Original Study

Journal of Veterinary Emergency and Critical Care 24(5) 2014, pp 545–553 doi: 10.1111/vec.12216

Evaluation of a transcutaneous blood gas monitoring system in critically ill dogs

Marie K. Holowaychuk, DVM, DACVECC; Hiroshi Fujita, BVM and Alexa M. E. Bersenas, DVM, MSc, DACVECC

Abstract

Objectives – To describe the use of a transcutaneous blood gas monitoring system in critically ill dogs, determine if transcutaneous and arterial blood gas values have good agreement, and verify if clinical or laboratory variables are correlated with differences between transcutaneous and arterial blood gas measurements.

Design – Prospective observational study.

Setting – University teaching hospital ICU.

Animals – Twenty-three client-owned dogs.

Interventions – In critically ill dogs undergoing arterial blood gas monitoring, a transcutaneous blood gas monitor was used to measure transcutaneous partial pressure of carbon dioxide ($PtcCO_2$) and transcutaneous partial pressure of oxygen ($PtcO_2$) values 30 minutes after sensor placement, which were compared to $PaCO_2$ and PaO_2 values measured simultaneously. Clinical and laboratory variables were concurrently recorded to determine if they were correlated with the difference between transcutaneous and arterial blood gas measurements.

Measurements and Main Results – Bland-Altman analysis revealed a mean bias of 4.6 ± 26.3 mm Hg (limits of agreement [LOA]: -46.9/+56.1 mm Hg) between PtcO₂ and PaO₂ and PaO₂ and a mean bias of 9.3 ± 8.5 mm Hg (LOA: -7.5/+26.0 mm Hg) between PtcCO₂ and PaCO₂. The difference between PtcCO₂–PaCO₂ was strongly negatively correlated with HCO₃⁻ ($r^2 = 0.52$, P < 0.001) and PaCO₂ ($r^2 = 0.58$, P < 0.001) and weakly positively correlated with diastolic blood pressure ($r^2 = 0.21$, P = 0.044), whereas the difference between PtcCO₂–PaCO₂ was moderately negatively correlated with diastolic blood pressure ($r^2 = 0.33$, P = 0.008).

Conclusions – Agreement between transcutaneous and arterial PO_2 and PCO_2 measurements in these critically ill dogs was inferior to that reported in similar adult and pediatric human studies. The transcutaneous monitor consistently over-estimated PaO_2 and $PaCO_2$ and should not be used to replace arterial blood gas measurements in critically ill dogs requiring blood gas interpretation.

(J Vet Emerg Crit Care 2014; 24(5): 545–553) doi: 10.1111/vec.12216

Keywords: blood pressure, hemoglobin, hypotension, PO2, PCO2

Introduction

Repeated blood gas measurements are often required to assess ventilation and oxygenation in critically ill patients to assist clinicians in designing appropriate treatment plans. Unfortunately, frequent blood sampling

From the Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.

The transcutaneous blood gas monitor used in this study was provided by Radiometer Canada for a trial period.

The authors declare no other conflict of interests.

This work was performed at the Ontario Veterinary College Health Sciences Centre.

Dr. Marie Holowaychuk, Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada. Email: criticalcarevet@outlook.com Submitted April 08, 2013; Accepted July 05, 2014.

© Veterinary Emergency and Critical Care Society 2014

Abbreviations

AARC	American Association for Respiratory Care
BE	base excess
DAP	diastolic arterial pressure
ETCO ₂	end-tidal carbon dioxide
Hgb	hemoglobin
HR	heart rate
MAP	mean arterial pressure
PtcCO ₂	transcutaneous PCO ₂
PtcO ₂	transcutaneous PO ₂
SAP	systolic arterial pressure
TPP	total plasma protein

from small human patients causes iatrogenic anemia, which likely also occurs in small veterinary patients undergoing repeated blood sampling. Blood sampling

Address correspondence and reprint requests to

for repeated blood gas analysis is also stressful and uncomfortable for human patients requiring multiple punctures if indwelling catheters are not placed.² Likewise, arterial blood sampling is technically challenging or impossible in very small or young animals and complications related to arterial puncture are reported in small dogs.³ Because PO₂ and PCO₂ measurements are required to make decisions regarding the need for oxygen supplementation or mechanical ventilation, a reliable method to measure these variables in small animals is essential. Transcutaneous blood gas monitoring enables noninvasive measurement of PO₂ and PCO₂ and avoids the issues and costs associated with arterial blood sample collection.⁴ Additionally, continuous monitoring of PCO₂ and PO₂ using transcutaneous monitors can detect changes in respiratory status earlier than blood gas analysis, allowing clinicians to respond more quickly.^{5–8}

Transcutaneous blood gas monitors are widely used in human medicine, especially in neonatal or other patients without arterial access, to obtain noninvasive and continuous blood gas measurements during mechanical ventilation, bronchoscopy, and sleep apnea or pulmonary function studies.^{9–12} They enable the assessment of adequacy of ventilation and oxygenation, tissue perfusion, and the viability of skin flaps or ischemic limbs.^{9–12} Studies comparing end-tidal carbon dioxide (ETCO₂) and transcutaneous PCO₂ (PtcCO₂) measurements in neonates, infants, and children receiving mechanical ventilation for respiratory failure reveal that PtcCO₂ is more accurate than ETCO₂.^{13,14} Similarly, transcutaneous blood gas monitors have recently become more reliable and when used in adult human patients also estimate PaCO₂ more accurately than ETCO₂.^{12,15,16} However, the accuracy of transcutaneous blood gas monitors in people is affected by several factors including variations in skin thickness,¹⁷ presence of peripheral edema, low cardiac output causing tissue hypoperfusion, peripheral vasoconstriction, administration of vasoconstricting drugs,¹⁸ as well as ventilation and oxygenation status.^{9,10,15,19} For example, PtcCO₂ is more accurate at normal and increased PaCO₂ values compared to lower PaCO₂ values (ie, during hyperventilation).²⁰ Additionally, the reliability of transcutaneous PO₂ (PtcO₂) is decreased during hypoxemia and hyperoxemia in adult and neonatal human patients and studies show that, in general, PtcO₂ monitoring is less accurate compared to PtcCO₂ monitoring.^{10,21,22}

There is limited information in the veterinary literature pertaining to transcutaneous blood gas monitoring in dogs. A study investigating PtcCO₂ measurements in 8 adult healthy dogs undergoing nonemergency orthopedic surgery found that PtcCO₂ over-estimated PaCO₂ by an average of 10.6 mm Hg and lagged behind changes in PaCO₂ during progression from normal ventilation to hyperventilation (ie, induction of hypocapnia) by approximately 6 minutes.²³ The authors concluded that the PtcCO₂ monitor might be useful for detecting changes or trends in PaCO₂, but was not accurate enough to be used as a surrogate measurement of PaCO₂.²³ An experimental study using anesthetized dogs demonstrated that PtcO₂ became less accurate compared to PaO₂ as the cardiac output decreased during induced hemorrhage, but the accuracy of PtcO₂ improved after fluid resuscitation.²⁴ PtcO₂ and PtcCO₂ measurements have also been used for the evaluation of skin graft viability in dogs in experimental settings.^{25,26} To the authors' knowledge, there are no published reports describing the utility of the PtcO₂ and PtcCO₂ monitoring in hospitalized critically ill dogs.

The objectives of the present study were to describe the use of a transcutaneous blood gas monitoring system in critically ill dogs, determine if transcutaneous and arterial blood gas values have good agreement, and verify if clinical or laboratory variables are correlated with differences between transcutaneous and arterial blood gas measurements.

Materials and Methods

A commercial transcutaneous blood gas monitoring system^a was obtained for a trial period in the ICU of our institution between February and March 2011. During that time period, any critically ill dogs hospitalized in the ICU that already had an indwelling arterial catheter and arterial blood gas measurements planned at the discretion of the attending clinician as a part of his/her diagnostic plan were included in this observational study. Because American Association for Respiratory Care (AARC) clinical practice guidelines¹⁰ state that PaO₂ > 100 mm Hg can result in falsely increased or decreased PtcO₂ and PtcCO₂ values, respectively, any dogs with a PaO₂ > 100 mm Hg were excluded from analysis.

The transcutaneous monitor was calibrated according to the manufacturer's specifications before application of the sensor probe to each dog and the sensor probe temperature was set to 44°C. The sensor probe was attached to the skin of the abdomen or thorax where the hair was already clipped, or after clipping the dog's hair approximately 2×2 cm. The application site was cleaned with an alcohol swab and an adhesive plastic ring was attached to the skin. Contact gel was applied to the skin and the sensor probe was attached to the ring (Figure 1). The manufacturer's recommended minimum equilibration and physiological stabilization time after sensor probe placement was 5–10 minutes for a PtcCO₂ measurement and 10-20 minutes for a PtcO₂ measurement; therefore, PtcCO₂ and PtcO₂ were recorded 30 minutes after probe application. The sensor probe was not left in the same

Figure 1: (A) Transcutaneous PCO_2 and PO_2 monitor and (B) sensor probe attached to the thorax of a dog recovering from a lateral thoracotomy.

position for more than 8 hours, to prevent thermal injuries secondary to the sensor probe heat.

An arterial blood sample was collected from the indwelling arterial catheter 30 minutes after sensor placement and blood gas analysis was performed with a commercial blood gas analyzer.^b Because of a 30-second delay between the monitor and transcutaneous sensor, 30-minute PtcCO₂ and PO₂ values were recorded 30 seconds after arterial blood sampling. At the time of arterial blood sampling, the following variables were also recorded: body weight, rectal temperature, heart rate (HR), systolic arterial pressure (SAP), diastolic arterial pressure (DAP), and mean arterial pressure (MAP). Blood pressure was recorded using an oscillometric device.^c Additionally, PCV, hemoglobin (Hgb), total plasma protein (TPP), pH, HCO_3^{-} , base excess (BE), and lactate were concurrently recorded from results measured using the arterial blood sample.

Statistical analyses

A Shapiro-Wilk test was used to determine standard normal distribution of the data. Data with standard normal distribution were presented as mean \pm SD and data not normally distributed were presented as median (range). PtcO₂ and PtcCO₂ were compared with PaO₂ and PaCO₂ by performing Bland-Altman analysis.²⁷ Precision was defined as ± 2 SD of the mean bias in the Bland-Altman analysis. Depending on standard normal distribution, Pearson's or Spearman's correlation coefficient was performed to determine if PtcO₂ and PtcCO₂ were significantly correlated with PaO₂ and PaCO₂, respectively, and if the recorded clinical (body weight, temperature, HR, SAP, DAP, MAP) and laboratory (PCV, Hgb, TPP, pH, HCO₃⁻, BE, lactate, PaO₂, PaCO₂) variables were significantly correlated with the difference between the transcutaneous and arterial blood gas measurements (PtcO₂ – PaO₂ and PtcCO₂ – PaCO₂). A *P* < 0.05 was considered to indicate statistical significance for all comparisons. Commercial statistical software^d was used for all statistical analyses and commercial graphing software^e was used to generate the figures.

Results

Data were initially recorded from 26 dogs including 18 male dogs (2 intact, 16 neutered) and 8 female dogs (1 intact, 7 neutered). However, 3 dogs (2 neutered males, 1 neutered female) with a $PaO_2 > 100 \text{ mm Hg were ex-}$ cluded from the analysis. The median (range) age of the 23 included dogs was 9 (1–10) years and the mean \pm SD body weight was 33.1 ± 13.4 kg. Recorded clinical variables are summarized in Table 1. Most dogs (n = 20/23, 87%) had an arterial catheter placed for direct blood pressure monitoring or arterial blood sampling during anesthesia. Reasons for anesthesia in those dogs included gastrointestinal mass resection or foreign body removal (n = 7), oral mass resection (n = 2), extremity mass resection (n = 2), and laryngeal mass resection, lung mass resection, exploratory thoracotomy, cataract surgery, stifle surgery, hemilaminectomy, rhinotomy, amplatzer occlusion, and advanced imaging (n = 1 for each). The remaining dogs (n = 3/23, 13%) had an arterial catheter placed specifically for invasive blood pressure monitoring or repeated arterial blood gas analysis in the ICU for conditions including pulmonary contusions, aspiration pneumonia, and atrial fibrillation (n = 1 for each). Two dogs were receiving oxygen supplementation at the time of data collection including 1 dog with a nasal cannula placed after an exploratory thoracotomy for spontaneous pneumothorax and another dog that was endotracheally intubated and undergoing mechanical ventilation for aspiration pneumonia. That same dog was in septic shock and being administered dobutamine^f at the time of data collection.

The transcutaneous monitor sensor probe was attached to the lateral aspect of the abdomen (n = 13) or thorax (n = 6), ventral abdomen (n = 2), or ventrolaterally on the thorax (n = 2). There were no dermal or other complications noted in any of the dogs after the sensor probe and adhesive ring were removed from the

Table 1: Clinical, laboratory, and transcutaneous monitor variables recorded in critically ill dogs

Variable	N	Measurement		
Heart rate (per min)	23	80 (46–157)		
Rectal temperature (°C)	23	$\textbf{37.3} \pm \textbf{0.8}$		
Rectal temperature (°F)	23	99.1 ± 0.6		
Systolic arterial pressure (mm Hg)	20	143 ± 21		
Diastolic arterial pressure (mm Hg)	20	84 ± 23		
Mean arterial pressure (mm Hg)	20	107 ± 24		
PCV (%)	23	$\textbf{36.2} \pm \textbf{6.9}$		
Hemoglobin (g/L)	23	122 ± 27		
Hemoglobin (g/dL)	23	12.2 ± 2.7		
Total plasma protein (g/L)	23	52 ± 8		
Total plasma protein (g/dL)	23	5.2 ± 0.8		
pН	23	7.40 ± 0.04		
HCO ₃ ⁻ (mmol/L, mEq/L)	23	21.7 ± 2.4		
Base excess (mmol/L, mEq/L)	23	-2.4 ± 2.3		
Lactate (mmol/L)	23	1.3 (0.5–3.5)		
PaO ₂ (mm Hg)	23	84.7 ± 9.9		
PtcO ₂ (mm Hg)	23	87 (55–177)		
PtcO ₂ – PaO ₂ (mm Hg)	23	2.1 (-26.3-91.8)		
PaCO ₂ (mm Hg)	23	$\textbf{36.0} \pm \textbf{5.5}$		
PtcCO ₂ (mm Hg)	23	46 (33–57)		
PtcCO ₂ - PaCO ₂ (mm Hg)	23	11.9 (–11.2–24.3)		

Values with standard normal distribution are expressed as mean \pm SD and values without standard normal distribution are expressed as median (range).

 HCO_3^- , bicarbonate; $PtcCO_2$, transcutaneous PCO_2 ; $PtcO_2$, transcutaneous PO_2 .

application site. Transcutaneous and arterial PO₂ and PCO₂ measurements are listed in Table 1. PtcO₂ and PaO₂ measurements ($r^2 = 0.03$, P = 0.398) were not correlated, nor were PtcCO₂ and PaCO₂ measurements ($r^2 = 0.02$, P = 0.561). Bland-Altman analyses revealed a mean bias of 4.6 ± 26.3 mm Hg between PtcO₂ and PaO₂ with wide limits of agreement (LOA; -46.9/+56.1 mm Hg; Figure 2A), as well as a mean percentage difference of 2.5 ± 26.2% (LOA -48.9/+53.8%; Figure 2B). Likewise, there was a mean bias of 9.3 ± 8.5 mm Hg between PtcCO₂ and PaCO₂ with wide LOA -7.5/+26.0 mm Hg (Figure 3A), as well as a mean percentage difference of 22.9 ± 21.7% (LOA -19.6/+65.3%; Figure 3B).

Correlations between the differences between transcutaneous and arterial blood gas measurements and recorded clinical and laboratory variables are included in Table 2. The PtcCO₂ – PaCO₂ difference was negatively correlated with HCO₃⁻ ($r^2 = 0.52$, P < 0.001; Figure 4A) and PaCO₂ ($r^2 = 0.58$, P < 0.001; Figure 4B), and positively correlated with DAP ($r^2 = 0.21$, P = 0.044; Figure 5A). The PtcO₂ – PaO₂ difference was negatively correlated with DAP ($r^2 = 0.33$, P = 0.008; Figure 5B). Correlations were not identified between PtcO₂ – PaO₂ or PtcCO₂ – PaCO₂ and other measured clinical and laboratory variables (Table 2).

Figure 2: Bland-Altman analyses comparing transcutaneous PO₂ (PtcO₂) and PaO₂ measured in 23 critically ill dogs.

Table 2: Correlations between the difference between transcutaneous and arterial blood gas measurements and clinical and laboratory variables in 23 critically ill dogs

	$PtcO_2 - PaO_2$			PtcCO ₂ – PaCO ₂			
Variable	R	r ²	P-Value	r	r ²	P-Value	
SAP	0.44	0.19	0.055	0.08	<0.01	0.746	
DAP	-0.58	0.33	0.008	0.45	0.21	0.044	
MAP	0.13	0.02	0.572	-0.12	0.01	0.621	
TPP	0.39	0.15	0.065	0.07	< 0.01	0.737	
pН	0.12	0.01	0.600	0.34	0.12	0.112	
HCO3 ⁻	0.15	0.02	0.494	-0.72	0.52	<0.001	
BE	-0.03	< 0.01	0.894	-0.22	0.05	0.322	
Lactate	<-0.01	< 0.01	0.988	0.07	< 0.01	0.734	
PaO ₂	-0.26	0.07	0.223	0.15	0.02	0.500	
PaCO ₂	< 0.01	< 0.01	0.995	-0.76	0.58	<0.001	

SAP, systolic arterial pressure; DAP, diastolic arterial pressure; MAP, mean arterial pressure; TPP, total plasma protein; BE, base excess; HCO_3^- , bicarbonate; PtcCO₂, transcutaneous PCO₂; PtcO₂, transcutaneous PO₂. Measurements in bold represent significant findings (P < 0.05).

Discussion

The present study investigated the utility of a transcutaneous blood gas monitor, designed for use in

Figure 3: Bland-Altman analyses comparing transcutaneous PCO₂ (PtcCO₂) and PaCO₂ measured in 23 critically ill dogs.

people, in a small group of hospitalized critically ill dogs. The monitor features a combination PtcO₂ and PtcCO₂ sensor and has been available for use since 2010. The monitor performs PtcO₂ measurements using a Clark sensor, whereas a Stowe-Severinghaus electrode is used for the PtcCO₂ measurements. The monitor was easy to use in terms of its calibration and application of the sensor probe, which took approximately 5 minutes each. Measurements were visible on the monitor screen by about 5 minutes after probe placement, but because the manufacturer recommends waiting 10-20 minutes for stabilization, arterial blood gas measurements were not taken for comparison until 30 minutes after sensor probe placement. The temperature probe was heated to 44°C as per the manufacturer's recommendation, to enhance blood flow to the application site and improve the diffusion of gases across the skin, thereby improving the accuracy of the monitor.9,12,15

Despite following all of the manufacturer's recommendations for calibration and sensor probe fixation, concurrent transcutaneous and arterial blood gas measurements did not have good correlation in this group of critically ill dogs. Given that correlation

Figure 4: Correlations between (A) bicarbonate (HCO_3^-) and (B) PaCO₂ and the difference between transcutaneous CO₂ and PaCO₂ (PtcCO₂ – PaCO₂) measured in 23 critically ill dogs.

analyses alone are not recommended for assessment of agreement between 2 diagnostic tests, Bland-Altman analysis was used since the results more reliably indicate the accuracy of the diagnostic test.²⁸ Bland-Altman analyses revealed that the transcutaneous blood gas measurements had moderate agreement with arterial blood gas measurements. The mean bias (difference) between the measurements was relatively small with PtcO₂ over-estimating PaO₂ by an average of approximately 5 mm Hg, whereas PtcCO₂ over-estimated PaCO₂ by an average of approximately 9 mm Hg. However, the LOA were extremely wide, indicating that the transcutaneous measurements were often very different from the arterial blood gas measurements. The AARC clinical practice guidelines state that while PtcCO₂ typically over-estimates PaCO₂, "... the acceptable clinical range of agreement for PtcCO₂ is \pm 7.5 mm Hg."¹⁰ Therefore, the PtcCO₂ measurements from the present study would not be considered clinically acceptable by AARC standards. In comparison with human studies, agreement between transcutaneous and arterial PO2 and PCO2 measurements

Figure 5: Correlations between diastolic arterial pressure and the difference between (A) transcutaneous PO_2 and PaO_2 (PtcO₂ – PaO_2) and (B) transcutaneous PCO_2 and $PaCO_2$ (PtcCO₂ – $PaCO_2$) measured in 23 critically ill dogs.

was inferior in the present study, as most human studies show mean differences of < 5 mm Hg.^{29–34}

Inaccuracies in transcutaneous blood gas measurements can occur for many technical reasons including inappropriate heating of the sensor probe, improper calibration, trapped air bubbles underneath the sensor probe, leaks in the fixation device, or damaged sensor probe membranes.9,12,15 Likewise, some clinical situations can result in falsely increased or decreased transcutaneous blood gas values. For example, falsely decreased PtcO₂ and PtcCO₂ measurements can occur with hypoperfusion or vasoactive drug administration, peripheral edema or increased thickness of the skin or subcutaneous tissue, and placement of the sensor on distal extremities with limited blood flow.^{9,12,15} Attempts to limit clinical reasons for the transcutaneous monitor's inaccuracies were made including placement of the sensor probe on the dog's body, rather than its extremities, and avoidance of application of the sensor probe to areas of peripheral edema. Unfortunately, the exact location of the sensor probe application site was not standardized in the present study, which might have affected the

accuracy of the results. The preferred location to obtain transcutaneous measurements in neonates and small pediatric patients is the upper chest.¹⁰ Other locations more commonly used in adults include the lateral abdomen, chest, buttock, upper thigh, forearm, ear lobe, cheek, or forehead.¹⁰ Given the authors' limited experience with the transcutaneous blood gas monitoring device, it is possible that some of the values did not agree with arterial blood gas measurements because of technical issues with sensor probe placement.

Although the authors also followed AARC guidelines by not comparing PaO₂ to transcutaneous measurements in dogs with $PaO_2 > 100 \text{ mm Hg}$, $PtcO_2$ is even considered less accurate in human patients with a $PaO_2 >$ 80 mm Hg.²¹ The mean PaO₂ measured in dogs in the present study was approximately 85 mm Hg and 3 dogs with PaO₂ over 100 mm Hg were excluded from analysis because of the decreased accuracy of transcutaneous blood gas measurements in patients with hyperoxemia. An experimental study evaluating the accuracy of a PtcO₂ monitor in healthy anesthetized cats revealed that PtcO₂ closely matched PaO₂ during normoxemia and hypoxemia, but was significantly lower than PaO₂ during hyperoxemia.³⁵ Conversely, falsely increased PtcO₂ measurements occur with improper sensor probe application or increased capillary blood flow due to patient movement.9,12,15 Therefore, these factors might have affected the results in the present study as well.

PtcO₂ measurements are also affected by altered blood flow to the probe application site during hypoperfusion.^{9,12,15} This has limited the use of PtcO₂ monitoring in neonates and adults, especially those with severe systemic illness, given that PtcO₂ monitoring in those patients tends to reflect perfusion rather than oxygenation.^{9,12,15} An experimental study showed that the difference between PtcO₂ and PaO₂ measurements in dogs with induced hemorrhage increased as the cardiac output decreased.²⁴ This difference decreased after the dogs received appropriate fluid resuscitation, suggesting improved accuracy of the monitor when perfusion was restored.²⁴ In other words, PtcO₂ appears to correlate better with mixed venous rather than arterial PO₂ during low cardiac output states. In the present study, the difference between PtcO₂ and PaO₂ measurements was moderately negatively correlated with DAP; however, other measurements of perfusion (eg, MAP, lactate) were not correlated. It is possible that the difference between PtcO₂ and PaO₂ measurements in this group of critically ill dogs was affected by the decrease in DAP and subsequent decrease in oxygen delivery to the sensor probe site. PtcO₂ measurements are also influenced by skin thickness, which influences local oxygenation.^{17,36} The oxygen consumption of the skin is increased in thicker skin, which increases the difference between $PtcO_2$ and PaO_2 in older infants and children.³⁷ Differences in skin thickness might have also influenced the $PtcO_2$ measurements in dogs in the present study, given that the sensor probe application site was not standardized.

In human patients, PtcCO₂ measurements are more accurate in comparison to PtcO₂ measurements,²¹ giving rise to the recent development of combination PtcCO₂ and pulse oximetry (rather than PtcO₂) sensors. In the present study, PtcCO₂ measurements averaged approximately 20% (9 mm Hg) higher than PaCO₂ measurements. There are very few published studies investigating the use of transcutaneous blood gas monitoring in dogs; however, a study investigating 8 adult dogs anesthetized for orthopedic surgery found a mean \pm SD difference between PtcCO₂ and PaCO₂ of 8.9 ± 12 mm Hg 10 minutes after sensor application.²³ Thus, that transcutaneous blood gas monitor also over-estimated PaCO₂ in that group of dogs and had unacceptably large variability in the measurements. However, the monitor had an acceptable lag time (6.2 min) during the adjustment from normal to hyperventilation.²³ Therefore, the authors cautioned against the use of the monitor to replace PaCO₂ measurements, but recommended that it instead be used to trend PCO₂ values.

Interestingly, the difference between PtcCO₂ and PaCO₂ was moderately negatively correlated with HCO₃⁻ and weakly positively correlated with DAP. The reason for these conflicting findings is unclear. Typically, decreased HCO₃⁻ would be considered a reflection of poor perfusion, which normally falsely decreases PtcCO₂ measurements. However, a study investigating PtcCO₂ monitoring in the early 1980s found that PtcCO₂ values became falsely increased during low cardiac output states in adult human patients during surgery or ICU hospitalization.²² Unfortunately, that does not explain the positive correlation between the $PtcCO_2 - PaCO_2$ difference and DAP, which is generally increased with improved perfusion. Local blood and tissue production of CO₂ is very dependent upon blood flow to the site, which is why it is common practice for monitors to apply a correction factor to PtcCO₂ measurements, so that they more closely reflect the PaCO₂ value. It is possible that the increased DAP improved blood flow to the sensor probe site, such that local CO₂ production increased, thereby increasing the difference between the PtcCO₂ and PaO₂ values.

The present study also found that the difference between $PtcCO_2 - PaCO_2$ was strongly negatively correlated with $PaCO_2$, suggesting that the accuracy of the transcutaneous monitor decreased during hypocapnia (hyperventilation). In human studies, $PtcCO_2$ is more accurate during normal and hypoventilation compared to hyperventilation, as evidenced by difficulty detecting PtcCO₂ at a lower PaCO₂.^{19,20} Likewise, a study investigating 6 healthy anesthetized cats found that the difference between PtcCO₂ and PaCO₂ was also wider during hypocapnia, compared to normo- or hypercapnia.³⁵ Similarly, the study using 8 anesthetized dogs found that the difference between PtcCO₂ – PaCO₂ decreased during hypercapnia.²³ Therefore, in patients with unstable or changing ventilatory patterns, especially hyperventilation that might lead to hypocapnia, PtcCO₂ measurements might not be accurate. This inaccuracy is hypothesized to occur due to a reflex vasoconstriction and alterations in blood flow to the sensor probe site and subsequent decreased diffusion of CO₂ across the skin.^{19,20}

It is likely that species differences exist with regards to the transcutaneous monitor's ability to accurately measure PCO₂. The transcutaneous monitor used in the present study has a pH-sensitive glass electrode covered in a CO₂-permeable Teflon membrane, which allows CO₂ to diffuse across and combine with water to form carbonic acid. The carbonic acid dissociates to HCO₃⁻ and H⁺, which causes pH changes that result in electrical output calibrated to be linearly associated with changes in CO₂.³⁸ The Severinghaus method is then used to analyze the electrical output from the electrode and calculate the transcutaneous blood gas values based on formulas taking into account skin metabolism and local production of CO₂. These monitors and the formulas they use are calibrated for people,^g but not dogs that have a different skin thickness and likely different skin metabolism and local CO₂ production compared to people. To the authors' knowledge, no such formula has been derived for use in dogs, and all published studies investigating the use of transcutaneous monitors in veterinary patients use this same technology and human calibration formulas.

Aside from the inherent limitations of using a monitor designed and calibrated for humans, there are other limitations of the present study that might have affected the results and warrant discussion. Only a small number of dogs with relatively normal blood gas values were included in the study, and an arterial blood gas was only sampled once at 30 minutes after sensor probe placement. While the authors attempted to perform blood sampling and record data when the dog's condition was stable, ongoing changes in blood pressure, oxygenation, or ventilation might have affected the accuracy of the PCO₂ and PO₂ measurement. There was also 1 dog included that was administered dobutamine, which might have resulted in alterations in peripheral blood flow and the accuracy of the transcutaneous monitor.9,15,18 Unfortunately, because only 1 dog received vasoactive medications, this precluded the ability to perform statistical analysis to determine whether the vasoactive medications were associated with a larger difference between the transcutaneous and arterial blood gas measurements. Additionally, the site of the sensor probe application was not standardized in terms of the exact location on the thorax or abdomen. Future studies should ensure that a consistent site is used for sensor probe fixation, to avoid alterations in skin thickness in different parts of the body affecting results. Finally, relatively stable hospitalized patients were included; therefore, extreme variations in PCO₂ or PO₂ that would be expected in other critically ill dogs were not investigated in the present study.

Conclusions

Agreement between transcutaneous and arterial PO₂ and PCO₂ measurements in the present study was inferior to that reported in similar adult and pediatric human studies. Therefore, the transcutaneous monitor studied was not considered reliable in estimating PaO₂ or PaCO₂ in this group of critically ill dogs. Although the monitor might be considered for noninvasively trending blood gas measurements, it should not be used alone, without intermittent measurement of arterial blood gas values. Differences between transcutaneous and arterial blood gas measurements were increased in dogs with hypocapnia or hypoperfusion; therefore, transcutaneous measurements might over-estimate arterial blood gas values during those situations. As such, transcutaneous blood gas measurements should always be verified with arterial blood gas results. Further studies investigating a larger population of critically ill dogs are needed to fully determine the clinical utility of this and other transcutaneous blood gas monitors.

Acknowledgments

The authors would like to thank Kelly Pullen and Radiometer Canada for providing assistance and lending the device, as well as Gabrielle Monteith for her help with the statistical analyses.

Footnotes

- ^a TCM CombiM monitoring system; Radiometer Medical ApS, Bronshoj, Denmark.
- ^b ABL800 FLEX analyzer; Radiometer Medical ApS.
- ^c Cardell Veterinary Monitor, 9401 BP; Sharn Veterinary Inc, Tampa, FL.
- ^d SAS/STAT v 9.2, SAS Institute, Cary, NC.
- ^e GraphPad Prism 6; GraphPad Software, San Diego, CA.
- ^f Dobutamine Injection, Abbott Laboratories Ltd, Saint-Laurent, QC, Canada.
- ^g TCM TOSCA/CombiM monitoring systems, Operator's manual from software version 3.0, Radiometer Medical ApS.

References

- Nexø E, Christensen NC, Olesen H. Volume of blood removed for analytical purposes during hospitalization of low-birthweight infants. Clin Chem 1981; 27(5):759–61.
- 2. Taksande AM, Vilhekar KY, Jain M, et al. Pain response of neonates to venipuncture. Indian J Pediatr 2005; 72(9):751–753.
- Shiroshita Y, Tanaka R, Shibazaki A, Yamane Y. Retrospective study of clinical complications occurring after arterial punctures in 111 dogs. Vet Rec 2000; 146(1):16–19.
- McBride ME, Berkenbosch JW, Tobias JD. Transcutaneous carbon dioxide monitoring during diabetic ketoacidosis in children and adolescents. Paediatr Anaesth 2004; 14(2):167–171.
- Evans EN, Ganeshalingam K, Ebden P. Changes in oxygen saturation and transcutaneous carbon dioxide and oxygen levels in patients undergoing fibreoptic bronchoscopy. Respir Med 1998; 92(5):739–742.
- Tingay DG, Stewart MJ, Morley CJ. Monitoring of end tidal carbon dioxide and transcutaneous carbon dioxide during neonatal transport. Arch Dis Child Fetal Neonatal Ed 2005; 90(6):523–526.
- Gancel PE, Roupie E, Guittet L, et al. Accuracy of a transcutaneous carbon dioxide pressure monitoring device in emergency room patients with acute respiratory failure. Intensive Care Med 2011; 37(2):348–351.
- Dullenkopf A, Bernardo SD, Berger F, et al. Evaluation of a new combined SpO₂/PtcCO₂ sensor in anaesthetized paediatric patients. Paediatr Anaesth 2003; 13(9):777–784.
- 9. Tobias JD. Transcutaneous carbon dioxide monitoring in infants and children. Paediatr Anaesth 2009; 19(5):434–444.
- Restrepo RD, Hirst KR, Wittnebel L, et al. AARC clinical practice guideline: transcutaneous monitoring of carbon dioxide and oxygen: 2012. Respir Care 2012; 57(11):1955–1962.
- Rüdiger M, Töpfer K, Hammer H, et al. A survey of transcutaneous blood gas monitoring among European neonatal intensive care units. BMC Pediatr 2005; 5:30. doi:10.1186/1471-2431-5-30.
- 12. Rithalia SV. Developments in transcutaneous blood gas monitoring: a review. J Med Eng Technol 1991; 15(4–5):143–153.
- Tobias JD, Meyer DJ. Non-invasive monitoring of carbon dioxide during respiratory failure in toddlers and infants: end-tidal versus transcutaneous carbon dioxide. Anesth Analg 1997; 85(1):55–58.
- Berkenbosch JW, Lam J, Burd RS et al. Noninvasive monitoring of carbon dioxide during mechanical ventilation in older children: end-tidal versus transcutaneous techniques. Anesth Analg 2001; 92(6):1427–1431.
- Eberhard P. The design, use, and results of transcutaneous carbon dioxide analysis: current and future directions. Anesth Analg 2007; 105(6 Suppl):S48–S52.
- Casati A, Squicciarini G, Malagutti G, et al. Transcutaneous monitoring of partial pressure of carbon dioxide in the elderly patient: a prospective, clinical comparison with end-tidal monitoring. J Clin Anesth 2006; 18(6):436–440.
- Nishiyama T, Nakamura S, Yamashita K. Comparison of the transcutaneous oxygen and carbon dioxide tension in different electrode locations during general anaesthesia. Eur J Anaesthesiol 2006; 23(12):1049–1054.
- Lang CJ. Apnea testing guided by continuous transcutaneous monitoring of partial pressure of carbon dioxide. Crit Care Med 1998; 26(5):868–872.
- Steurer J, Hoffmann U, Dür P, et al. Changes in arterial and transcutaneous oxygen and carbon dioxide tensions during and after voluntary hyperventilation. Respiration 1997; 64(3):200–205.
- Baulig W, Schütt P, Roth HR, et al. Clinical validation of a digital transcutaneous PCO₂/SpO₂ ear sensor in adult patients after cardiac surgery. J Clin Monit Comput 2007; 21(5):303–309.
- 21. Palmisano BW, Severinghaus JW. Transcutaneous PCO₂ and PO₂: a multicenter study of accuracy. J Clin Monit 1990; 6(3): 189–195.
- 22. Tremper KK, Shoemaker WC, Shippy CR, et al. Transcutaneous PCO₂ monitoring on adult patients in the ICU and the operating room. Crit Care Med 1981; 9(10):752–755.

- 23. Vogt R, Rohling R, Kästner S. Evaluation of a combined transcutaneous carbon dioxide pressure and pulse oximetry sensor in adult sheep and dogs. Am J Vet Res 2007; 68(3):265–270.
- 24. Tremper KK, Waxman K, Shoemaker WC. Effects of hypoxia and shock on transcutaneous PO₂ values in dogs. Crit Care Med 1979; 7(12):526–531.
- Rochat MC, Pope ER, Payne JT, et al. Transcutaneous oxygen monitoring for predicting skin viability in dogs. Am J Vet Res 1993; 54(3):468–475.
- Rochat MC, Payne JT, Pope ER, et al. Evaluation of skin viability in dogs, using transcutaneous carbon dioxide and sensor current monitoring. Am J Vet Res 1993; 54(3):476–480.
- Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1(8476):307–310.
- Jensen AL, Kjelgaard-Hansen M. Method comparison in the clinical laboratory. Vet Clin Pathol 2006; 35(3):276–286.
- Senn O, Clarenbach CF, Kaplan V, et al. Monitoring carbon dioxide tension and arterial oxygen saturation by a single earlobe sensor in patients with critical illness or sleep apnea. Chest 2005; 128(3):1291– 1296.
- Urbano J, Cruzado V, López-Herce J, et al. Accuracy of three transcutaneous carbon dioxide monitors in critically ill children. Pediatr Pulmonol 2010; 45(5):481–486.

- Storre JH, Magnet FS, Dreher M, et al. Transcutaneous monitoring as a replacement for arterial PCO₂ monitoring during nocturnal non-invasive ventilation. Respir Med 2011; 105(1):143–150.
- Fanconi S. Pulse oximetry and transcutaneous oxygen tension for detection of hypoxemia in critically ill infants and children. Adv Exp Med Biol 1987; 220:159–164.
- 33. Carter B, Hochmann M, Osborne A, et al. A comparison of two transcutaneous monitors for the measurement of arterial PO₂ and PCO₂ in neonates. Anaesth Intensive Care 1995; 23(6): 708–714.
- Rodriguez P, Lellouche F, Aboab J, et al. Transcutaneous arterial carbon dioxide pressure monitoring in critically ill adult patients. Intensive Care Med 2006; 32(2):309–312.
- Mann FA, Wagner-Mann CC, Branson KR. Transcutaneous oxygen and carbon dioxide monitoring in normal cats. J Vet Emerg Crit Care 1997; 7(2):99–109.
- Poets CF, Southall DP. Noninvasive monitoring of oxygenation in infants and children: practical considerations and areas of concern. Pediatrics 1994; 93(5):737–746.
- Vyas H, Helms P, Cheriyan G. Transcutaneous oxygen monitoring beyond the neonatal period. Crit Care Med 1988; 16(9):844– 847.
- Hazinski TA, Severinghaus JW. Transcutaneous analysis of arterial PCO₂. Med Instrum 1982; 16(3):150–153.