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Abstract

Sepsis remains a serious clinical problem because of high patient morbidity and mortality. Despite significant
advances in critical care, there is still no efficient causal therapy applicable to patients indicating the need to further
elucidate the molecular pathways leading to the immunopathology of sepsis. The importance of Toll-like receptors
(TLR) for the induction of immune responses against sepsis was demonstrated in humans exhibiting polymorphisms in
TLR genes and in animal models using genetically modified mouse strains. Because of the clinical heterogeneity in
human sepsis and the complex pathomechanisms underlying sepsis, several different animal models might be used to
cover the diverse features of sepsis. TLR receptors induce signaling through the adapter proteins MyD88 and TRIF.
TLR signaling is tightly controlled at different steps of the signaling cascade by series of regulatory proteins. Using a
model of severe polymicrobial septic peritonitis we could show that single TLRs are dispensable for the induction of
innate immune responses under those conditions. However, genetic ablation of MyD88 or TRIF/type-I interferon
signaling pathways prevented hyper-inflammation and attenuated the pathogenic consequences of sepsis indicating
that dampening common signaling pathways may create a moderate signal strength which is associated with favorable
immune responses. Therefore, broad knowledge about the regulation of TLR-induced signaling pathways may further
elucidate the immune mechanisms during sepsis and targeting of TLR adapter molecules may provide a new
therapeutic strategy against severe sepsis.
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Introduction

Sepsis is a complex pathophysiological response of the
body to systemic infection and may result in severe
disorders such as septic shock and multiple organ failure
(Bone, 1995; van Deventer, 1992). The mortality rate of
sepsis may range from 30% to 50% for severe cases
(Bernard et al., 2001). Despite continued efforts and
significant advances in critical care, there is still no
efficient causal therapy applicable to patients (Imahara
and O’Keefe, 2004). The immunopathogenesis of sepsis
is characterized by an overwhelming inflammation and
suppressed adaptive immunity (Hotchkiss and Karl,
2003; van der Poll and Deventer, 1999; van der Poll,
2001). Although activation of the innate immune system
by microbial pathogens and their products was reported
to contribute to hyper-inflammation and organ injury
during systemic inflammatory responses, many aspects
of sepsis immuno-pathogenesis need further elucidation.
In the present review, we summarize current evidence
for the contribution of Toll-like receptor (TLR)-
mediated responses to sepsis pathogenesis.
Toll-like receptor signaling

Activation of TLR signaling by conserved molecular
structures of microbial pathogens is crucial for the
induction of innate immune responses to infection. TLRs
induce inflammatory reactions by the activation of
signaling pathways mediated by the adapter proteins
Myeloid differentiation factor 88 (MyD88) and Toll/IL-1-
receptor domain-containing adapter inducing IFN (TRIF)
(Beutler, 2004; Beutler et al., 2005; Kawai and Akira, 2005;
Takeda and Akira, 2004). MyD88 is the central adapter
protein for signal transduction of all TLRs, except TLR3,
and the interleukin (IL)-1 receptor family (Adachi et al.,
1998; Kawai et al., 1999). MyD88 needs the bridging
adapter MyD88-adapter-like /TIR-associated protein
(Mal/TIRAP) for signaling induced by TLR2 and
TLR4. MyD88 recruits IL-1 receptor-associated kinase
(IRAK)-4 (Janssens et al., 2003) which phosphorylates
IRAK-1. Activated IRAK-1 further recruits TNF-recep-
tor-associated factor (TRAF)-6 (Li et al., 2002; Medzhitov
et al., 1998; Muzio et al., 1997; Wesche et al., 1997), which
activates the transforming growth factor -b-activated
kinase (TAK)-1/TAK1-binding protein (TAB)-2 complex
(Takaesu et al., 2000) as well as MAP-kinases. Finally,
nuclear factor kB (NF-kB) and activator protein 1 (AP-1)
transcription factors are activated resulting in the tran-
scription of inflammatory genes.

Engagement of TLR4 and TLR3 induces the TRIF-
dependent signaling pathway, which is essential for the
production of interferon (IFN)-b (Hoebe et al., 2003a;
Yamamoto et al., 2002) and contributes to the expres-
sion of cytokines and costimulatory molecules through
both IFN-b-dependent and -independent mechanisms
(Hoebe et al., 2003b; Weighardt et al., 2004). TLR4-
induced TRIF signaling involves the adapter Toll-
receptor-associated molecule (TRAM), whereas the
interaction of TLR3 with TRIF is TRAM-independent
(Fitzgerald et al., 2003; Oshiumi et al., 2003; Yamamoto
et al., 2003b). TRIF-induced production of IFN-b is
critically regulated by the noncanonical inhibitory factor
kB (IkB) kinases TRAF family member associated
NF-kB activator (TANK)-binding kinase 1 (TBK1) and
IkB kinase (IKK)e followed by phosphorylation and
nuclear translocation of interferon regulatory factor
(IRF)3 (Sato et al., 2003; Han et al., 2004). Type-I
interferon production can also be triggered by TLR7,
TLR8 and TLR9 in an MyD88-dependent fashion
(Hoshino et al., 2002; Sirén et al., 2005; Kawai et al., 2004).

Type-I interferons are involved in the regulation of
both innate and adaptive immune responses and induce
signaling through the common type-I IFN receptor
(Decker et al., 2002; Bogdan et al., 2004; Theofilopoulus
et al., 2005). Type-I interferons are not only essential to
establish anti-viral immunity (Matsumoto et al., 2004;
Biron, 1998; van den Broek et al., 1995), but they also
influence immune responses against various non-viral
pathogens including Leishmania major (Diefenbach
et al., 1998), Listeria monocytogenes (Carrero et al.,
2004; O’Connell et al., 2004; Auerbuch et al., 2004), or
Streptococcus pneumoniae (Weigent et al., 1986). IFN-b
was found to contribute to endotoxic shock (Karaghiosoff
et al., 2003).
Termination of TLR signaling

There is a growing number of molecules reported to
be involved in the negative regulation of TLR-induced
signaling responses, acting on different steps of the
TLR-induced signaling cascade through different me-
chanisms. Radioprotective 105 (RP105) is a member of
the TLR family and interferes with TLR4 signaling by
inhibition of ligand binding (Divanovic et al., 2005).
Single immunoglobulin IL-1-receptor-related molecule
(SIGIRR) is a member of the TIR family consisting
of a single extracellular immunoglobulin domain
and a cytoplasmic TLR/IL-1-receptor (TIR) domain
(Thomassen et al., 1999). SIGIRR is not able to induce
NF-kB signaling by itself, but inhibits LPS-induced
signaling probably by interference with the TIR domain
of TLR4 and TLR9 (Qin et al., 2005). The E3-ubiqiutin
ligase TLR-ubiquitinating enzyme 3A (Triad3A),
however, inhibits TLR signaling by the promotion of
proteolytic degradation of TLR4 and TLR9 (Chuang
and Ulevitch, 2004). ST2-Ligand (ST2L) is another
transmembrane TIR family member, lacking NF-kB
signal capacity. ST2L inhibits signaling induced by
TLR4 and IL1-R but not by TLR3, probably by
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sequestering MyD88 and Mal (Brint et al., 2004).
MyD88-signaling is inhibited by a splice variant of
MyD88, MyD88s, which lacks the intermediate domain
of MyD88 and acts as dominant negative inhibitor of
the MyD88/IRAK complex by preventing the phos-
phorylation of IRAK-1 (Burns et al., 2003). In addition,
IRF-4 interacts with the IRAK-1/MyD88/TRAF-6
complex and selectively inhibits IRF-5-dependent TLR
signaling (Honma et al., 2005; Negishi et al., 2005).
TRIF-induced signaling, however, is negatively regu-
lated by the TIR adapter sterile a HEAT-Armadillo
motif protein (SARM) in humans (Carty et al., 2006).
Furthermore, the TRIF pathway is negatively regulated
by Src homology 2(SH2)-domain-containing inositol-
5-phosphatase (SHIP)-2 through interference with
TANK-binding kinase 1 (TBK)1-induced signaling
(An et al., 2006). The function of the IRAK-family
members is also controlled by several mechanisms.
While IRAK-M inhibits the dissociation of IRAK-1
and IRAK-4 from the TLR/MyD88/IRAK signaling
complex by either inhibiting the phosphorylation of
IRAK-1 and IRAK-4 or stabilizing the complex
(Kobayashi et al., 2002), IRAK-M is also involved in
endotoxin tolerance, a mechanism to protect against
endotoxin toxicity (Kobayashi et al. 2002). Toll-inter-
acting protein (Tollip) was shown to inhibit phosphor-
ylation and kinase activity of IRAK-1 (Zhang and
Ghosh, 2002). Recently, Smad6 was identified to
abrogate TLR signaling by complex formation with
Pelle-interacting protein (Pellino), IRAK-1 and TRAF6
(Choi et al., 2006). IRAK-induced signaling is further
regulated by splice variants of murine IRAK-2, IRAK-c
and IRAK-d. Both splice isoforms lack the death
domain of full length IRAK-2, thereby acting as
dominant negative inhibitors (Hardy and O’Neill,
2004). Moreover, A20 removes K63-linked ubiquitin
residues from TRAF6 and therefore inhibits TRAF6
dependent NF-kB activation, while b-arrestin complexes
with TRAF6 and averts autoubiqitination and NF-kB
activation by TRAF6.
Relevance of polymorphisms in TLR and TLR

adapters for sepsis

The role of TLR signaling during sepsis can be
analyzed in humans showing polymorphisms in TLR
genes. In the TLR4 gene several polymorphisms have
been identified with the extracellular ligand recognition
domain being more variable than the cytoplasmic
signaling domain (Smirnova et al., 2000). Thus far, the
most extensively studied polymorphism is the D229G
mutation. The incidence of heterozygosity of the mutant
allele in the Caucasian population is 9.4% (Feterowski
et al., 2003). This polymorphism is associated with an
attenuated LPS response in vitro (Arbour et al., 2000),
even in heterozygotes, as well as with decreased
susceptibility to LPS-induced airway inflammation and
bronchitis induced by respiratory syncytial virus, which
is a well-known TLR4 ligand (Kurt-Jones et al., 2000).
Its association with the LPS response and with sepsis
was analyzed in several studies. While it was shown that
the D229G polymorphism increased the susceptibility to
Gram-negative infections (Agnese et al., 2002; Lorenz
et al., 2002), no correlation of this polymorphism with
pre- or post-operative LPS-induced cytokine release
could be demonstrated (Kumpf et al., 2006). Further-
more, no correlation of sepsis incidence and mortality
was demonstrated during post-operative sepsis caused
by mixed-bacterial infection (Feterowski et al., 2003).
Finally, there are other rare TLR4 polymorphisms,
which lead to missense mutations and influence menin-
gococcal infections (Smirnova et al., 2003).

Polymorphisms in the TLR2 gene include the R753E
and the R677W mutations. The R753E mutation affects
susceptibility to Staphylococcus aureus infections (Lorenz
et al., 2000) and to tuberculosis (Ogus et al., 2006) and
may protect from late-stage Lyme disease (Schröder
et al., 2005). The mutation R677W was reported to
correlate with lepromatous leprosy in a Korean popula-
tion (Kang et al., 2002), but recent data describing a
pseudogene for TLR2 in different populations may have
led to false positive signals (Malhotra et al., 2005).

Bacterial flagellin is recognized by TLR5. A mutation
which leads to a premature stop (392stop) in TLR5 was
found with an allelic frequency of 10%. The truncated
protein acts as dominant negative inhibitor of wildtype
TLR5 and is associated with enhanced susceptibility to
infections with Legionella pneumophila (Hawn et al., 2003).

Null mutations in the TLR signaling protein IRAK-4
are associated with enhanced susceptibility to bacterial
infections (Medvedev et al., 2003; Picard et al., 2003).
Children with homozygous IRAK-4 mutations suffer
from recurrent bacterial infections induced by pyogenic
bacteria such as Staphylococcus aureus and Streptococcus

pneumoniae which became less frequent with age,
indicating the development of compensatory defense
mechanisms over time.

These data indicate that polymorphisms in TLRs may
influence the outcome of infections dependent on
individual TLRs, while more complex infections appear
not to be affected. Particularly during polymicrobial
infections many TLRs might be activated so that the
loss of a single TLR is likely to be compensated. Even in
the case of IRAK-4, which is involved in several TLR-
induced signal pathways only a limited immunosuppres-
sion is observed, pointing to a marked redundancy of
anti-microbial signaling pathways. Notably, although
polymorphisms in TLRs or TLR signaling proteins may
increase the susceptibility to certain infections, they do
not appear to have a major influence on the develop-
ment or outcome of sepsis.
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Animal models of sepsis

To fully understand the pathophysiology of sepsis it is
necessary to develop suitable and standardized animal
models. Animal models should provide the opportunity
to elucidate pathological processes and may allow for
testing of novel therapeutic approaches in a preclinical
setting. Accordingly, many models mimicking sepsis and
septic shock have been developed (Buras et al., 2005).
Some of them are based on the injection of toxins, or
components of bacteria that activate TLRs, while others
rely on the administration of viable bacteria. Another
type of model involves surgical procedures to generate a
septic focus leading to the immediate onset of peritoni-
tis. Surgical models allow the influx of enteric bacteria
into the peritoneal cavity thereby mimicking human
postoperative sepsis. Currently, the surgical sepsis
models used are cecal ligation and puncture (CLP)
(Hubbard et al., 2005; Wichterman et al., 1980) and
colon ascendens stent peritonitis (CASP) (Buras et al.,
2005; Zantl et al., 1998). Both models show an acute
inflammatory reaction caused by a continuous influx of
different enteric bacteria into the peritoneal cavity.
Although sepsis models may be designed to reproduce
certain aspects of the human disease, it should be
considered that the progression of human sepsis is
highly complex and that the clinical outcome may vary
due to age, pre-existing diseases, as well as oncologic
and immune status of the patients. Because of the
clinical heterogeneity in human sepsis and the complex
pathomechanisms underlying sepsis it appears impos-
sible to combine all these aspects in one single animal
model. Instead it may be more appropriate to analyze
different aspects of human sepsis in models modified
according to specific clinical needs.
Role of TLRs in septic shock models

The role of TLRs in the recognition of conserved
bacterial patterns was discovered by the identification of
TLR4 as signaling receptor for LPS (Poltorak et al.,
1998). C3H/HeJ and C57BL/10ScCr mice, which carry a
missense mutation in the TIR domain of TLR4 or a null
mutation for TLR4, respectively, are resistant to
endotoxin challenge but are highly susceptible to
Gram-negative infection (Poltorak et al., 1998). These
observations were confirmed with TLR4-deficient mice,
generated by homologous recombination (Hoshino et
al., 1999). Mice deficient for TIRAP, MyD88, or TRIF
also showed unresponsiveness to LPS and resistance to
septic shock, indicating that receptor–proximal adapter
proteins are essential for LPS-induced inflammatory
responses (Hoebe et al., 2003a; Kawai et al. 1999;
Yamamoto et al. 2002,2003a). Mice deficient for IRAK-1
or IRAK-4 also exhibit increased resistance to endotoxin
challenge (Suzuki et al., 2002; Swantek et al., 2000),
confirming the important role of these kinases in vivo.
Moreover, septic shock induced by bacterial lipopeptides
was found to be dependent on TLR2 (Meng et al.,
2004), while the toxic effects of CpG-DNA are mediated
by TLR9 (Hemmi et al., 2000). It should be noted,
however, that both TLR2- and MyD88-null mice are
highly susceptible to infection with Staphylococcus

aureus (Takeuchi et al., 2000). These findings indicate
that TLR signaling may mediate the toxic effects of
high doses of microbial components, but that TLRs may
be required for generation of protective immune
responses upon infection with individual bacterial
pathogens.
Role of TLRs in polymicrobial infection models

In further studies, the contribution of TLRs to
immune responses in sepsis caused by mixed-bacterial
infections was examined. Using the CASP model of
septic peritonitis, it was shown that the survival rates of
mice with single or combined deficiency for TLR2 and
TLR4 was comparable to those of wildtype mice
(Weighardt et al., 2002), indicating that even deficiency
of TLR2 and TLR4 does not have a major influence on
the pathology of severe polymicrobial infections. In line
with findings, LPS-nonresponder BALB/c mice which
carry the mutated TLR4-gene of C3H/HeJ mice
(Takakuwa et al., 1996) also showed no difference in
survival compared with wildtype mice when analyzed in
the CLP model (Echtenacher et al., 2001). These data
are consistent with observations in surgical sepsis
patients revealing that loss-of-function mutations in
TLR4 did not correlate with incidence and mortality of
mixed-bacterial sepsis (Feterowski et al., 2003). It
therefore appears that during polymicrobial sepsis
multiple TLRs are triggered and thereby strongly
increase the complexity and intensity of the inflamma-
tory response. As a consequence, individual TLRs may
be dispensable for both protective and detrimental
innate immune responses under these conditions.

To analyze the role of common TLR signaling
pathways, MyD88-deficient mice were subjected to the
CASP model. MyD88�/� mice exhibited improved
survival, while bacterial clearance and recruitment of
effector neutrophils to the infected peritoneal cavity
were normal (Weighardt et al., 2002). The systemic
hyper-inflammatory reaction was strongly attenuated,
but not absent, in MyD88-deficient animals. In the
absence of MyD88, TRIF-regulated inflammatory
genes including Monocyte chemoattractant protein-1
(MCP-1) and Monocyte chemoattractant protein-5
(MCP-5) were found to be induced during sepsis
(Feterowski et al., 2004; Weighardt et al., 2006b).
Antibody blockade of CCR2, which functions as a
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Fig. 1. Regulation of TLR signaling. TLR signaling procedes

via the adapters TIRAP/MyD88 or TRAM/TRIF to activate

NF-kB or IRF3 and IRF7 transcription factors. Several

negative regulators influence TLR signaling at different steps

of the cascade through competitive inhibition, sequestration

( ), or degradation ( ) of signaling proteins.
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receptor for MCP-1 and MCP-5, demonstrated that this
pathway is essential for neutrophil recruitment, bacterial
clearance and prevention of kidney injury in septic
peritonitis (Feterowski et al., 2004). Thus, genetic
ablation of MyD88 may protect mice from the
deleterious effects of polymicrobial sepsis by preventing
inflammatory injury. Notably, even in the absence of a
major TLR signaling pathway there appears to be
sufficient residual gene expression to ensure protective
neutrophil responses and anti-bacterial defense.

To further test this hypothesis, mice deficient for the
type-I interferon receptor (IFNARI) were analyzed in
the CASP model (Weighardt et al., 2006a). Type-I
interferons are considered important effector cytokines
of the TRIF-dependent TLR signaling pathway (Hoebe
et al., 2003a; Yamamoto et al., 2003a). Polymicrobial
sepsis was found to cause production of IFN-b, but not
IFN-a subtypes, by macrophage-like cells. Similar to the
findings with MyD88�/� mice, IFNARI�/� mice
showed an increased early influx of neutrophils and
enhanced bacterial clearance in the infected peritoneal
cavity. The late, but not early, systemic levels of
inflammation were reduced in IFNARI-null mice
indicating that type-I interferons act as late mediators
of septic hyper-inflammation.
Conclusions

Sepsis remains a major clinical problem due to high
morbidity and mortality. Many aspects of the immuno-
pathology of sepsis are still unclear and suitable animal
models are necessary to further elucidate molecular
mechanisms. TLR signaling through the MyD88 and
TRIF pathways is crucial for induction of hyper-
inflammatory responses and tissue injury during sepsis
(Fig. 1). Experimental evidence derived from animal
models indicates that, by dampening of TLR-induced
inflammatory pathways, it is possible to interfere with
the progression of sepsis. We propose that different
thresholds of mediator production exist, either leading
to detrimental processes or inducing protective immune
reactions during sepsis. Full activation of multiple TLR
signaling pathways during sepsis may lead to hyper-
inflammation, thereby enhancing organ failure and
death. Attenuation of common signaling pathways
may create a moderate signal strength which might
exert protective functions. Thus, the limitation of the
immune signal, but not the complete absence of
inflammatory mediator production, may give rise to
protective immune functions. Available data suggest
that there is a considerable degree of redundancy
between MyD88- and TRIF-dependent signaling path-
ways in mediating these responses. Thus, it is tempting
to speculate that targeting individual TLR signaling
pathways during sepsis by affecting the function of
adapter molecules may provide a new therapeutic
strategy against severe sepsis.
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