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Lactate and shock state: the metabolic view
Bruno Levy

Purpose of review
The conventional view in severe sepsis or septic shock is
that most of the lactate that accumulates in the circulation is
due to cellular hypoxia and the onset of anaerobic
glycolysis. A number of papers have suggested that lactate
formation during sepsis is not due to hypoxia. I discuss this
hypothesis and outline the recent advances in the
understanding of lactate metabolism in shock.
Recent findings
Numerous experimental data have demonstrated that
stimulation of aerobic glycolysis – that is, glycolysis not
attributable to oxygen deficiency – and glycogenolysis
occurs not only in resting, well-oxygenated skeletal muscles
but also during experimental haemorrhagic shock and
experimental sepsis, and is closely linked to stimulation of
sarcolemmal Naþ/Kþ-ATPase under epinephrine
stimulation. A human study of hyperkinetic septic shock
demonstrated that skeletal muscle is a leading source of
lactate production by exaggerated aerobic glycolysis
through Naþ/Kþ-ATPase stimulation.
Summary
There is increasing evidence that sepsis is accompanied by
a hypermetabolic state, with enhanced glycolysis and
hyperlactataemia. This should not be rigorously interpreted
as an indication of hypoxia. It now appears, at least in the
hyperkinetic state, that increased lactate production and
concentration as a result of hypoxia are often the exception
rather than the rule.

Keywords
epinephrine, hypoxia, lactate, sepsis, shock

Curr Opin Crit Care 12:315–321. ! 2006 Lippincott Williams & Wilkins.
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Introduction
Traditionally, hyperlactataemia in critically ill patients
and particularly those in shock was normally interpreted
as a marker of secondary anaerobic metabolism due to
inadequate oxygen supply inducing cellular distress [1].
A number of papers have suggested that lactate formation
during sepsis is not due to hypoxia but rather to metabolic
processes [2]. This review discusses this hypothesis and
outlines the recent advances in the understanding of
lactate metabolism in shock.

Lactate metabolism
Arterial lactate concentration is dependent on the bal-
ance between its production and consumption [3]. In
general, this concentration is less than 2mmol/l, although
daily production of lactate is actually 1500mmol/l. In
physiological conditions, lactate is produced by muscles
(25%), skin (25%), brain (20%), intestine (10%) and red
blood cells (20%), which are devoid of mitochondria.
Lactate is essentially metabolized by liver and kidney.

Lactate is produced in the cytoplasm according to the
following reaction (Fig. 1):

Pyruvate þ NADH þ Hþ$ lactate þ NADþ

This reaction favours lactate formation, yielding a 10-fold
lactate/pyruvate ratio. Lactate therefore increases when
production of pyruvate exceeds its utilization by the
mitochondria. Pyruvate is essentially produced via gly-
colysis; hence any increase in glycolysis, regardless of its
origin, can increase lactataemia. Pyruvate is essentially
metabolized by the mitochondrial aerobic oxidation path-
way via the Krebs cycle:

Pyruvate þ CoA þ NAD!
acetyl" CoA þ NADH þ Hþ þ CO2

This reaction leads to the production of large quantities
of ATP (36 molecules of ATP for one molecule of
pyruvate).

Generated lactate can be transformed into oxaloacetate or
alanine via the pyruvate pathway or can be utilized
directly by periportal hepatocytes (60%) to produce gly-
cogen and glucose (neoglycogenesis and neoglucogen-
esis; Cori cycle). The kidney also participates in the
metabolism of lactate (30%), with the cortex classically
acting as the metabolizer by neoglucogenesis and the
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medulla as a producer of lactate. The threshold of renal
excretion is 5–6mmol/l, meaning that, physiologically
speaking, lactate is not excreted in the urine.

Hence lactataemia reflects a balance between production
and utilization of lactate. Consequently, for the same
etiological mechanism producing an increase in lactate,
one can either observe hyperlactataemia (if metabolism
decreases) or normolactataemia. Understanding this con-
cept is vital, notably to avoid treating solely a numerical
value of lactate.

Formation of lactate in cases of tissue
hypoxia
By definition, hypoxia blocks mitochondrial oxidative
phosphorylation [4], thereby inhibiting ATP synthesis
and reoxidation of NADH. This leads to a decrease in the
ATP/ADP ratio and an increase of the NADH/NAD
ratio. A decrease in the ATP/ADP ratio induces both
an accumulation of pyruvate, which cannot be utilized by
way of phosphofructokinase stimulation, and a decrease

in pyruvate utilization by inhibiting pyruvate carboxy-
lase, which converts pyruvate into oxaloacetate. An
increased NADH/NAD ratio also increases pyruvate by
inhibiting pyruvate dehydrogenase (PDH) and hence its
conversion into acetyl-CoA.

Consequently, the increase in lactate production in an
anaerobic setting is the result of an accumulation of
pyruvate which is converted into lactate stemming from
alterations in the redox potential. This conversion allows
for the regeneration of some NADþ, enabling the pro-
duction of ATP by anaerobic glycolysis, although clearly
less efficient from an energy standpoint (twomolecules of
ATP produced compared with 36). It is important to
consider that the modification of the redox potential
induced by an increase in NADH/NAD ratio activates
the transformation of pyruvate into lactate and con-
sequently increases the lactate/pyruvate ratio.

All in all, anaerobic energy metabolism is characterized
by hyperlactataemia associated with an elevated lactate/
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Figure 1 An overview of carbohydrate metabolism
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pyruvate ratio, greater glucose utilization and low energy
production.

Lactate/pyruvate ratio
Lactate/pyruvate interconversion can be described by the
following equation:

Pyruvate þ NADH þ Hþ $ lactate þ NAD

And, at equilibrium

Lactate=pyruvate ¼ K $ ðNADH=NADÞ $Hþ

Where K represents the dissociation constant. Therefore,
an increase in theNADH/NAD ratio or a drop in cytosolic
pH triggers an increase in lactate/pyruvate ratio. The use
of this ratio has been advocated for differentiating
hypoxia-related hyperlactataemia from hyperlactataemia
resulting from an increase in glycolytic flux without
hypoxic stress.

However, the above equation clearly demonstrates that
this NADH/NAD ratio can be altered by factors other
than the inability to transfer electrons to oxygen. Further-
more, for the plasma lactate/pyruvate ratio to properly
reflect the redox potential, one would need to demon-
strate that this ratio is identical to both cytosolic and
mitochondrial ratios and that the rate of cell efflux of
pyruvate and lactate also be identical [5]. Lastly, use of a
pyruvate assay is precarious since the latter is quickly
degraded and can therefore lead to falsely elevated
lactate/pyruvate levels.

We have nonetheless demonstrated [6] that this ratio is
very high (40' 6) in comparison with controls (8' 2) in
cardiogenic shock patients with low cardiac output, with
these patients representing a clinical model of tissue
hypoxia (we will see further that this notion can in fact
be debated).We also found a definite increase of this ratio
in patients with refractory septic shock characterized by
elevated catecholamine dosages, low blood pressure,
metabolic acidosis and normokinetic state. On the other
hand, in stabilized patients with septic shock, this ratio
was slightly increased (14' 1) or otherwise normal when
corrected for pH. Interestingly, for equal concentrations
of lactate, septic patients, with the exception of refractory
septic-shock patients, have higher pyruvate levels, thus
implying a mechanism other than hypoxia. In the end,
the prognostic value of the lactate/pyruvate ratio was no
better than that of lactate and failed to provide any
additional information.

Lactate and shock state
Classically, hyperlactataemia in shock state is considered
secondary to tissue hypoxia induced by a decrease in
tissue perfusion. This notion is potentially true in certain
clinical situations.

Situations where hyperlactataemia is predominantly a
reflection of tissue hypoperfusion
Shock states induced by low cardiac output should theo-
retically be accompanied by a hypoxic hyperlactataemia.
Cardiogenic shock, as demonstrated previously, is associ-
ated with hyperlactataemia with a very high lactate/
pyruvate ratio. In theory, haemorrhagic shock should
behave in an identical fashion.

The problem encountered with sepsis is more complex,
although at least two situations are usually accompanied
with hypoxia-associated hyperlactataemia.The first is sep-
tic shock with catecholamine-resistant cardiocirculatory
failure, especially in situations of low cardiac output [6].
The second circumstance is septic shock pre-emptively
observed prior to volumetric expansion, as illustrated in
the studyofRivers et al. [7] in which hyperlactataemia was
associated with signs of poor oxygen delivery. These two
situations are nonetheless close to low output states.

Situations where hyperlactataemia reflects a metabolic
adjustment, such as in sepsis
Many argue against tissue hypoxia as the major cause of
hyperlactataemia in septic shock. Theoretically, if septic-
shock hyperlactataemia was indeed induced by tissue
hypoxia caused by hypoperfusion, then (i) hyperlactata-
emic septic patients should display collapsed oxygen
delivery, which should be corrected with increased O2

transport, which is not the case [8]; (ii) tissue PO2 should
be low, although, and in contrast to cardiogenic shock,
muscle PO2 measured in septic-shock patients is actually
elevated [9]; (iii) ATP levels should be decreased, yet
these levels were found to be normal when measured
in human muscle, as in many animal models [10];
(iv) dichloroacetate, a PDH activator, should not lower
lactataemia in septic patients or animals since it
increases the conversion of pyruvate into acetyl-CoA
used in the respiratory chain; however, numerous ani-
mal models and several human studies have shown that
dichloroacetate significantly decreased lactataemia in
septic states [11]; and (v) finally, it has been postulated
that lactate may originate from a regional source. Splanch-
nic circulation was initially targeted but De Backer
et al. [12] demonstrated that the splanchnic area in gen-
eral consumed lactate and that splanchnic production
was uncommon and in no case quantitatively sufficient
to explain systemic hyperlactataemia. The lungs can
also produce lactate, essentially in acute respiratory
distress syndrome, although this is mostly explained by
the presence of infiltrating inflammatory cells [13]
and not by hypoxia.

Aerobic production of lactate
On a biochemical point of view, aerobic is defined as any
situation involving oxygen. Lactate formation occurring
during the first part of glycolysis is termed anaerobic, as it
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does not require the presence of oxygen. Here aerobic
will be defined by any situation in which oxygen is
available.

A sepsis-associated inflammatory state induces an
increase in pyruvate production combined with accrued
synthesis of mRNA of the glucose transporter GLUT-1
[14]. This state, called accelerated aerobic glycolysis,
occurs when the rate of carbohydrate metabolism exceeds
the oxidative capacity of the mitochondria. Pyruvate is
produced by an increased influx of glucose [15] but also
via muscle protein catabolism, releasing amino acids
subsequently transformed into pyruvate and thereafter
lactate. Accelerated aerobic glycolysis is induced by
endogenous/exogenous catecholamine and inflammatory
state. The hypothesis was further sustained by Gore et al.
[15], who demonstrated that pyruvate production and
oxidation are increased in septic patients. Moreover,
PDH dysfunction has been described in sepsis and thus
may participate in the accumulation of pyruvate [16].

Compartmentalization of glycolysis, epinephrine, muscle and
Naþ/Kþ-ATPase pump
Cytosolic glycolytic flux is functionally divided into two
distinct compartments. There are two distinctive glyco-
lytic pathways utilizing separate glycolytic enzyme pools.
The first pathway participates in oxidative metabolism
via the Krebs cycle. The second pathway is linked to
activity of the Naþ/Kþ-ATPase pump (Fig. 2 [17]).
Indeed, ATP produced by this pathway is used to fuel
this membrane pump [18,19].

Numerous studies [20,21] have demonstrated that epi-
nephrine, via b2-adrenoceptor stimulation, increases

cAMP production, inducing the stimulation of glycogen-
olysis and glycolysis (ATP production) as well as acti-
vation of the Naþ/Kþ-ATPase pump, which in turn will
consume this ATP, thereby producing ADP. This gener-
ated ADP via phosphofructokinase stimulation will re-
activate glycolysis and hence generate more pyruvate
and thereafter lactate. Muscle tissue, which represents
approximately 40% of total cell mass in the body, is
particularly implicated in this mechanism, not to mention
that over 99% of muscle adrenergic receptors are b2
receptors [22].

To confirm this hypothesis, we utilized muscle micro-
dialysis in hyperlactataemic septic-shock patients
under catecholamine treatment. This technique con-
sists of inserting into the quadriceps muscle a very fine
catheter perfused with a liquid similar to the extra-
cellular medium, but lactate-free. The catheter is
comprised of a membrane similar to a dialysis mem-
brane, therefore enabling one to retrieve, following an
equilibrium period, a fluid that is in equilibrium with
the interstitial fluid. When the liquid is perfused very
slowly (0.3ml/min), the composition of the collected fluid
is equal to the composition of the interstitial fluid.
Furthermore, it is possible to add a biologically active
substance to the perfusate whose effect will be strictly
limited to cells surrounding the catheter. Finally, by
measuring the arterial concentration of the compound
of interest, one can establish an interstitial muscular–
arterial gradient which, if positive, indicates production
by the muscles.

Our working hypothesis stipulated that epinephrine,
secreted in response to a shock state, boosted production
of muscle lactate by activating the Naþ/Kþ-ATPase
pump. We therefore introduced two microdialysis
catheters, the first perfused with lactate-free Ringer’s
and the second perfused with the same solution in
combination with ouabain, a selective inhibitor of the
Naþ/Kþ-ATPase pump. A key finding revealed that
muscle lactate was consistently greater than arterial lac-
tate, thus indicating muscle production and that this
production was totally inhibited by ouabain, confirming
a Naþ/Kþ-ATPase-dependent mechanism, but indepen-
dent of tissue hypoxia [23((] (Fig. 3).

Significance
Muscle lactate, produced under the effect of epineph-
rine and released into the bloodstream, is utilized by
the liver to produce glucose through neoglucogenesis
(the Cori cycle; Fig. 4 [24]) or by other cells for
oxidative purposes. Neoglucogenesis is associated with
a lower energetic efficiency since two ATP molecules
are produced per molecule of glucose to generate
lactate, while six molecules of ATP are consumed for
every molecule of glucose generated from lactate. This
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Figure 2 Epinephrine-increased glycolysis is coupled to
NaR/KR-ATPase activity
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process nonetheless allows the liver to use the ATP
generated by fatty acid b-oxidation to produce glucose.
Hence, fatty acids which supply large quantities of

available energy, albeit in a slow process, are used to
produce limited stocks of glucose. This mechanism
underscores the pivotal role of lactate during aerobic
energy metabolism. The ‘lactate shuttle’ theory suggests
that aerobic production of lactate represents an important
mechanism by which various tissues share a common
source of carbons for oxidation and other biochemical
processes such as neoglucogenesis. Hyperlactataemia in
shock states may therefore constitute an adaptive pro-
tective mechanism by favouring the oxidation of lactate
rather than that of glucose in tissues where oxygen is
available, thus preserving glucose in tissues where oxy-
gen content is rare. Thus an elevated lactate/pyruvate
ratio is an indicator of a cytoplasmic accumulation of
reduced equivalents (NADH) from which NADH
can be used to regenerate ATP (ADPþNADHþHþ!
ATPþNAD). Henceforth, the combination of lactate/
pyruvate could be considered as an adaptive energetic
substrate, able to navigate from cell to cell or from organ
to organ [25].

This hypothesis is largely supported by several experi-
mental studies demonstrating for example that the brain
[26] or heart can utilize lactate as a preferred source of
energy in certain situations of stress. It was also demon-
strated that lactate depletion in themyocardium resulting
from haemorrhagic shock reduced myocardial perform-
ance [27].
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Figure 3 Lactate concentration in 14 patients with septic shock in 24h of study
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Lactate reaches the liver where it enters the Cori cycle and becomes
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glycolytic flux necessary to meet the metabolic demands of severe
sepsis [24].
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Other aetiologies of non-hypoxic hyperlactataemia
Increased lactate requires a thoughtful differential diag-
nosis in the critically ill.

Reduction in lactate clearance
Levraut et al. [28] have elegantly demonstrated through
the use of labelled lactate that persistent hyperlactatae-
mia in haemodynamically stable septic-shock patients
not treated by catecholamine was due to a reduction in
lactate clearance and not an increase in lactate pro-
duction. Reduced lactate utilization in stable patients
with sepsis therefore may contribute to mild hyperlacta-
taemia. On the other hand, using a similar method,
Revelly et al. [29((] recently demonstrated that in sepsis
and cardiogenic shock, hyperlactataemia was mainly
related to increased production, whereas lactate clearance
was similar to healthy subjects. Increased lactate pro-
duction was concomitant to hyperglycaemia and
increased glucose turnover, suggesting that the latter
substantially influences lactatemetabolism during critical
illness. The differences between the two studies might
be explained by methodological differences in measuring
lactate clearance. Revelly and colleagues [29((] used a
continuous-infusion method, as opposed by the bolus
injection method used by Levraut et al. [28]. More likely
explanations are that the lactate level was higher in
Revelly et al.’s [29((] study (3.2' 2.6 compared to
2.6' 0.6mmol/l) and that patients in Levraut et al.’s
[28] study were weaned from catecholamines.

Pyruvate dehydrogenase dysfunction
PDH converts pyruvate into acetyl-CoA, allowing pyr-
uvate to enter themitochondria. PDH activity was found
to be lower in septic muscle and restored by dichloro-
acetate. Dichloroacetate lowers lactataemia in septic
patients. It is therefore likely that there is a certain
degree of dysfunction or saturation of PDH activity in
septic states [30], although this phenomenon remains
secondary.

Protein degradation
Protein catabolism generates the release of amino acids,
which are converted into pyruvate and thereafter into
lactate.

The prognostic value of lactate
Regardless of the mechanism of production, hyperlac-
tataemia and especially the persistence of hyperlacta-
taemia remains a major prognostic factor in diseases
with aetiologies as varied as polytrauma or shock,
whether it be septic, haemorrhagic or cardiogenic
[31,32]. Persistence of an elevated lactate level can
be due to an incessant overproduction related to a
persistence of the initiator mechanism but also to a
lowering of lactate, clearance notably due to hepatic
dysfunction.

Line of conduct when facing hyperlactataemia
Lactate must be assayed in all predisposing situations
leading to its formation and particularly in the diagnosis
and follow-up of shock states, including all cases of
severe sepsis. Rivers et al. [7] demonstrated for example
that a large proportion of patients with severe sepsis
without hypotension exhibited hyperlactataemia and
low central venous oxygen saturation (ScVO2) and that
this hyperlactataemia was corrected during ensuing care
management.

Initiated treatment should be based on alleged mechan-
isms of formation but mostly on observed physiopatho-
logical disorders as they relate to objective parameters
warranted by the situation: cardiac output, blood pres-
sure, echocardiography, mixed venous oxygen saturation
(SVO2) and abdominal pressure. Lactate can be used to
monitor efficiency of initiated therapy in so far as con-
founding factors such as catecholamines and particularly
epinephrine and also hepatic function are taken into
account. The major concern of the treating critical-care
specialist when facing hyperlactataemia – and even more
so when it is accompanied by metabolic acidosis – is
cardiovascular dysfunction, regardless of its origin. Once
this diagnosis is eliminated, when warranted, by treat-
ment aimed at increasing oxygen delivery, the aetiolo-
gical diagnosis will rest on knowledge of the various
aetiologies involved. To date, there is no specific treat-
ment available; furthermore, several physiopathological
components as mentioned above actually suggest that
hyperlactataemia could even be beneficial.

Conclusion
Measurement of plasma lactate remains a primordial
component for a sound diagnostic and therapeutic line
of conduct in critical care. The concept of lactate merely
as a metabolic waste product (bad lactate) has now
evolved towards lactate being viewed as an energy shuttle
(good lactate). In most clinical critical-care situations,
hyperlactataemia must be perceived as an adaptive
response to an aggressive state and not as a marker of
tissue hypoxia. Nevertheless, irrespective of its mechan-
ism of formation, hyperlactataemia remains an excellent
prognostic marker.
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