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ABSTRACT—The outcome of sepsis and septic shock has not significantly improved in recent decades despite the
development of numerous drugs and supportive care therapies. To reduce sepsis-related mortality, a better understanding of
molecular mechanism(s) associated with the development of sepsis and sepsis-related organ injury is essential. There is
increasing evidence that Toll-like receptors (TLRs) play a key role in the mediation of systemic responses to invading
pathogens during sepsis. However, the role of TLRs in the development of sepsis and in sepsis-related organ injury remains
debatable. In this review, we focus on the biological significance of TLRs during sepsis. Medline was searched for pertinent
publications relating to TLRs, with emphasis on their clinical and pathophysiological importance in sepsis. In addition, a
summary of the authors’ own experimental data from this field was set in the context of current knowledge regarding TLRs. In
both animal models and human sepsis, TLRs are highly expressed on monocytes/macrophages, and this TLR expression
may not simply be a ligand-specific response in such an environment. The fact that TLR signaling enables TLRs to recognize
harmful mediators induced by invading pathogens may be associated with a positive feedback loop for the inflammatory
response among different cell populations. This mechanism(s) may contribute to the organ dysfunction and mortality that
occurs in sepsis. A better understanding of TLR biology may unveil novel therapeutic approaches for sepsis.
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INTRODUCTION

Sepsis affects more than 500,000 patients in the United

States annually, and its incidence continues to increase (1).

Despite continuous progress in the development of antibiotics

and other supportive care therapies, sepsis remains a leading

cause of morbidity and mortality in the intensive care unit (2).

The outcome of sepsis and septic shock has not improved

significantly in the past 50 years (1). It is apparent that the

clinical trials of anti-inflammatory agents and anticytokine

therapies have, in general, failed (3, 4). These disappointing

results may be partially due to the lack of understanding

of the molecular mechanisms associated with the develop-

ment of sepsis and sepsis-related organ injury. This review

focuses on the role of Toll-like receptors (TLRs) during

sepsis and their association with sepsis and sepsis-related

organ injury.

Medline was searched for publications relating to TLRs,

with emphasis on their clinical and pathophysiological

importance in sepsis. In addition, a summary of the authors’

own experimental data from this field was set in the context of

current knowledge regarding TLRs and their ligands.

SEPSIS AND SEPSIS SYNDROME

Historically, sepsis has been defined as a clinical syndrome

consisting of a severe infection with fever, leukocytosis or

leucopenia, elevated cardiac output, and reduced systemic

vascular resistance (5). In 1991, the American College of Chest

Physicians/Society Critical Care Medicine Consensus Confer-

ence altered the definition of sepsis to the systemic response to

a microbial infection. Recently, the term Bsepsis[ has been

supplanted by the term Bsepsis syndrome[ to include patients

manifesting the physiological and metabolic responses associ-

ated with sepsis but without a documented severe infection (6).

Sepsis/sepsis syndrome is a complex clinical syndrome that

results in both the activation and dysfunction of the innate and

adaptive branches of the immune system. The systemic

administration of bacterial LPS is known to recapitulate many

of the clinical features of septic shock (7), including the early

release of a number of proinflammatory mediators. However,

there are a number of critical differences between LPS- and

bacteria-induced septic shocks, including the pattern of

cytokine expression. Thus, the LPS and other classical models

of sepsis may be limited in their applications because they do

not properly reflect all forms and presentations of sepsis in a

clinical setting. This supports the proposal that other compo-

nents, including other bacterial molecular elements, may

contribute to the development of sepsis (8).

TOLL-LIKE RECEPTORS AND THEIR LIGANDS

The innate immune system is phylogenetically conserved

and present in almost all organisms (9). The mechanisms used

by the innate immune system to recognize nonself have been

elucidated only recently, and the discovery of TLRs has

revolutionized the field of microbial pathogenesis and human

immunology. The Toll-signaling pathway was initially de-

scribed in Drosophila for its role in dorsalYventral patterning
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during embryogenesis. Medzhitov et al. (10) previously

demonstrated that human TLR-4 was the principal receptor

for LPS that mediates the activation of nuclear factorY.B and

the synthesis of proinflammatory cytokines. In general, TLRs

are a family of transmembrane receptors consisting of an extra-

cellular leucine-rich repeat domain that interacts with relevant

pathogen-associated molecular patterns and an intracellular

Toll/IL-1 receptor domain, which is involved in signaling. To

date, at least 11 human TLRs have been identified, and each

is known to detect a specific pathogen-associated molecular

pattern and have a specific intracellular signaling pathway.

Toll-like receptors 1, 2, 4, 5, and 6 mainly recognize bacterial

products, whereas TLR-3, TLR-7, and TLR-8 are specific for

viral detection. Toll-like receptor 9 seems to be involved in

both microbial and viral recognition (Table 1).

TOLL-LIKE RECEPTOR EXPRESSION
DURING SEPSIS

Increasing experimental and clinical evidence demonstrates

the importance of TLR expression on various cell types during

sepsis. Our laboratory (11) and Armstrong et al. (12) reported

that monocytic expression of TLR-2 and TLR-4 in septic

patients was significantly up-regulated compared with the

expression in healthy individuals. In addition, we have demon-

strated that the expression of TLR-2 and TLR-4/MD-2 in

hepatic and splenic macrophages is significantly up-regulated

in mice with experimental peritonitis induced by cecum liga-

tion and puncture (CLP) (Fig. 1A) (13). Williams et al. (14)

also demonstrated that TLR-2 and TLR-4 mRNA expression in

the lungs and liver of CLP mice were significantly up-regulated

as compared with that in sham-operated mice, which occurred as

early as 1 h after the onset of peritonitis. Andonegui et al. (15)

reported that expression of TLR-4, particularly on alveolar

endothelial cells, played an important role in neutrophil

recruitment into the lungs after LPS administration, suggesting

that TLRs on nonimmune cells and immune cells may be

involved in tissue injury during sepsis. Thus, both exper-

imental models of sepsis and septic human patients display

significantly up-regulated TLR expression in various organs

(Table 2).

Viemann et al. (16) demonstrated that TLR-4 showed no

remarkable changes in neonates with sepsis as compared with

healthy individuals, and Renshaw et al. (17) indicated that

TLR expression declined with age. In addition, our laboratory

reported differential regulation of TLRs during sepsis between

TABLE 1. Exogenous and endogenous ligands for TLRs

TLR

Ligands

Exogenous Endogenous

1 Triacyl lipopeptide*

2 Peptidoglycan Necrotic cells

Lipoprotein HSPs (HSP-60, HSP-70, Gp-96)

Biglycan

3 Double-stranded RNA Self-messenger RNA

4 LPS Extra domain AYcontaining fibronectin

Taxol (mouse TLR-4 only) Fibrinogen

Polysaccharide fragments of
heparan sulfate

Oligosaccharides of hyaluronic acid

"-Defensin 2

Oxidized low-density lipoprotein

HSPs

Surfactant protein A in the lung
epithelium 1

Neutrophil elastase

High mobility group box 1 protein

Biglycan

5 Flagellin

6 Diacyl lipopeptide*

7 Single-stranded RNA

8 Single-stranded RNA

9 Unmethylated CpG DNA Chromatin-IgG complex

10 Unknown

11 Uropathogenic Escherichia
coli

Ig indicates immunoglobulin; TLR, toll-like receptor; HSP, heat shock
protein; CpG, deoxy-cystidylate-phospate-deoxy-guanylate.

FIG. 1. Toll-like receptor 4/MD-2 expression on liver and splenic
macrophages and BALF cells, and MIP-2 production by LPS-induced
MNC and BALF cells. The expression of TLR-4/MD-2 on liver and splenic
macrophages was significantly increased in CLP mice compared with sham-
operated mice. Similarly, the MFI of TLR-4/MD-2 on BALF cells was
significantly enhanced in CLP mice (A). LPS-induced MIP-2 production by
BALF cells and liver MNC from CLP mice were significantly increased,
whereas there was no difference in LPS-induced MIP-2 production by
splenic MNC between CLP and sham-operated mice (B). All data are mean T
SEM. *P G 0.05 versus sham-operated mice. MFI, mean fluorescence
intensity; MNC, mononuclear cells. n = 7 per group. Adapted from Shock.
2005;23:39Y44.
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men and women (18). Thus, it should be noted that there

is a critical difference in TLR regulation and baseline TLR

expression depending on age and sex in patients with sepsis.

EXPRESSION OF TOLL-LIKE RECEPTORS AND
THEIR RESPONSE TO SPECIFIC LIGANDS UNDER

NONSEPTIC CONDITIONS

In vitro studies have demonstrated that preexposure to LPS

reduces responsiveness to subsequent LPS challenges. This

phenomenon has been designated as LPS tolerance. LPS

tolerance has also been observed in in vivo animal models,

with a decreased response and protection from lethality in

response to a secondary stimulation with a sublethal dose of

LPS. Nomura et al. (19) concluded that one of the mecha-

nisms responsible for hyporesponsiveness to LPS might be the

down-regulation of TLR-4/MD-2 expression in purified

murine peritoneal macrophages. Indeed, we obtained similar

results using murine bone marrowYderived dendritic cells

(20). On the other hand, Bihl et al. (21) reported that

transgenic mice having several copies of TLR-4 showed an

enhanced immune response to LPS, suggesting a good

correlation between the level of TLR-4 mRNA expression

and sensitivity to LPS both in vitro and in vivo. Paterson et al.

(22) reported that thermal injury augments TLR-2 and TLR-4

expression and primes the innate immune system for

enhanced TLR reactivity, resulting in LPS-induced mortality.

Motegi et al. (23) have demonstrated that human peripheral

blood mononuclear cells (PBMCs), which show up-regulated

TLR-4 expression in monocytes after IL-12 stimulation, show

augmented TNF-! production after subsequent LPS stimula-

tion, and they conclude that this phenomena may be

responsible for the generalized Shwartzman reaction. Thus,

TLR-4 regulation may be associated with the extent of the

biological response to subsequent TLR ligand stimulation

under such conditions. One possible mechanism for regulation

of TLR-4 expression in monocytes/macrophages involves

proinflammatory cytokines such as interferon-+ and TNF-!
(24), and an interferon-+Yresponsive element was found in the

promoter region of the gene encoding TLR-4 (25).

EXPRESSION OF TOLL-LIKE RECEPTORS
AND THEIR RESPONSE TO SPECIFIC LIGANDS

DURING SEPSIS

In contrast to the resting state and nonseptic condition, it

remains unclear whether TLR expression may be associated with

the response after exposure to TLR-specific ligands during

sepsis. It is well known that peripheral blood monocytes isolated

from septic patients synthesize and/or secrete reduced quantities

of proinflammatory cytokines after ex vivo LPS stimulation

(26Y28) regardless of their up-regulated TLR expression in

both experimental and human sepsis (29Y32). What determines

such differential responses during sepsis? To elucidate this, we

investigated whether LPS-induced chemokine (macrophage

inflammatory protein 2 [MIP-2]) is produced by bronchoalveo-

lar lavage fluid (BALF), liver, and spleen cells from CLP and

sham-operated mice. Cecal ligation and puncture mice showed

significantly increased TLR-4 expression on BALF cells and on

macrophages of the liver and spleen as compared with sham-

operated mice (13) (Fig. 1A). We demonstrated that LPS-

induced MIP-2 production by BALF and liver mononuclear

cells from CLP mice was significantly increased, although

there was no difference in splenic MIP-2 production between

CLP and sham-operated mice (Fig. 1B). In the human study,

we demonstrated that PBMCs from the septic patients, having

up-regulated TLR-4 expression, showed significantly reduced

IL-1" production after LPS exposure as compared with healthy

individuals. In contrast, PBMCs from patients after a nonseptic

elective surgical operation who had up-regulated TLR-4

FIG. 2. Toll-like receptors 2, 4, and CD14 expression on peripheral
blood monocytes, and LPS-induced IL-1" production. A, CD14+ mono-
cytes from both septic (n = 15) and surgical patients (n = 34) showed
significantly increased expression of TLR-4 compared with healthy controls
(n = 13), although no significant difference in TLR-4 expression was
observed between CD14+ monocytes from septic and surgical patients. B,
Peripheral blood mononuclear cells from septic, surgical, and control patients
were isolated, and 1.0 � 106 PBMCs were incubated in the presence of 1
2g/mL of LPS for 24 h. The supernatants were collected, and IL-1" con-
centrations were measured by enzyme-linked immunosorbent assays. All data
are mean T SEM. *P G 0.05 compared with the controls; †P G 0.05 compared
with the surgical patients. Septic patients were diagnosed with sepsis due to
an intra-abdominal infection, and surgical patients had gastrointestinal cancer
and underwent nonseptic elective surgery. MFI indicates mean fluorescence
intensity. Adapted from Clin Immunol. 2006;119:180Y187.

TABLE 2. TLRs expression during septic condition

Organs TLR
Change

of expression Reference/s

Lung TLR-2 mRNA Up-regulated 14, 80

TLR-4 mRNA/protein Up-regulated 14, 80

Liver TLR-2 mRNA/protein Up-regulated 13, 14

TLR-4 mRNA/protein Up-regulated 13, 14

TLR-9 protein Up-regulated 81

Spleen TLR-2 protein Up-regulated 13

TLR-4 protein Up-regulated 13

Kidney TLR-4 protein Up-regulated 29

Intestine TLR-2 mRNA Up-regulated 82

TLR-4 mRNA Up-regulated 82

Peripheral blood TLR-2 protein Up-regulated 16, 33

TLR-4 protein Up-regulated 30, 33

TLR-9 protein Up-regulated 83
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expression showed significantly greater IL-1" production after

LPS stimulation as compared with cells obtained from both the

septic group and healthy controls (Fig. 2) (33). Taking these

results together, the responses to specific ligands against TLR

during sepsis seem to depend not only on the degree of TLR

expression but also on organ specificity or the expression of

intracellular inhibitory molecules (34).

TOLL-LIKE RECEPTOR EXPRESSION
AND SEVERITY OF SEPSIS

A limited number of studies have investigated how highly

expressed TLRs may contribute to the severity of illness or

mortality during sepsis. We have previously investigated the

relationship between the severity of illness and the expression of

TLR-2, TLR-4, and CD14 on monocytes. There was no sig-

nificant correlation between the acute physiology and chronic

health evaluation II (APACHE II) scores (35) and the expres-

sion of these molecules (Fig. 3) (13). The reason may be that

severely septic patients, especially patients with APACHE II

scores greater than 20 and an unfavorable clinical outcome, did

not have increased expression of TLRs relative to less severely

injured patients. The association between TLR expression and

the severity of illness in septic patients, however, remains elu-

sive, and further investigations will be necessary.

GENETIC DETERMINATION OF THE
INFLAMMATORY RESPONSE

Epidemiological studies suggest a strong genetic influence

on the outcome of sepsis, and genetics may explain the varia-

tion in the individual response to infection that has long puz-

zled clinicians (36Y39). The TLR-4 gene is mutated or deleted

in the LPS-resistant mouse strainsVC3H/HeJ and C57BL10/

ScCrVexhibiting a greatly diminished LPS response (40, 41).

Hagberg et al. (42) demonstrated that C3H/HeJ mice had

significantly increased susceptibility to gram-negative bac-

teria in experimental urinary tract infection. On the other

hand, it has been reported that the presence of mutant TLR-4

does not correlate with either cytokine response or the devel-

opment of organ injury in polymicrobial sepsis (43, 44). There

has been extensive research on whether genetic variations can

be used to identify patients at high risk for the development of

sepsis and organ dysfunction during severe infection (37, 45,

46). Single-base variations, known as single-nucleotide poly-

morphisms, are the most commonly used variants. Several

mutations within the extracellular region of TLR-4 were

identified, including the Asp(299)Gly and Thr(399)Ile muta-

tions (47). Some groups have shown that individuals with

polymorphisms in TLR-4 are hyporesponsive to endotoxin

(47, 48), whereas other investigators have not (49, 50).

Although septic patients with TLR-4 polymorphism have

been shown to have reduced levels of circulating inflamma-

tory cytokines (51) and an increased risk of bacterial infection

(52, 53), the association of mortality with polymorphism in

TLRs during sepsis is still controversial (Table 3) (44). It has

been reported that genetic polymorphisms vary according to

race and certain other factors (54, 55); in particular, Asian

people seem to have a very rare TLR-4 Asp(299)Gly mutation

and/or Thr(399)Ile polymorphisms (54Y56). Although positive

or negative association between a polymorphism and clinical

outcome has been identified in septic patients, the confidence

is often tenuous because of small sample sizes. Thus, further

research is required to determine whether genetic variation in

FIG. 3. Relationship between APACHE II score and TLR-2, TLR-4, and CD14 expression in septic patients. Acute physiology and chronic health
evaluation II score showed no correlation with TLR-2, TLR-4, and CD14 expression on peripheral blood monocytes in septic patients. ) indicates patients with
favorable outcome; &, patients with unfavorable outcome. MFI indicates mean fluorescence intensity. Adapted from Shock. 2005;23:39Y44.

TABLE 3. TLR-4 polymorphism and its correlation with
clinical outcome

Diagnosis
Association with
clinical outcome

Odds
ratio Reference

SIRS patients Yes 4.3 84

Severe RSV bronchitis Yes ND 85

Chronic periodontitis Yes 5.6 86

Brucellosis Yes 2.9 87

Candida infection Yes 3.0 88

Acute pancreatitis Yes ND 89

Aggressive periodontitis Yes ND 90

Thermal injury Yes ND 91

Acute pancreatitis No ND 92

Necrotizing enterocolitis in very
low birth weight infant

No ND 93

Sepsis No ND 44

Cardiac surgery No ND 94

Esophagectomy No ND 95

Pneumococcal infection No ND 96

RSV infection No ND 97

ND indicates not defined; RSV, respiratory syncytial virus; SIRS,
systemic inflammatory response syndrome.
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TLRs affects the organ injury and/or mortality in polymicro-

bial sepsis.

ENDOGENOUS LIGANDS FOR
TOLL-LIKE RECEPTORS

Another recent important observation is that TLRs are also

involved in the recognition of endogenous ligands, some of

which have been recently named Balarmins[ (57) (Table 1).

Toll-like receptor 4 was shown to be involved in the recog-

nition of extra domain AYcontaining fibronectin (58), fibrino-

gen (59), polysaccharide fragments of heparan sulfate (60),

oligosaccharides of hyaluronic acid (61), "-defensin 2 (62),

oxidized low-density lipoprotein (63), several heat shock pro-

teins (HSPs) (64Y67), surfactant protein A in the lung epithe-

lium 1 (68), neutrophil elastase (13, 69), and high-mobility

group box 1 protein (HMGB-1) (70, 71). Toll-like receptor 2

has also been suggested to play a role in the recognition of

HSP-60 (72) and unidentified factors from necrotic cells (73).

Recently, TLR-3 was also shown to recognize self-messenger

RNA (74), and TLR-9 was shown to recognize self-DNA and

chromatinYimmunoglobulin G complexes (75). In addition,

one of the small leucine-rich proteoglycans (biglycan) was

demonstrated to be recognized by both TLR-2 and TLR-4

(76). Thus, the discovery that TLRs also have the capacity to

recognize endogenous or harmful self-antigens suggests that

their function may not be restricted to the recognition of

extrinsic pathogens. Taking these findings together, we

consider that TLRs play a key role in the development of

sepsis and sepsis-related organ injury through both exogenous

pathogens and endogenous ligands.

ENDOGENOUS LIGANDS CONTRIBUTE TO ORGAN
INJURY LIKE A CYTOKINE THROUGH TOLL-LIKE

RECEPTOR BINDING

Although several endogenous ligands have been implicated

for TLRs, it is unclear how they contribute to sepsis-related

organ injury through interaction with TLRs. High-mobility

group box 1 is a nuclear protein that is released extracellularly

as a late mediator of lethality in sepsis and after necrotic, but

not apoptotic, death (77, 78). Recent in vitro studies suggest

that some of the effects of HMGB-1 result from its interaction

with TLR-2 or TLR-4, and with the receptor for advanced

glycation end products (70, 71). Tsung et al. (71) clearly

demonstrated that HMGB-1 mediates inflammation and organ

damage in hepatic I/R injury depending upon the activation of

TLR-4 signaling. Their findings suggest that a harmful

mediator, HMGB-1, secreted from activated immunocompe-

tent cells during sepsis, can in turn activate TLRs, resulting in

further inflammation and organ injury. Johnson et al. (79)

demonstrated that TLR-4 mutant mice were defective against

the administration of heparan sulfate, which was degraded by

proteases in inflammatory, traumatic, and septic conditions,

whereas TLR-4 wild-type mice were killed. In addition, we

investigated the roles of neutrophil elastase, MIP-2, and TLR-4

in organ injury in septic mice, showing that chemokine-induced

recruitment of neutrophils into the lungs and liver in sepsis

likely results in the augmented release of neutrophil elastase,

which in turn may be associated with the production of higher

levels of chemokines through binding with highly expressed

TLR-4 (13). Together with these findings, the fact that

endogenous ligands released through TLR signaling especially

during sepsis engage with TLRs supports the idea of the

perpetuation of a cycle of progressive organ injury during

sepsis (Fig. 4). This mechanism may contribute to the organ

dysfunction and high mortality that occurs in sepsis.

CONCLUDING REMARKS

It is likely that the expression and function of TLRs greatly

influence the quality and control of innate immune response

in patients with infectious disease. Modulation of TLR-4

expression may be a double-edged sword because TLRs play

an important role in the host’s defense against invading

microbes. Indeed, mice with genetically mutated TLR-4 were

reported to be highly susceptible to gram-negative bacterial

infection compared with wild-type mice (42), although such

mutant mice have defective responses against the endogenous

danger signals that are subsequently produced in severe

infection. Taking these findings together, we can conclude

that TLRs are essential for triggering the host’s immune

response, acting as a sensor against invading pathogens. They

may also serve as receptors for endogenous toxic signals,

leading to tissue damage, especially in organs away from the

site of infection or after successful elimination of microbes by

drainage, antibiotics, or surgery. We believe that TLR antago-

nism should be useful in the latter case. Thus, new knowledge

regarding TLRs suggests that the manipulation of TLR signal-

ing pathways has great therapeutic potential especially in

the treatment of organ injury accompanying sepsis. Further

understanding of the biology of TLRs will open avenues for

novel therapeutic approaches for sepsis.
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