Management of acute respiratory distress syndrome in a French Bulldog using airway pressure release ventilation

Catherine V. Sabino, DVM; Marie Holowaychuk, DVM, DACVECC and Shane Bateman, DVM, DVSc, DACVECC

Abstract

Objective – To describe the successful clinical management of a dog with acute respiratory distress syndrome (ARDS) using airway pressure release ventilation (APRV).

Case Summary – An 18-month-old female French Bulldog was presented for routine ovariohysterectomy and correction of brachycephalic airway obstruction syndrome. Following the surgical procedures, the dog developed aspiration pneumonia and ARDS. Her clinical condition failed to improve with conventional pressure-support mechanical ventilation and she was subsequently managed with APRV. She recovered fully and exhibited no clinical or radiographic abnormalities during follow-up examinations.

New or Unique Information Provided – This is the first reported use of APRV to manage refractory hypoxemia associated with ARDS in a dog. This alternative mode of mechanical ventilation can be considered a feasible alternative in canine patients with ARDS.

Keywords: APRV, ARDS, brachycephalic, dogs, mechanical ventilation

Introduction

Patients that develop significant respiratory compromise, such as acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) often require mechanical ventilation. Mortality rates in human patients with ARDS remain high and survival to discharge is less than 10% in veterinary medicine.1, 2 In human medicine, research has led to the development of a number of strategies to improve the management and outcome of patients with ARDS. These strategies include the use of low tidal-volume ventilation,3 restrictive fluid strategies,4 prone positioning,5 as well as alternative therapies, such as extracorporeal ventilation and the use of “open lung” modes of ventilation. The open lung approach minimizes atelectasis by using a higher than conventional positive end expiratory pressure (PEEP) to optimize gas exchange. Modes of ventilation that employ the open lung approach include airway pressure release ventilation (APRV) and high-frequency oscillatory ventilation.

APRV uses the concept of open lung ventilation combined with spontaneous ventilation in order to improve arterial oxygenation and minimize ventilator-induced lung injury. APRV varies markedly from conventional mechanical ventilation. During APRV, a high continuous positive airway pressure (CPAP) is maintained and the patient is allowed to breathe spontaneously. Each
In this report, we describe the use of APRV in a dog that was already intubated and receiving oxygen supplementation via the oxygen cage at the low airway pressure that determines the rate of mandatory mechanical ventilation, with further spontaneous breaths allowed throughout the ventilator cycle to enhance physiologic recruitment of alveoli. APRV improves many physiologic endpoints of mechanical ventilation such as gas exchange, cardiac output, arterial oxygenation, and systemic blood flow in canine experimental models, as well as human clinical and experimental studies. In this report, we describe the use of APRV to successfully manage ARDS in an 18-month-old French Bulldog with aspiration pneumonia.

Case Summary

An 18-month-old female French Bulldog presented to the surgical service for an ovariohysterectomy and upper airway examination. She had no prior medical concerns and abnormalities on physical examination at the time of presentation were limited to stertorous breathing and stenotic nares. Thoracic radiographs were performed prior to anesthesia and did not reveal any pulmonary abnormalities.

The following day, an upper airway exam was performed under general anesthesia and confirmed the presence of an elongated soft palate, everted laryngeal sacculs, stenotic nares, and normal laryngeal function. A routine palatoplasty, ventriculectomy, and wedge rhinoplasty were performed, followed by an ovariohysterectomy. The anesthetic protocol consisted of hydromorphone premedication (0.05 mg/kg IV), followed by propofol (10 mg/kg IV total, titrated to effect) for the upper airway examination and ventriculectomy, and inhalant anesthesia with isoflurane inhalant (1.5–2.0%/v) for the palatoplasty and ovariohysterectomy. She received an additional dose of hydromorphone (0.025 mg/kg IV) for analgesia upon recovery from anesthesia.

The dog initially recovered well following the procedures. She recovered in an oxygen cage with an inspired oxygen concentration of 40% and had an oxygen saturation (SpO₂) of 98% with minimal evidence of upper airway obstruction. Ten hours postoperatively, the dog developed progressively increased respiratory effort and hypoxemia (SpO₂ = 88%) while receiving oxygen supplementation via the oxygen cage and flow-by oxygen provided at 6 L/min. She was sedated with diazepam (0.3 mg/kg IV) and ketamine (5.5 mg/kg IV), endotracheally intubated, and administered flow-by oxygen supplementation, which resulted in improvement of her SpO₂ to 96%. Sedation was administered approximately every 60 minutes, as intermittent boluses of diazepam and ketamine as described above, to effect. Empiric antimicrobial therapy with ampicillin (22 mg/kg IV q 6 h) and enrofloxacin (10 mg/kg IV q 24 h) was initiated. Thoracic radiographs were repeated and showed evidence of a cranioventral pulmonary alveolar pattern consistent with aspiration pneumonia.

The dog’s condition deteriorated 2 hours after intubation when she developed a progressive decrease in her SpO₂ (83%) despite continued oxygen supplementation (flow-by oxygen, 6 L/min). Mechanical ventilation was initiated on day 3 (Table 1) using a volume-controlled anesthesia ventilator and inhalant anesthetic machine with a heat-moisture exchange device because the critical care ventilators were in use on other patients. Oxygen was delivered using a flow meter (1.5 L/min) and medical air was initially delivered at 300 mL/min and increased to 1.5 L/min 6 hours later. Because the fraction of inspired oxygen (FiO₂) was unknown, the P/F ratio could not be calculated. Sedation was maintained with fentanyl (6 μg/kg/h) and ketamine (0.5–1 mg/kg/h). Further sedation was achieved with dexmedetomidine (0.5–1 μg/kg/h) and midazolam (0.5–1 mg/kg/h). A nasoendotracheal tube, urinary catheter, and dorsal pedal arterial catheter were placed. The dog was ventilated for 12 hours, until one of the critical care ventilators became available. Initial ventilator settings are available in Table 1. Six hours following initiation of mechanical ventilation on day 3, the dog developed persistent hypotension (mean arterial pressure (MAP) of 45–68 mm Hg) and tachycardia (175–220/min) that was unresponsive to crystalloid (55 mL/kg IV) and colloid (20 mL/kg IV) therapy and she ultimately required treatment with dobutamine (3–5 μg/kg/min) and norepinephrine (0.2–0.8 μg/kg/min). Administration of norepinephrine improved MAP to approximately 70 mmHg and the addition of dobutamine further improved MAP to approximately 80 mmHg. Septic shock was suspected with pneumonia as the primary site of infection. Cytologic examination of airway secretions obtained by endotracheal lavage revealed suppurrative inflammation and the presence of intracellular coccoid bacteria; therefore, clindamycin (10 mg/kg IV q 12 h) was started. A sample submitted for aerobic culture subsequently grew Escherichia coli susceptible to ampicillin that the dog was already receiving.

After 12 hours of mechanical ventilation (day 4), the dog was transferred to a critical care ventilator and placed on pressure control ventilation plus assist (PCV+A). A complete blood count and serum biochemical profile were performed and revealed a normal...
neutrophil count with a mild left shift (band neutrophil count = 0.34 x 10^9/L [0.34 x 10^3 cells/μL]; reference interval: 0.0–0.3 x 10^9/L [0.0–0.3 x 10^3 cells/μL]) and an increased creatinine kinase (11,384 U/L; reference interval: 40–255 U/L) concentration. Fresh frozen plasma transfusions (30 mL/kg total volume) were administered because of prolongation of the activated clotting time (220 s; reference interval: 90–120 s) and hypoalbuminemia (14 g/L [1.4 mg/dL]; reference interval 29–43 g/L [2.9–4.3 mg/dL]). Due to repeated occlusion of the endotracheal tube with airway secretions, the endotracheal tube was replaced four times during the first 36 hours of intubation. Therefore, a revision of the palatoplasty was also performed due to loosening of the sutures, likely secondary to repeated endotracheal intubations.

The dog's vasopressor dependence, ventilatory status, and PaO_2/FiO_2 (PF) ratio remained unchanged during days 4 and 5 (Table 2, Figure 1). A CBC and biochemical profile performed on day 6 revealed a mature neutrophilia (neutrophil count = 12.63 x 10^9/L [12.63 x 10^3 cells/μL]; reference interval: 2.9–10.6 x 10^9/L [2.9 x 10^3 cells/μL]) with a left shift (band neutrophil count = 0.31 x 10^9/L [0.31 x 10^3 cells/μL]; reference interval: 0.0–0.3 x 10^9/L [0.0–0.3 x 10^3 cells/μL]) and evidence of toxic change, as well as mild hyperbilirubinemia (19 μmol/L [1.1 mg/dL];
The mortality rate for aspiration pneumonia is approximately 35% for the Veterinary Emergency and Critical Care Society 2013, doi: 10.1111/vec.12071. Though there is limited information in veterinary medicine regarding the specific prognosis for patients with ARDS, reports are infrequent and available information suggests a survival rate of approximately 5%. The mortality rate for veterinary patients undergoing mechanical ventilation varies quite significantly depending on the underlying disease. Overall, survival rates are much lower than in human medicine and range from 28 to 39%. Specifically, cases ventilated for hypoxemia have a reported survival to discharge of 11–22% compared to those ventilated for hypercapnea whose survival is reported as 39–50%. Though there is limited information in veterinary medicine regarding the specific prognosis for patients with ARDS, reports are infrequent and available information suggests a survival rate of approximately 5%. A recent study of mechanical ventilation of brachycephalic dogs revealed that aspiration pneumonia was the most common underlying disease and that survival to discharge was 27%. In that study, none of the dogs ventilated for hypoxemia survived to discharge.

The dog in the present report was diagnosed with ARDS based on her acute onset of tachypnea and hypoxemia, history of recent surgery and suspicion for aspiration pneumonia, bilateral radiographic pulmonary infiltrates, PF ratio of <200, and a neutrophilic fluid retrieved by endotracheal lavage. These findings are consistent with the recently published veterinary...
Management of acute respiratory distress syndrome using APRV

Figure 1: Daily trends in PaO₂/FiO₂ ratio during mechanical ventilation. The vertical bars are representative of the range of values obtained in the 24-hour period. The gray triangles represent the median daily value. PCV+A, pressure control ventilation + assist; APRV, airway pressure release ventilation.

*Initiation of mechanical ventilation with PCV + A.
§Ventilation changed from PCV+A to APRV.
∥Day of weaning from mechanical ventilation.

consensus definitions for the diagnosis of ALI or ARDS. A limitation in this case was that an echocardiogram was not performed to definitively rule out cardiogenic pulmonary edema as a cause for her hypoxemia. In this case, a presumptive diagnosis of noncardiogenic edema was made based on the radiographic pattern of distribution (bilaterally cranioventral with the right middle lung lobe being most severely affected), and based on the lack of clinical and radiographic evidence of cardiac disease (no auscultable cardiac arrhythmias or murmurs, no evidence of jugular venous distension, normal size of the cardiac silhouette on radiographs with normal-sized pulmonary vasculature).

The decision to switch from conventional pressure-control ventilation to APRV was made because of the dog’s refractory hypoxemia (persistently low PF ratio) on day 7 of hospitalization. APRV, also known as biphasic ventilation or bi-level ventilation, is not a new mode of ventilation and was first described in 1987. Although APRV is the most common name for this mode of ventilation, manufacturers have developed a number of trademarked, brand names for this type of ventilation including BiVent, BiLevel, and DuoPAP. It is important to note that bilevel positive airway pressure (BPAP) is a noninvasive type of CPAP and that BPAP is not an appropriate synonym for APRV. Additionally, BiPAP is a registered trademark, referring specifically to the use of BPAP in a specific mechanical ventilator and these are not synonyms for APRV.

The premise of APRV, a form of open-lung ventilation, is to keep the alveoli open at the end of expiration in order to reduce shearing injury to the alveoli during prolonged mechanical ventilation. Computerized tomography scans in people during APRV ventilation demonstrate significantly decreased proportions of atelectatic lung and increased proportions of normally aerated lung in comparison to patients receiving pressure support ventilation. APRV differs dramatically from conventional pressure-support modes of ventilation (Figure 2). During APRV, there is a continuous level of high positive airway pressure (CPAP phase). The maintenance of continuous airway pressure enables increased alveolar recruitment. The duration of this CPAP phase (inspiratory time) is termed T high and the airway pressure (CPAP) during this phase is termed P high. With heterogenous lung disease, alveoli may have variable time constants and individual alveoli may vary greatly in the pressure and time required for opening of
the alveoli and exhalation of inspired air. By increasing the time for alveolar opening, alveoli that are slower to open can be recruited in a low-pressure environment. Likewise, the peak increase in arterial oxygen concentration is seen 8–16 hours after the induction of APRV, indicating that the rerecruitment of alveoli is likely slow and steady, rather than instantaneous.

It is the termination of the CPAP phase that allows for clearance of carbon dioxide during a period of elastic recoil. The period of low pressure (P_{low}) is called the release phase. The P_{low} phase is the period of PEEP and is also the period of expiration. The P_{low} phase is set for a very short period of time (T_{high}) in order to prevent alveolar de-recruitment. During P_{low}, the alveoli remain open due to the presence of a constant level of intrinsic positive end expiratory pressure, either set by the ventilator, or intrinsic to the patient. APRV is a time-cycled, pressure-limited time-triggered form of ventilation that is cycled based on the length of time set for T_{high} and T_{low}. During APRV, the time of P_{high} is much greater than that of P_{low}. This leads to a pronounced inverse I:E ratio. Conventional pressure-controlled ventilation modes typically aim for an I:E ratio of 1:2 to 1:3, whereas, the I:E ratio during APRV is typically 8:1 to 10:1. Therefore, in order to transition a patient from conventional modes of ventilation to APRV, a period of adjustment involving a gradual transition to an inverse I:E ratio is required in order to maximize patient tolerance to APRV. In this case, a period of 12 hours was chosen in order to slowly transition the dog to an inverse ratio. She was then ventilated for 12 hours at this inverse ratio before she was switched into APRV.

To transition from conventional mechanical ventilation modes to APRV, initial ventilator settings for APRV are adapted from the patient's current conventional settings. The patient's plateau pressure (estimate of average alveolar pressure) is selected as the initial P_{high} (typically less than 35 cmH$_2$O based on ARDSnet criteria). The P_{low} is set at 0 cmH$_2$O to create a maximum difference between P_{high} and P_{low} to allow for a rapid peak expiratory phase and maximize expiratory flow so that adequate emptying of the lungs occurs with each pressure decrease and CO$_2$ removal is maximal. T_{high} should be set for a minimum of 4.0 seconds to allow sufficient time for alveolar recruitment and gas diffusion. Usually, T_{low} is set between 0.5 and 1.0 seconds to prevent collapse of recruited alveoli. An excessively long T_{low} can lead to alveolar derecruitment that will manifest as a decreased PaO$_2$. As the patient begins to recruit alveoli, the T_{high} time is increased by 0.5–1.0 seconds. The longer the T_{high} time that is provided, the less opportunity there is for derecruitment of alveoli with each exhalation. The patient will maintain adequate minute ventilation with spontaneous breaths taken during the periods of T_{high}.

During APRV, the patient maintains the ability to breathe spontaneously during all phases of the cycle. Thus, APRV is considered a fully spontaneous ventilation mode. As such, neuromuscular blockade is not used during this mode, which has been shown to decrease length of ICU stay and medication costs. Another benefit of spontaneous breathing during APRV is that in comparison to pressure-support ventilation, APRV leads to decreased intrapulmonary shunting, decreased dead space, increased PaO$_2$, increased oxygen delivery, and increased CO$_2$ elimination due to increased alveolar ventilation.

Although specific ventilation and perfusion studies were not performed in this case, the arterial blood gas results are consistent with improvement in oxygenation and increased CO$_2$ elimination (first PaO$_2$/FiO$_2$ ratio > 300 since the onset of mechanical ventilation and first PaCO$_2$ value less than 45 mmHg in preceding 48 hours) within 12–24 hours of transitioning to APRV, consistent with the time to maximal benefit reported in the human medical literature.

APRV also leads to similar or improved measures of hemodynamic performance, such as stroke volume, cardiac index, and renal blood flow. Although cardiac output was not measured in this case, there was no evidence of a negative effect on systemic blood pressure after the transition to APRV. The dog was previously receiving both norepinephrine and dobutamine for hemodynamic support of suspected septic shock and these drugs were weaned 24 hours prior to the initiation of APRV and her MAP remained constant while receiving APRV.

There are different techniques that can be used to increase alveolar recruitment during mechanical ventilation. Commonly employed recruitment maneuvers include sustained inflation (inspiration with sustained inflation pressures of approximately 35–50 cmH$_2$O for 20–40 seconds), intermittent "sighs" (multiple consecutive inspirations at elevated airway pressures of 45 cmH$_2$O) and intermittent, incremental increases in PEEP or peak inspiratory pressure (to greater than 60 cmH$_2$O) for brief periods of time. These methods can cause transient alveolar recruitment, but also have unfavorable transient side effects such as hypoxemia due to decreased minute ventilation (during the maneuver) or hypotension due to decreased venous return secondary to markedly elevated peak airway pressures. Systematic review has shown that although there is short-term improvement in oxygenation with the use of recruitment maneuvers, there is little evidence that there is a positive effect on clinically important outcomes, with mortality similar to patients in which recruitment manoeuvres are not employed. Additionally, if there is insufficient
Management of acute respiratory distress syndrome using APRV

PEEP following the maneuver, the recruited alveoli may become derecruited. Therefore, another benefit of APRV is the elevated baseline airway pressure that may produce gradual, near-complete alveolar recruitment while avoiding excessively high airway pressures. Avoiding intermittent recruitment using other high-pressure maneuvers can minimize injury due to derecruitment or overdistension of more easily recruited alveoli.\(^{17}\)

Although the potential hemodynamic and pulmonary benefits of APRV make it an attractive mode of ventilation for hypoxemic patients, this mode of ventilation is not appropriate for all patients. This mode of ventilation requires spontaneous breathing, thus requiring lower levels sedation than conventional mechanical ventilation. Therefore, APRV is contraindicated in patients that require deep sedation or pharmacologic coma for management of their underlying disease, or for patients with neuromuscular disease who are unable to generate sufficient respiratory effort. APRV is also theoretically contraindicated in patients suffering from obstructive lung disease, who require a long expiratory time for sufficient expiration.

In this case report, the dog developed ARDS with refractory hypoxemia. APRV was selected in order to maximize alveolar recruitment while minimizing the potentially deleterious cardiovascular and pulmonary effects of other more commonly used recruitment maneuvers. The dog remained hemodynamically stable and showed clinical (increased P/F) and radiographic evidence of improved alveolar recruitment following initiation of APRV. Unfortunately, it is impossible to identify whether the use of APRV was the cause of this dog’s improvement or whether she would have improved if conventional pressure-controlled ventilation was continued for longer. Because her peak increase in arterial oxygenation was noted 12 hours after initiation of APRV, and based on information regarding the use of APRV in human patients, it is logical to assume that APRV was helpful in this patient. However, the effect of time on her improvement is unknown and, as such, the role of APRV in her clinical improvement cannot be fully elucidated.

There is limited information regarding the positive effects of APRV on outcome in the human medical literature and most studies examining APRV are evaluating heterogenous patient populations. There are data to show that APRV decreases the length of hospital stay and ventilation requirements.\(^{8}\) However, another study found no difference in these outcome-specific endpoints.\(^{20}\)

Conclusions

This report describes a dog with ARDS successfully managed using APRV. Although APRV has not been shown to improve survival in human patients with ARDS, the positive effects on hemodynamic parameters, oxygen exchange, and dead space ventilation have been more clearly demonstrated. This report illustrates that APRV can be used in canine patients and may represent a feasible alternative mechanical ventilation mode for the management of canine patients with refractory hypoxemia and ARDS.

Acknowledgment

The authors would like to thank Dr. Nader Habashi, MD, FACP, FCCP and Penny Andrews, RN, BSN of the Intensive Care Online Network for clinical support.

Footnotes

References

