimental models of sepsis and endotoxemia, lidocaine may also decrease the endothelial dysfunction caused by the release and activation of inflammatory mediators (PLA₂, TNF, PAF, IL-6, IL-8). Since PLA₂ activation has also been shown to induce TNF-α and subsequent PMN activation, it is possible that lidocaine acts to decrease neutrophil chemotaxis and adhesion and subsequent ROS formation by this ‘two-hit’ mechanism of cytokine reduction (Figure 2). Increased serum secretory PLA₂ has been shown in clinical trials to be linked to MODS. For many years in veterinary medicine, glucocorticosteroids have been used in shock situations in an attempt to modify inflammation and the SIRS response. Since a major action of these corticosteroids in shock is to inhibit PLA₂, it is clear that further clinical trials should be performed, especially to ascertain the role of lidocaine in the canine and equine patient should be performed to see what effect it would have on morbidity and mortality. In summary, it is clear from these experiments that clinical trials involving lidocaine therapy for cerebral and other organ ischemia are needed in dogs, cats, and horses in order to ascertain if these cytoprotective effects are evident in trauma patients. With the paucity of therapies that are either safe or effective, the use of lidocaine may become an attractive alternative in emergency medicine’s arsenal of therapies for hemodynamically unstable patients in which MODS contributes to their morbidity and mortality.

Footnotes

a Gfeller, 2000, Veterinary Information Network and Gfeller, 1999, Veterinary Information Network
References

56. Hatori N, Roberts RL, Tadokoro H, et al. Differences in infarct size with lidocaine as compared with bretbyium
59. Lantos J, Roth E, Temes G. Effects of lidocaine on cerebral lipid peroxidation and neutrophil activation following complete compression ischemia. Arch Int Pharmacodyn Ther 1996; 331(2):179–188.

Erratum

A letter regarding this article was published in the March 2003 issue of the journal. The credentials of J. Aldrich were given as DVM, DACVECC, DACVA, however, DACVECC and DACVA were included erroneously. The journal apologizes for this error.