
A Performance Comparison of NFS and iSCSI

for IP-Networked Storage
�

Peter Radkov, Li Yin
�
, Pawan Goyal�, Prasenjit Sarkar�and Prashant Shenoy

Dept. of Computer Science �Storage Systems Research
�
Computer Science Division

University of Massachusetts IBM Almaden Research Center University of California
Amherst MA 01003 San Jose CA 95120 Berkeley CA 94720

Abstract

IP-networked storage protocols such as NFS and
iSCSI have become increasingly common in to-
day’s LAN environments. In this paper, we exper-
imentally compare NFS and iSCSI performance
for environments with no data sharing across ma-
chines. Our micro- and macro-benchmarking
results on the Linux platform show that iSCSI
and NFS are comparable for data-intensive work-
loads, while the former outperforms latter by a
factor of two or more for meta-data intensive
workloads. We identify aggressive meta-data
caching and aggregation of meta-data updates in
iSCSI to be the primary reasons for this perfor-
mance difference and propose enhancements to
NFS to overcome these limitations.

1 Introduction

With the advent of high-speed LAN technologies such
as Gigabit Ethernet, IP-networked storage has become
increasingly common in client-server environments. The
availability of 10 Gb/s Ethernet in the near future is likely
to further accelerate this trend. IP-networked storage is
broadly defined to be any storage technology that permits
access to remote data over IP. The traditional method for
networking storage over IP is to simply employ a net-
work file system such as NFS [11]. In this approach, the
server makes a subset of its local namespace available to
clients; clients access meta-data and files on the server
using a RPC-based protocol (see Figure 1(a)).

In contrast to this widely used approach, an alter-
nate approach for accessing remote data is to use an IP-
based storage area networking (SAN) protocol such as
iSCSI [12]. In this approach, a remote disk exports a
portion of its storage space to a client. The client handles

�
This research was supported in part by NSF grants CCR-9984030,

EIA-0080119 and a gift from IBM Corporation.

the remote disk no differently than its local disks—it runs
a local file system that reads and writes data blocks to the
remote disk. Rather than accessing blocks from a local
disk, the I/O operations are carried out over a network
using a block access protocol (see Figure1(b)). In case
of iSCSI, remote blocks are accessed by encapsulating
SCSI commands into TCP/IP packets [12].

The two techniques for accessing remote data employ
fundamentally different abstractions. Whereas a network
file system accesses remote data at the granularity of
files, SAN protocols access remote data at the granu-
larity of disk blocks. We refer to these techniques as
file-accessandblock-accessprotocols, respectively. Ob-
serve that, in the former approach, the file system resides
at the server, whereas in the latter approach it resides
at the client (see Figure 1). Consequently, the network
I/O consists of file operations (file and meta-data reads
and writes) for file-access protocols and block operations
(block reads and writes) for block-access protocols.

Given these differences, it is nota priori clear which
protocol type is better suited for IP-networked storage.
In this paper, we take a first step towards addressing this
question. We use NFS and iSCSI as specific instantia-
tions of file- and block-access protocols and experimen-
tally compare their performance. Our study specifically
assumes an environment where a single client machine
accesses a remote data store (i.e., there is no data shar-
ing across machines), and we study the impact of the
abstraction-level and caching on the performance of the
two protocols.

Using a Linux-based storage system testbed, we care-
fully micro-benchmark three generations of the NFS
protocols—NFS versions 2, 3 and 4, and iSCSI. We also
measure application performance using a suite of data-
intensive and meta-data intensive benchmarks such as
PostMark, TPC-C and TPC-H on the two systems. We
choose Linux as our experimental platform, since it is
currently the only open-source platform to implement all
three versions of NFS as well as the iSCSI protocol. The
choice of Linux presents some challenges, since there are

disk

File server

 File
System

Network

 N
et

w
or

k
fil

e
sy

st
em

 c
lie

nt

client

file access

protocol

file reads/
 writes

 meta−data
reads/writes

ap
pl

ic
at

io
ns

file
I/O

block
 I/O

disk

Network

client

protocol

ap
pl

ic
at

io
ns

file
I/O

block
 I/O

Block server block access

block
reads/
writes

fil
e

sy
st

em

(a) File-access Protocol (NFS) (b) Block-access Protocol (iSCSI)

Figure 1 : An overview of file- and block-access protocols.

known performance issues with the Linux NFS imple-
mentation, especially for asynchronous writes and server
CPU overhead. We perform detailed analysis to separate
out the protocol behavior from the idiosyncrasies of the
Linux implementations of NFS and iSCSI that we en-
counter during our experiments.

Broadly, our results show that, for environments in
which storage is not shared across machines, iSCSI and
NFS are comparable for data-intensive workloads, while
the former outperforms the latter by a factor of two for
meta-data intensive workloads. We identify aggressive
meta-data caching and aggregation of meta-data updates
in iSCSI as the primary reasons for this performance dif-
ference. We propose enhancements to NFS to extract
these benefits of meta-data caching and update aggrega-
tion.

The rest of this paper is structured as follows. Section
2 provides a brief overview of NFS and iSCSI. Sections
3, 4, and 5 present our experimental comparison of NFS
and iSCSI. Implications of our results are discussed in
Section 6. Section 7 discusses our observed limitations
of NFS and proposes an enhancement. Section 8 dis-
cusses related work, and we present our conclusions in
Section 9.

2 Background: NFS and iSCSI

In this section, we present a brief overview of NFS and
iSCSI and discuss their differences.

2.1 NFS Overview

There are three generations of the NFS protocol. In NFS
version 2 (or simply “NFS v2”), the client and the server
communicate via remote procedure calls (RPCs) over
UDP. A key design feature of NFS version 2 is its state-
less nature—the NFS server does not maintain any state
about its clients, and consequently, no state information
is lost if the server crashes.

The next version of NFS—NFS version 3—provides
the following enhancements: (i) support for a variable
length file handle of up to 64 bytes, instead of 32 byte
files handles; (ii) eliminates the 8 KB limit on the maxi-
mum data transfer size; (iii) support for 64 bit offsets for
file operations, up from 32 bits; (iv) reduces the number
of fetch attribute calls by returning the file attributes on
any call that modifies them; (v) supports asynchronous

writes to improve performance; and (vi) adds support for
TCP as a transport protocol in addition to UDP.

The latest version of NFS—NFS version 4—aims to
improve the locking and performance for narrow data
sharing applications. Some of the key features of NFS
version 4 are as follows: (i) it integrates the suite of pro-
tocols (nfs, mountd, nlm, nsm) into one single protocol
for ease of access across firewalls; (ii) it supports com-
pound operations to coalesce multiple operations into
one single message; (iii) it isstatefulwhen compared
to the previous incarnations of NFS — NFS v4 clients
use OPEN and CLOSE calls for stateful interaction with
the server; (iv) it introduces the concept of delegation to
allow clients to aggressively cache file data; and (v) it
mandates strong security using the GSS API.

2.2 iSCSI Overview

iSCSI is a block-level protocol that encapsulates SCSI
commands into TCP/IP packets, and thereby leverages
the investment in existing IP networks.

SCSI is a popular block transport command protocol
that is used for high bandwidth transport of data between
hosts and storage systems (e.g., disk, tape). Tradition-
ally, SCSI commands have been transported over dedi-
cated networks such as SCSI buses and Fiber Channel.
With the emergence of Gigabit and 10 Gb/s Ethernet
LANs, it is now feasible to transport SCSI commands
over commodity networks and yet provide high through-
put to bandwidth-intensive storage applications. To do
so, iSCSI connects a SCSI initiator port on a host to a
SCSI target port on a storage subsystem. For the sake
of uniformity with NFS, we will refer to the initiator and
the target as an iSCSI client and server, respectively.

Some of the salient features of iSCSI are as follows:
(i) it uses the notion of a session between the client
and the server to identify a communication stream be-
tween the two; (ii) it allows multiple connections to
be multiplexed into a session; (iii) it supports advanced
data integrity, authentication protocols as well as encryp-
tion (IPSEC)—these features are negotiated at session-
startup time; and (iv) it supports advanced error recovery
using explicit retransmission requests, markers and con-
nection allegiance switching [12].

2.3 Differences Between NFS and iSCSI

NFS and iSCSI provide fundamentally different data
sharing semantics. NFS is inherently suitable for data
sharing, since it enable files to be shared among multi-
ple client machines. In contrast, a block protocol such
as iSCSI supports a single client for each volume on
the block server. Consequently, iSCSI permits applica-
tions running on a single client machine to share remote
data, but it is not directly suitable for sharing dataacross
machines. It is possible, however, to employ iSCSI in
shared multi-client environments by designing an appro-
priate distributed file system that runs on multiple clients
and accesses data from block server.

The implications of caching are also different in the
two scenarios. In NFS, the file system is located at the
server and so is the file system cache (hits in this cache
incur a network hop). NFS clients also employ a cache
that can hold both data and meta-data. To ensure con-
sistency across clients, NFS v2 and v3 require that client
perform consistency checks with the server on cached
data and meta-data. The validity of cached data at the
client is implementation-dependent—in Linux, cached
meta-data is treated as potentially stale after 3 seconds
and cached data after 30 seconds. Thus, meta-data and
data reads may trigger a message exchange (i.e., a con-
sistency check) with the server even in the event of a
cache hit. NFS v4 can avoid this message exchange for
data reads if the server supports file delegation. From the
perspective of writes, both data and meta-data writes in
NFS v2 are synchronous. NFS v3 and v4 supports asyn-
chronous data writes, but meta-data updates continue to
be synchronous. Thus, depending on the version, NFS
has different degrees of write-through caching.

In iSCSI, the caching policy is governed by the file
system. Since the file system cache is located at the
client, both data and meta-data reads benefit from any
cached content. Data updates are asynchronous in most
file systems. In modern file systems, meta-data updates
are also asynchronous, since such systems use log-based
journaling for faster recovery. In the ext3 file system, for
instance, meta-data is written asynchronously at commit
points. The asynchrony and frequency of these commit
points is a trade-off between recovery and performance
(ext3 uses a commit interval of 5 seconds). Thus, when
used in conjunction with ext3, iSCSI supports a fully
write-back cache for data and meta-data updates.

Observe that the benefits of asynchronous meta-data
update in iSCSI come at the cost of lower reliability of
data and meta-data persistence than in NFS. Due to syn-
chronous meta-data updates in NFS, both data and meta-
data updates persist across client failure. However, in
iSCSI, meta-data updates as well as related data may be
lost in case client fails prior to flushing the journal and
data blocks to the iSCSI server.

3 Setup and Methodology

This section describes the storage testbed used for our
experiments and then our experimental methodology.

3.1 System Setup

The storage testbed used in our experiments consists of
a server and a client connected over an isolated Gigabit
Ethernet LAN (see Figure 2). Our server is a dual pro-
cessor machine with two 933 MHz Pentium-III proces-
sors, 256 KB L1 cache, 1 GB of main memory and an In-
tel 82540EM Gigabit Ethernet card. The server contains
an Adaptec ServeRAID adapter card that is connected to
a Dell PowerVault disk pack with fourteen SCSI disks;
each disk is a 10,000 RPM Ultra-160 SCSI drive with
18 GB storage capacity. For the purpose of our experi-
ments, we configure the storage subsystem as two iden-
tical RAID-5 arrays, each in a 4+p configuration (four
data disks plus a parity disk). One array is used for
our NFS experiments and the other for the iSCSI exper-
iments. The client is a 1 GHz Pentium-III machine with
256KB L1 cache, 512 MB main memory, and an Intel
82540EM Gigabit Ethernet card.

Both machines run RedHat Linux 9. We use version
2.4.20 of the Linux kernel on the client for all our exper-
iments. For the server, we use version 2.4.20 as the de-
fault kernel, except for the iSCSI server which requires
kernel version 2.4.2 and the NFS version 4 server which
requires 2.4.18. We use the default Linux implementa-
tion of NFS versions 2 and 3 for our experiments. For
NFS version 4, which is yet to be fully supported in
vanilla Linux, we use the University of Michigan imple-
mentation (release 2 for Linux 2.4).

For iSCSI, we employ the open-source SourceForge
Linux iSCSI implementation as the client (version
3.3.0.1) and a commercial implementation as the iSCSI
server. While we found several high-quality open-source
iSCSI client implementations, we were unable to find a
stable open-source iSCSI server implementation that was
compatible with our hardware setup; consequently, we
chose a commercial server implementation.

The default file system used in our experiments is
ext3. The file system resides at the client for iSCSI and at
the server for NFS (see Figure 2). We use TCP as the de-
fault transport protocol for both NFS and iSCSI, except
for NFS v2 where UDP is the transport protocol.

3.2 Experimental Methodology

We experimentally compare NFS versions 2, 3 and 4
with iSCSI using a combination of micro- and macro-
benchmarks. The objective of our micro-benchmarking
experiments is to measure the network message overhead
of various file and directory operations in the two proto-
cols, while our macro-benchmarks experimentally mea-
sure overall application performance.

ext3
 NFS
server

 gigabit
ethernet

 NFS
client

ap
pl

ic
at

io
ns

disk

server client

disk

 gigabit
ethernet

ap
pl

ic
at

io
ns

 iscsi
target

 iscsi
initiator

 ext3
filesystem

clientserver

(a) NFS setup (b) iSCSI setup

Figure 2 : Experimental setup. The figures depict the setup used for our NFS and iSCSI experiments.

Our micro-benchmarks measure the network message
overhead (number of network messages) for a variety of
system calls that perform file and directory operations.
We first measure the network message overhead assum-
ing a cold cache at the client and the server and then re-
peat the experiment for a warm cache. By using a cold
and warm cache, our experiments capture the worst and
the average case, respectively, for the network message
overhead. Since the network message overhead depends
on the directory depth (path length), we also measure
these overheads for varying directory depths. In case
of file reads and writes, the network message overhead
is dependent on (i) the I/O size, and (ii) the nature of
the workload (i.e., random or sequential). Consequently,
we measure the network message overhead for varying
I/O sizes as well as sequential and random requests. We
also study the impact of the network latency between the
client and the server on the two systems.

We also measure application performance using sev-
eral popular benchmarks: PostMark, TPC-C and TPC-H.
PostMark is a file system benchmark that is meta-data in-
tensive due its operation on a large number of small files.
The TPC-C and TPC-H database benchmarks are data-
intensive and represent online transaction processing and
decision support application profiles.

We use a variety of tools to understand system behav-
ior for our experiments. We useEtherealto monitor net-
work packets, theLinux Trace toolkitandvmstatto mea-
sure protocol processing times, andnfsstatto obtain nfs
message statistics. We also instrument the Linux kernel
to measure iSCSI network message overheads. Finally,
we use logging in the VFS layer to trace the generation
of network traffic for NFS. While we use these tools to
obtain a detailed understanding of system behavior, re-
ported performance results (for instance, for the various
benchmarks) are without the various monitoring tools (to
prevent the overhead of these tools from influencing per-
formance results).

The next two sections provide a summary of our key
experimental results. A more detailed presentation of the
results can be found in [9].

4 Micro-benchmarking Experiments

This section compares the performance of various file
and directory operations, focusing on protocol message
counts as well as their sensitivity to file system parame-
ters.

Table 1 : File and directory-related system calls.
Directory operations File operations
Directory creation (mkdir) File create (creat)
Directory change (chdir) File open (open)
Read directory contents (readdir) Hard link to a file (link)
Directory delete (rmdir) Truncate a file (truncate)
Symbolic link creation (symlink) Change permissions (chmod)
Symbolic link read (readlink) Change ownership (chown)
Symbolic link delete (unlink) Query file permissions (access)

Query file attributes (stat)
Alter file access time (utime)

4.1 Overhead of System Calls

Our first experiment determines network message over-
heads for common file and directory operations at
the granularity of system calls. We consider sixteen
commonly-used system calls shown in Table 1 and mea-
sure their network message overheads using theEthereal
packet monitor. Note that this list does not include the
read andwrite system calls, which are examined sepa-
rately in Section 4.4.

For each system call, we first measure its network
message overhead assuming a cold cache and repeat the
experiment for a warm cache. We emulate a cold cache
by unmounting and remounting the file system at the
client and restarting the NFS server or the iSCSI server;
this is done prior to each invocation of a system call. The
warm cache is emulated by invoking the system call on a
cold cache and then repeating the system call with sim-
ilar (though not identical) parameters. For instance, to
understand warm cache behavior, we create two directo-
ries in the same parent directory usingmkdir, we open
two files in the same directory usingopen, or we per-
form two differentchmod operation on a file. In each
case, the network message overhead of the second invo-
cation is assumed to be the overhead in the presence of a
warm cache.1

The directory structure can impact the network mes-
sage overhead for a given operation. Consequently, we
report overheads for a directory depth of zero and a direc-
tory depth of three. Section 4.3 reports additional results
obtained by systematically varying the directory depth
from 0 to 16.

1Depending on the exact cache contents, the warm cache network
message overhead can be different for different caches. We carefully
choose the system call parameters so as to emulate a “reasonable”
warm cache. Moreover, we deliberately choose slightly different pa-
rameters across system call invocations; identical invocations will re-
sult in a hot cache (as opposed to a warm cache) and result in zero
network message overhead for many operations.

Table 2 : Network message overheads for a cold cache.

Directory depth 0 Directory depth 3
V2 V3 V4 iSCSI V2 V3 V4 iSCSI

mkdir 2 2 4 7 5 5 10 13
chdir 1 1 3 2 4 4 9 8
readdir 2 2 4 6 5 5 10 12
symlink 3 2 4 6 6 5 10 12
readlink 2 2 3 5 5 5 9 10
unlink 2 2 4 6 5 5 10 11
rmdir 2 2 4 8 5 5 10 14
creat 3 3 10 7 6 6 16 13
open 2 2 7 3 5 5 13 9
link 4 4 7 6 10 9 16 12
rename 4 3 7 6 10 10 16 12
trunc 3 3 8 6 6 6 14 12
chmod 3 3 5 6 6 6 11 12
chown 3 3 5 6 6 6 11 11
access 2 2 5 3 5 5 11 9
stat 3 3 5 3 6 6 11 9
utime 2 2 4 6 5 5 10 12

Table 2 depicts the number of messages exchanged
between the client and server for NFS versions 2, 3, 4
and iSCSI assuming a cold cache.

We make three important observations from the table.
First, on an average, iSCSI incurs a higher network mes-
sage overhead than NFS. This is because a single mes-
sage is sufficient to invoke a file system operation on a
path name in case of NFS. In contrast, the path name
must be completely resolved in case of iSCSI before the
operation can proceed; this results in additional message
exchanges. Second, the network message overhead in-
creases as we increase the directory depth. For NFS,
this is due to the additional access checks on the path-
name. In case of iSCSI, the file system fetches the di-
rectory inode and the directory contents at each level in
the path name. Since directories and their inodes may be
resident on different disk blocks, this triggers additional
block reads. Third, NFS version 4 has a higher network
message overhead when compared to NFS versions 2 and
3, which have a comparable overhead. The higher over-
head in NFS version 4 is due to access checks performed
by the client via theaccessRPC call.2

We make one additional observation that is not di-
rectly reflected in Table 2. The average message size in
iSCSI can be higher than that of NFS. Since iSCSI is a
block access protocol, the granularity of reads and writes
in iSCSI is a disk block, whereas RPCs allow NFS to
read or write smaller chunks of data. While reading en-
tire blocks may seem wasteful, a side-effect of this policy
is that iSCSI benefits from aggressive caching. For in-
stance, reading an entire disk block of inodes enable ap-
plications with meta-data locality to benefit in iSCSI. In

2TheaccessRPC call was first introduced in NFS V3. Our Ethereal
logs did not reveal its use in the Linux NFS v3 implementation, other
than for root access checks. However, the NFS v4 client uses it exten-
sively to perform additional access checks on directories and thereby
incurs a higher network message overhead.

the absence of meta-data or data locality, however, read-
ing entire disk blocks may hurt performance.

While the message size can be an important contrib-
utor to the network message overhead analysis of the
two protocols, our observations in the macro-benchmark
analysis indicated that the number of messages ex-
changed was the dominant factor in the network mes-
sage overhead. Consequently, we focus on the number
of messages exchanged as the key factor in network mes-
sage overhead in the rest of the analysis.

Table 3 : Network message overheads for a warm cache.

Directory depth 0 Directory depth 3
v2 v3 v4 iSCSI v2 v3 v4 iSCSI

mkdir 2 2 2 2 4 4 3 2
chdir 1 1 0 0 3 3 2 0
readdir 1 1 0 2 3 3 3 2
symlink 3 2 2 2 5 4 4 2
readlink 1 2 0 2 3 3 3 2
unlink 2 2 2 2 5 4 3 2
rmdir 2 2 2 2 4 4 3 2
open 3 2 6 2 5 5 9 2
creat 4 3 2 2 6 4 6 2
open 1 1 4 0 4 4 6 0
rename 4 3 2 2 6 6 6 2
trunc 2 2 4 2 5 5 7 2
chmod 2 2 2 2 4 5 5 2
chown 2 2 2 2 4 5 5 2
access 1 1 1 2 4 4 3 0
stat 2 2 2 2 5 5 5 0
utime 1 1 1 2 4 4 4 2

Table 3 depicts the number of messages exchanged
between the client and the server for warm cache oper-
ations. Whereas iSCSI incurred a higher network mes-
sage overhead than NFS in the presence of a cold cache,
it incurs a comparable or lower network message over-
head than NFS in the presence of a warm cache. Further,
the network message overhead is identical for directory
depths of zero and three for iSCSI, whereas it increases
with directory depth for NFS. Last, both iSCSI and NFS
benefit from a warm cache and the overheads for each op-
eration are smaller than those for a cold cache. The bet-
ter performance of iSCSI can be attributed to aggressive
meta-data caching performed by the file system; since
the file system is resident at the client, many requests
can be serviced directly from the client cache. This is
true even for long path names, since all directories in
the path may be cached from a prior operation. NFS
is unable to extract these benefits despite using a client-
side cache, since NFS v2 and v3 need to perform consis-
tency checks on cached entries, which triggers message
exchanges with the server. Further, meta-data update op-
erations are necessarily synchronous in NFS, while they
can be asynchronous in iSCSI. This asynchronous nature
enables applications to update a dirty cache block mul-
tiple times prior to a flush, thereby amortizing multiple
meta-data updates into a single network block write.

0

1

2

3

4

5

6

7

0 2 4 6 8 10

N
um

be
r

of
 M

es
sa

ge
s

Number of Operations (log2 scale)

iSCSI Batching Effects

create
link

rename
chmod

stat
access

mkdir
write

Figure 3 : Benefit of meta-data update aggregation and
caching in iSCSI. The figure shows the amortized net-
work message overhead per operation for varying batch
sizes. The batch size is shown on a logarithmic scale.

4.2 Impact of Meta-data Caching and Up-
date Aggregation

Our micro-benchmark experiments revealed two im-
portant characteristics of modern local file systems —
aggressive meta-data caching, which benefits meta-data
reads, and update aggregation, which benefits meta-data
writes. Recall that, update aggregation enables multiple
writes to the same dirty block to be “batched” into a sin-
gle asynchronous network write. We explore this behav-
ior further by quantifying the benefits of update aggrega-
tion and caching in iSCSI.

We choose eight common operations that read and
update meta-data, namelycreat, link, rename,
chmod, stat, access, write andmkdir. For each
operation, we issue a batch of� consecutive calls of that
operation and measure the network message overhead of
the entire batch. We vary� from 1 to 1024 (e.g., issue
1 mkdir, 2 mkdirs, 4 mkdirs and so on, while starting
with a cold cache prior to each batch). Figure 3 plots the
amortized network message overhead per operation for
varying batch sizes. As shown, the amortized overhead
reduces significantly with increasing batch sizes, which
demonstrates that update aggregation can indeed signif-
icantly reduce the number of network writes. Note that
some of the reduction in overhead can be attributed to
meta-data caching in iSCSI. Since the cache is warm af-
ter the first operation in a batch, subsequent operations do
not yield additional caching benefits—any further reduc-
tion in overhead is solely due to update aggregation. In
general, our experiment demonstrates applications that
exhibit meta-data locality can benefit significantly from
update aggregation.

4.3 Impact of Directory Depth

Our micro-benchmarking experiments gave a prelimi-
nary indication of the sensitivity of the network message
overhead to the depth of the directory where the file op-
eration was performed. In this section, we examine this
sensitivity in detail by systematically varying the direc-
tory depth.

For each operation, we vary the directory depth from
0 to 16 and measure the network message overhead in
NFS and iSCSI for the cold and warm cache. A direc-
tory depth of� implies that the operation is executed in��� 	
�� � � �
�� �� ����
�� i. Figure 4 lists the observed
overhead for three different operations.

In the case of cold cache, iSCSI needs two extra mes-
sages for each increase in directory depth due to the need
to access the directory inode as well as the directory con-
tents. In contrast, NFS v2 and v3 need only one extra
message for each increase in directory depth, since only
one message is needed to access directory contents—the
directory inode lookup is done by the server. As indi-
cated earlier, NFS v4 performs an extra access check on
each level of the directory via theaccesscall. Due to
this extra message, its overhead matches that of iSCSI
and increases in tandem.3 Consequently, as the directory
depth is increased, the iSCSI overhead increases faster
than NFS for the cold cache.

In contrast, a warm cache results in a constant number
of messages independent of directory depth due to meta-
data caching at the client for both NFS and iSCSI. The
observed messages are solely due to the need to update
meta-data at the server.

4.4 Impact of Read and Write Operations

Our experiments thus far have focused on meta-data op-
erations. In this section, we study the efficiency of data
operations in NFS and iSCSI. We consider thereadand
write system calls and measure their network message
overheads in the presence of a cold and a warm cache.

To measure the read overhead, we issue reads of vary-
ing sizes—128 bytes to 64 KB—and measure the result-
ing network message overheads in the two systems. For
the warm cache, we first read the entire file into the cache
and then issue sequential reads of increasing sizes. The
write overhead is measured similarly for varying write
sizes. The cold cache is emulated by emptying the client
and server caches prior to the operation. Writes are how-
ever not measured in warm cache mode—we use macro-
benchmarks to quantify warm cache effects.

Figure 5 plots our results. We make the following ob-
servations from our results. For read operations, iSCSI
requires one or two extra messages over NFS to read

3The extra overhead ofaccessis probably an artifact of the imple-
mentation. It is well-known that the Linux NFS implementation does
not correctly implement theaccesscall due to inadequate caching sup-
port at the client [7]. This idiosyncrasy of Linux is the likely cause of
the extra overhead in NFS v4.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 m

es
sa

ge
s

Directory Depth

Number of messages [mkdir]

iSCSI (cold)
NFSv4 (cold)

NFSv2,3 (cold)
iSCSI (warm)

NFSv2,3,4 (warm)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 m

es
sa

ge
s

Directory Depth

Number of messages [chdir]

iSCSI (cold)
NFSv4 (cold)

NFSv2,3 (cold)
iSCSI (warm)

NFSv4 (warm)
NFSv2,3 (warm)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 m

es
sa

ge
s

Directory Depth

Number of messages [readdir]

iSCSI (cold)
NFSv4 (cold)

NFSv2,3 (cold)
NFSv4 (warm)

iSCSI,NFSv2,3 (warm)

(a)mkdir (b)chdir (c) readdir

Figure 4 : Effect of the directory depth on the network message overhead.

or update uncached file meta-data (e.g., inode blocks).
While NFS incurs a smaller overhead for small cold
reads, the read overhead exceeds that of iSCSI beyond
8KB requests. For NFS v2, this is due to the maximum
data transfer limit of 8KB imposed by the protocol spec-
ification. Multiple data transfers are needed when the
read request size exceeds this limit. Although NFS v3
eliminates this restriction, it appears that the Linux NFS
v3 implementation does not take advantage of this flexi-
bility and uses the same transfer limit as NFS v2. Conse-
quently, the cold read overhead of NFS v3 also increases
beyond that of iSCSI for large reads. In contrast, the
NFS v4 implementation uses larger data transfers and in-
curs fewer messages. In case of the warm cache, since
the file contents are already cached at the client, the in-
curred overhead in NFS is solely due to the consistency
checks performed by the client. The observed overhead
for iSCSI is due to the need to update the access time in
the inode.

Similar observations are true for write requests (see
Figure 5(c)). Initially, the overhead of iSCSI is higher
primarily due to the need to access uncached meta-data
blocks. For NFS, all meta-data lookups take place at the
server and the network messages are dominated by data
transfers. The network message overhead for NFS v2 in-
creases once the write request size exceeds the maximum
data transfer limit; the overhead remains unchanged for
NFS v3 and 4.

4.5 Impact of Sequential and Random I/O

Two key factors impact the network message overheads
of data operations—the size of read and write requests
and the access characteristics of the requests (sequential
or random). The previous section studied the impact of
request sizes on the network message overhead. In this
section, we study the effect of sequential and random ac-
cess patterns on network message overheads.

To measure the impact of reads, we create a 128MB
file. We then empty the cache and read the file sequen-
tially in 4KB chunks. For random reads, we create a
random permutation of the 32K blocks in the file and

read the blocks in that order. We perform this experi-
ment first for NFS v3 and then for iSCSI. Table 4 depicts
the completion times, network message overheads and
bytes transferred in the two systems. As can be seen, for
sequential reads, both NFS and iSCSI yield comparable
performance. For random reads, NFS is slightly worse
(by about 15%). The network message overheads and
the bytes transfered are also comparable for iSCSI and
NFS.

Next, we repeat the above experiment for writes. We
create an empty file and write 4KB data chunks sequen-
tially to a file until the file size grows to 128MB. For
random writes, we generate a random permutation of the
32K blocks in the file and write these blocks to newly
created file in that order. Table 4 depicts our results. Un-
like reads, where NFS and iSCSI are comparable, we find
that iSCSI is significantly faster than NFS for both se-
quential and random writes. The lower completion time
of iSCSI is due to the asynchronous writes in the ext3 file
system. Since NFS version 3 also supports asynchronous
writes, we expected the NFS performance to be similar to
iSCSI. However, it appears that the Linux NFS v3 imple-
mentation can not take full advantage of asynchronous
writes, since it specifies a limit on the number of pend-
ing writes in the cache. Once this limit is exceeded, the
write-back caches degenerates to a write-through cache
and application writes see a pseudo-synchronous behav-
ior. Consequently, the NFS write performance is sig-
nificantly worse than iSCSI. Note also, while the byte
overhead is comparable in the two systems, the number
of messages in iSCSI is significantly smaller than NFS.
This is because iSCSI appears to issue very large write
requests to the server (mean request size is 128KB as op-
posed to 4.7KB in NFS).

4.6 Impact of Network Latency

Our experiments thus far have assumed a lightly loaded
Gigabit Ethernet LAN. The observed round trip times on
our LAN is very small (�1ms). In practice, the latency
between the client and the server can vary from a few
milliseconds to tens of milliseconds depending on the

0

2

4

6

8

10

7 8 9 10 11 12 13 14 15 16

N
um

be
r

of
 M

es
sa

ge
s

Read Size (bytes) (log2 scale)

Read sizes (Cold Cache)

iSCSI
NFSv4
NFSv3
NFSv2

0

2

4

6

8

10

7 8 9 10 11 12 13 14 15 16

N
um

be
r

of
 M

es
sa

ge
s

Read Size (bytes) (log2 scale)

Read sizes (Warm Cache)

iSCSI
NFSv4
NFSv3
NFSv2

0

2

4

6

8

10

7 8 9 10 11 12 13 14 15 16

N
um

be
r

of
 M

es
sa

ge
s

Write Size (bytes) (log2 scale)

Write sizes (Cold Cache)

iSCSI
NFSv4
NFSv3
NFSv2

(a) Cold reads (b) Warm reads (c) Cold Writes

Figure 5 : Network message overheads of read and write operations of varying sizes.

Table 4 : Sequential and Random reads and writes: completion times,number of messages and bytes transferred for
reading and writing a 128MB file.

Performance Messages Bytes
NFS v3 iSCSI NFS v3 iSCSI NFS v3 iSCSI

Sequential reads 35s 35s 33,362 32,790 153MB 148MB
Random reads 64s 55s 32,860 32,827 153MB 148MB
Sequential writes 17s 2s 32,990 1135 151MB 143MB
Random writes 21s 5s 33,015 1150 151MB 143MB

distance between the client and the server. Consequently,
in this section, we vary the network latency between the
two machines and study its impact on performance.

We use the NISTNet package to introduce a latency
between the client and the server. NISTNet introduces
a pre-configured delay for each outgoing and incoming
packet so as to simulate wide-area conditions. We vary
the round-trip network latency from 10ms to 90ms and
study its impact on the sequential and random reads and
writes. The experimental setup is identical to that out-
lined in the previous section. Figure 6 plots the com-
pletion times for reading and writing a 128 MB file for
NFS and iSCSI. As shown in Figure 6(a), the comple-
tion time increases with the network latency for both sys-
tems. However, the increase is greater in NFS than in
iSCSI—the two systems are comparable at low latencies
(� 10ms) and the NFS performance degrades faster than
iSCSI for higher latencies. Even though NFS v3 runs
over TCP, anEtherealtrace reveals an increasing number
of RPC retransmissions at higher latencies. The Linux
NFS client appears to time-out more frequently at higher
latencies and reissues the RPC request, even though the
data is in transit, which in turn dregrades performance.
An implementation of NFS that exploits the error recov-
ery at the TCP layer will not have this drawback.

In case of writes, the iSCSI completion times are
not affected by the network latency due to their asyn-
chronous nature. The NFS performance is impacted by
the pseudo-synchronous nature of writes in the Linux
NFS implementation (see Section 4.5) and increases with
the latency.

5 Macro-benchmarking Experiments

This section compares the overall application level per-
formance for NFS v3 and iSCSI.

5.1 PostMark Results

PostMark is a benchmark that demonstrates system per-
formance for short-lived small files seen typically in In-
ternet applications such as electronic mail, netnews and
web-based commerce. The benchmark creates an initial
pool of random text files of varying size. Once the pool
has been created, the benchmark performs two types of
transactions on the pool: (i) create or delete a file; (ii)
read from or append to a file. The incidence of each
transaction and its subtype are chosen randomly to elim-
inate the effect of caching and read-ahead.

Our experiments use a equal predisposition to each
type of transaction as well as each subtype within a trans-
action. We performed 100,000 transactions on a pool of
files whose size was varied from 1,000 to 25,000 in mul-
tiples of 5.

Table 5 depicts our results. As shown in the table,
iSCSI generally outperforms NFS v3 due to the meta-
data intensive nature of this benchmark. An analysis of
the NFS v3 protocol messages exchanged between the
server and the client shows that 65% of the messages are
meta-data related. Meta-data update aggregation as well
as aggressive meta-data caching in iSCSI enables it to
have a significantly lower message count than NFS.

As the pool of files is increased, we noted that the

0

200

400

600

800

1000

1200

1400

1600

1800

10 20 30 40 50 60 70 80 90

S
ec

on
ds

RTT (msec)

Read Performance : Effect of Latency

NFS [sequential]
NFS [random]

iSCSI [sequential]
iSCSI [random]

0

50

100

150

200

250

10 20 30 40 50 60 70 80 90

S
ec

on
ds

RTT (msec)

Write Performance : Effect of Latency

NFS [sequential]
NFS [random]

iSCSI [sequential]
iSCSI [random]

(a) Reads (b) Writes

Figure 6 : Impact of network latency on read and write performance.

Table 5 : PostMark Results. Completion times and mes-
sage counts are reported for 100,000 operations on 1,000,
5,000 and 25,000 files.

Completion time (s) Messages
Files NFS v3 iSCSI NFS v3 iSCSI
1,000 146 12 371,963 101
5,000 201 35 451,415 276
25,000 516 208 639,128 66,965

benefits of meta-data caching and meta-data update ag-
gregation starts to diminish due to the random nature of
the transaction selection. As can be seen in Table 5,
the number of messages relative to the file pool size
increases faster in iSCSI than that in NFS v3. Conse-
quently, the performance difference between the two de-
creases. However, as a side effect, the benchmark also re-
duces the effectiveness of meta-data caching on the NFS
server, leading to higher server CPU utilization (see Sec-
tion 5.4).

5.2 TPC-C and TPC-H Results

TPC-C is an On-Line Transaction Processing (OLTP)
benchmark that leads to small 4 KB random I/Os. Two-
thirds of the I/Os are reads. We set up TPC-C with 300
warehouses and 30 clients. We use IBM’s DB2 database
for Linux (version 8.1 Enterprise Edition). The met-
ric for evaluating TPC-C performance is the number of
transactions completed per minute (tpmC).

Table 6 shows the TPC-C performance and the net-
work message overhead for NFS and iSCSI. Since these
are results from an unaudited run, we withhold the actual
results and instead report normalized throughput for the
two systems.4 As shown in the table, there is a marginal

4The Transaction Processing Council does not allow unaudited re-
sults to be reported.

Table 6 : TPC-C Results. Reported throughput (tpmC)
is normalized by a factor� equivalent to the throughput
obtained with NFS v3.

Peak Throughput (TpmC) Messages
NFS v3 iSCSI NFS v3 iSCSI

� 1.08�� 517,219 530,745

difference between NFS v3 and iSCSI. This is not sur-
prising since TPC-C is primarily data-intensive and as
shown in earlier experiments, iSCSI and NFS are com-
parable for data-intensive workloads. An analysis of the
message count shows that the vast majority of the NFS
v3 protocol traffic (99%) is either a data read or a data
write. The two systems are comparable for read opera-
tions. Since data writes are 4KB each and less-intensive
than in other benchmarks, NFS is able to benefit from
asynchronous write support and is comparable to iSCSI.

The TPC-H benchmark emulates a decision support
systems that examines large volumes of data, executes
queries with a high degree of complexity, and gives an-
swers to critical business questions. Our TPC-H exper-
iments use a database scale factor of 1 (implying a 1
GB database). The page size and the extent size for
the database were chosen to be 4 KB and 32 KB, re-
spectively. We run the benchmark for iSCSI and NFS
and report the observed throughout and network mes-
sage overheads in Table 7. Again, we report normalized
throughputs since our results are unaudited. The reported
throughput for TPC-H is the number of queries per hour
for a given database size (QphH@1GB in our case).

We find the performance of NFS and iSCSI is compa-
rable for TPC-H. Since the benchmark is dominated by
large read requests—an analysis of the traffic shows that
the vast majority of the messages are data reads—this
result is consistent with prior experiments where iSCSI
and NFS were shown to have comparable performance

Table 7 : TPC-H Results. Reported throughput
(QphH@1GB) is normalized by a factor� equivalent to
the throughput obtained in NFS v3.

Throughput (QphH@1GB) Messages
NFS v3 iSCSI NFS v3 iSCSI

� 1.07�� 261,769 62,686

Table 8 : Completion times for other benchmarks.

Benchmark NFS v3 iSCSI
tar -xzf 60s 5s
ls -lR � /dev/null 12s 6s
kernel compile 222s 193s
rm -rf 40s 22s

for read-intensive workloads.
Workloads dominated by large sequential reads can

also signify the maximum application throughput that be
sustained by a protocol. The experiments indicate no per-
ceptible difference in this particular edge-condition case.

5.3 Other Benchmarks

We also used several simple macro-benchmarks to char-
acterize the performance of iSCSI and NFS. These
benchmarks include extracting the Linux kernel source
tree from a compressed archive (tar xfz), listing the con-
tents (ls -lR), compiling the source tree (make) and fi-
nally removing the entire source tree (rm -rf). The first,
second and fourth benchmarks are met-data intensive and
amenable to meta-data caching as well as meta-data up-
date aggregation. Consequently, in these benchmarks,
iSCSI performs better than NFS v3. The third bench-
mark, which involves compiling the Linux kernel, is
CPU-intensive, and consequently there is parity between
iSCSI and NFS v3. The marginal difference between the
two can be attributed to the impact of the iSCSI proto-
col’s reduced processing length on the single-threaded
compiling process.

5.4 CPU utilization

A key performance attribute of a protocol is its scalabil-
ity with respect to the number of clients that can be sup-
ported by the server. If the network paths or I/O channels
are not the bottleneck, the scalability is determined by the
server CPU utilization for a particular benchmark.

Table 9 depicts the���� percentile of the server CPU
utilization reported every 2 seconds byvmstat for the
various benchmarks. The table shows that, the server uti-
lization for iSCSI is lower than that of NFS. The server
utilization is governed by the processing path and the

Table 9 : Server CPU utilization for various benchmarks.
The ���� percentile of the CPU utilization at the server
is reported for each benchmark.

NFS v3 iSCSI
PostMark 77% 13%
TPC-C 13% 7%
TPC-H 20% 11%

amount of processing for each request. The lower utiliza-
tion of iSCSI can be attributed to the smaller processing
path seen by iSCSI requests. In case of iSCSI, a block
read or write request at the server traverses through the
network layer, the SCSI server layer, and the low-level
block device driver. In case of NFS, an RPC call received
by the server traverses through the network layer, the
NFS server layer, the VFS layer, the local file system, the
block layer, and the low-level block device driver. Our
measurements indicate that the server processing path for
NFS requests is twice that of iSCSI requests. This is
confirmed by the server CPU utilization measurements
for data intensive TPC-C and TPC-H benchmarks. In
these benchmarks, the server CPU utilization in for NFS
is twice that of iSCSI.

The difference is exacerbated for meta-data intensive
workloads. A NFS request that triggers a meta-data
lookup at the server can greatly increase the processing
path—meta-data reads require multiple traversals of the
VFS layer, the file system, the block layer and the block
device driver. The number of traversals depends on the
degree of meta-data caching in the NFS server. The in-
creased processing path explains the large disparity in
the observed CPU utilizations for PostMark. The Post-
Mark benchmark tends to defeat the meta-data caching
on the NFS server because of the random nature of trans-
action selection. This causes the server CPU utilization
to increase significantly since multiple block reads may
be needed to satisfy a single NFS data read.

While the iSCSI protocol demonstrates a better profile
in server CPU utilization statistics, it is worthwhile to in-
vestigate the effect of these two protocols on client CPU
utilization. If the client CPU utilization of one protocol
has a better profile than that of the other protocol, then
the first protocol will be able to scale to a larger number
of servers per client.

Table 10 depicts the���� percentile of the client CPU
utilization reported every 2 seconds byvmstat for the
various benchmarks. For the data-intensive TPC-C and
TPC-H benchmarks, the clients are CPU saturated for
both the NFS and iSCSI protocols and thus there is no
difference in the client CPU utilizations for these macro-
benchmarks. However, for the meta-data intensive Post-
Mark benchmark, the NFS client CPU utilization is an
order of magnitude lower than that of iSCSI. This is not
surprising because the bulk of the meta-data processing

Table 10 : Client CPU utilization for various bench-
marks. The���� percentile of the CPU utilization at the
server is reported for each benchmark.

NFS v3 iSCSI
PostMark 2% 25%
TPC-C 100% 100%
TPC-H 100% 100%

is done at the server in the case of NFS while the reverse
is true in the case of the iSCSI protocol.

6 Discussion of Results

This section summarizes our results and discuss their
implications for IP-networked storage in environments
where storage in not shared across multiple machines.

6.1 Data-intensive applications

Overall, we find that iSCSI and NFS yield comparable
performance for data-intensive applications, with a few
caveats for write-intensive or mixed workloads.

In particular, we find that any application that gener-
ates predominantly read-oriented network traffic will see
comparable performance in iSCSI and NFS v3. Since
NFS v4 does not make significant changes to those por-
tions of the protocol that deal with data transfers, we do
not expect this situation to change in the future. Further-
more, the introduction of hardware protocol acceleration
is likely to improve the data transfer part of both iSCSI
and NFS in comparable ways.

In principle, we expect iSCSI and NFS to yield com-
parable performance for write-intensive workloads as
well. However, due to the idiosyncrasies of the Linux
NFS implementation, we find that iSCSI significantly
outperforms NFS v3 for such workloads. We believe this
is primarily due to the limit on the number of pending
asynchronous writes at the NFS client. We find that this
limit is quickly reached for very write-intensive work-
loads, causing the write-back cache at the NFS client
to degenerate into a write-through cache. The resulting
pseudo-synchronous write behavior causes a substantial
performance degradation (by up to an order of magni-
tude) in NFS. We speculate that an increase in the pend-
ing writes limit and optimizations such as spatial write
aggregation in NFS will eliminate this performance gap.

Although the two protocols yield comparable appli-
cation performance, we find that they result in different
server CPU utilizations. In particular, we find that the
server utilization is twice as high in NFS than in iSCSI.
We attribute this increase primarily due to the increased
processing path in NFS when compared to iSCSI. An
implication of the lower utilization in iSCSI is that the
server is more scalable (i.e., it can service twice as many

clients with the caveat that there is no sharing between
client machines). It is worth noting that NFS appliances
use specialized techniques such as cross-layer optimiza-
tions and hardware acceleration support to reduce server
CPU utilizations by an order of magnitude – the relative
effect of these techniques on NFS and iSCSI servers is a
matter of future research.

6.2 Meta-data intensive applications

NFS and iSCSI show their greatest differences in their
handling of meta-data intensive applications. Overall,
we find that iSCSI outperforms NFS for meta-data in-
tensive workloads—workloads where the network traffic
is dominated by meta-data accesses.

The better performance of iSCSI can be attributed to
two factors. First, NFS requires clients to update meta-
data synchronously to the server. In contrast, iSCSI,
when used in conjunction with modern file systems, up-
dates meta-data asynchronously. An additional bene-
fit of asynchronous meta-data updates is that it enables
update aggregation—multiple meta-data updates to the
same cached cached block are aggregated into a single
network write, yielding significant savings. Such opti-
mizations are not possible in NFS v2 or v3 due to their
synchronous meta-data update requirement.

Second, iSCSI also benefits from aggressive meta-
data caching by the file system. Since iSCSI reads are
in granularity of disk blocks, the file system reads and
caches entire blocks containing meta-data; applications
with meta-data locality benefit from such caching. Al-
though the NFS client can also cache meta-data, NFS
clients need to perform periodic consistency checks with
the server to provide weak consistency guarantees across
client machines that share the same NFS namespace.
Since the concept of sharing does not exist in the SCSI
architectural model, the iSCSI protocol also does not pay
the overhead of such a consistency protocol.

6.3 Applicability to Other File Protocols

An interesting question is the applicability of our results
to other protocols such as NFS v4, DAFS, and SMB.

The SMB protocol is similar to NFS v4 in that both
provide support for strong consistency. Consistency is
ensured in SMB by the use of opportunistic locks or
oplocks which allow clients to have exclusive access over
a file object. The DAFS protocol specification is based
on NFS v4 with additional extensions for hardware-
accelerated performance, locking and failover. These ex-
tensions do not affect the basic protocol exchanges that
we observed in our performance analysis.

NFS v4, DAFS and SMB do not allow a client to
update meta-data asynchronously. NFS v4 and DAFS
allow the use of compound RPCs to aggregate related
meta-data requests and reduce network traffic. This can
improve performance in meta-data intensive benchmarks

such as PostMark. However, it is not possible to specu-
late on the actual performance benefits, since it depends
on the degree of compounding.

6.4 Implications

Extrapolating from our NFS and iSCSI results, it appears
that block- and file-access protocols are comparable on
data-intensive benchmarks and the former outperforms
the latter on the meta-data intensive benchmarks. From
the perspective of performance for IP-networked storage
in an unshared environment, this result favors a block-
access protocol over a file-access protocol. However,
the choice between the two protocols may be governed
by other significant considerations not addressed by this
work such as ease of administration, availability of ma-
ture products, cost, etc.

Observe that the meta-data performance of the NFS
protocol suffers primarily because it was designed for
sharing of files across clients. Thus, when used in an en-
vironment where files are not shared, the protocol pays
the penalty of features designed to enable sharing. There
are two possible ways to address this limitation: (1) De-
sign a file-access protocol for an unshared environments;
and (2) Extend the NFS protocol so that while it provides
sharing of files when desired, it does not pay the penalty
of “sharing” when files are not shared. Since sharing of
files is desirable, we propose enhancements to NFS in
Section 7 that achieve the latter goal.

7 Potential Enhancements for NFS

Our previous experiments identified three factors that
affect NFS performance for meta-data-intensive appli-
cations: (i) consistency check related messages (ii)
synchronous meta-data update messages and (iii) non-
aggregated meta-data updates. This section explores en-
hancements that eliminate these overheads.

The consistency check related messages can be elimi-
nated by using a strongly-consistent read-only name and
attribute cache as proposed in [13]. In such a cache,
meta-data read requests are served out of the local cache.
However, all update requests are forwarded to the server.
On an update of an object, the server invalidates the
caches of all clients that have that object cached.

The meta-data updates can be made asynchronously
in an aggregated fashion by enhancing NFS to supportdi-
rectory delegation. In directory delegation a NFS client
holds a lease on meta-data and can update and read the
cached copy without server interaction. Since NFS v4
only supports file delegation, directory delegation would
be an extension to the NFS v4 protocol specification. Ob-
serve that directory delegation allows a client to asyn-
chronously update meta-data in an aggregated fashion.
This in turn would allow NFS clients to have comparable
performance with respect to iSCSI clients even for meta-

data update intensive benchmarks. Directory delegation
can be implemented using leases and callbacks [4].

The effectiveness of strongly-consistent read-only
meta-data cache as well as directory delegation depends
on the amount of meta-data sharing across client ma-
chines. Hence, we determine the characteristics of meta-
data sharing in NFS by analyzing two real-world NFS
workload traces from Harvard University [2]. We ran-
domly choose one day (09/20/2001) trace from the EECS
traces (which represents a research, software develop-
ment, and course-based workload) and the home02 trace
from the Campus traces (which represents a email and
web workload). Roughly 40,000 file system objects were
accessed for the EECS traces and about 100,000 file sys-
tem objects were visited for the Campus traces.

Figure 7 demonstrates that the read sharing of directo-
ries is much higher than write sharing in the EECS trace.
In Campus trace, we find that although the read-sharing
is higher at smaller time-scales, it is less than the read-
write sharing at larger time-scales. However, in both
the traces, a relatively small percentage of directories are
both read and written by multiple clients. For example, at
time-scale of��� seconds only 4% and 3.5% percentage
of directories are read-write shared in EECS and Campus
traces, respectively. This suggests that cache invalidation
rate in strongly consistent meta-data read cache and con-
tention for leases in directory delegation should not be
significant, and it should be possible to implement both
techniques with low overhead.

We evaluated the utility of strongly-consistent read-
only meta-data caching using simulations. Our simula-
tion results demonstrated that a directory cache size of�
leads to more than��� reduction in meta-data messages.
Furthermore, the number of messages for cache invali-
dation is fairly low. The callback ratio, defined as ratio
of cache-invalidation messages and number of meta-data
messages , is less than� ��� for a directory cache size of� for the EECS and campus traces.

The above preliminary results indicate that imple-
menting a strongly-consistent read-only meta-data cache
and directory delegation is feasible and would enable a
NFS v4 client with these enhancements to have compa-
rable performance with respect to an iSCSI client even
for meta-data intensive benchmarks. A detailed design
of these enhancements and their performance is beyond
the scope of this paper and is the subject of future re-
search.

8 Related Work

Numerous studies have focused on the performance and
cache consistency of network file-access protocols [4, 8,
11, 13]. In particular, the benefits of meta-data caching in
a distributed file system for a decade old workload were
evaluated in [13].

The VISA architecture was notable for using the con-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000 1200

N
or

m
al

iz
ed

 N
um

 o
f D

ire
ct

or
ie

s
A

cc
es

se
d

P
er

 In
te

rv
al

Interval T

Read By One Client
Written By One Client

Read By Multiple Client
Written By Multiple Client

(a) EECS Trace

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000 1200

N
or

m
al

iz
ed

 N
um

 o
f D

ire
ct

or
ie

s
A

cc
es

se
d

P
er

 In
te

rv
al

Interval T

Read By One Client
Written By One Client

Read By Multiple Client
Written By Multiple Client

(b) Campus Trace

Figure 7 : Sharing Characteristics of Directories

cept of SCSI over IP[6]. Around the same time, a parallel
effort from CMU also proposed two innovative architec-
tures for exposing block storage devices over a network
for scalability and performance [3].

Several studies have focused in the performance of the
iSCSI protocol from the perspective of on data path over-
heads and latency[1, 5, 12]. With the exception of [5],
which compares iSCSI to SMB, most of these efforts fo-
cus solely on iSCSI performance. Our focus is different
in that we examine the suitability of block- and file-level
abstractions for designing IP-networked storage. Conse-
quently, we compare iSCSI and NFS along several di-
mensions such as protocol interactions, network latency
and sensitivity to different application workloads. A re-
cent white paper [14] compares a commercial iSCSI tar-
get implementation and NFS using meta-data intensive
benchmarks. While their conclusions are similar to ours
for these workloads, our study is broader in its scope and
more detailed.

A comparison of block- and file-access protocols was
first carried out in the late eighties [10]. This study pre-
dated both NFS and iSCSI and used analytical modeling
to compare the two protocols for DEC’s VAX systems.

Their models correctly predicted higher server CPU uti-
lizations for file access protocols as well as the need for
data and meta-data caching in the client for both proto-
cols. Our experimental study complements and corrobo-
rates these analytical results for modern storage systems.

9 Concluding Remarks

In this paper, we use NFS and iSCSI as specific instanti-
ations of file- and block-access protocols and experimen-
tally compare their performance in environments where
storage is not shared across client machines. Our re-
sults demonstrate that the two are comparable for data-
intensive workloads, while the former outperforms the
latter by a factor of 2 or more for meta-data intensive
workloads. We identify aggressive meta-data caching
and update aggregation allowed by iSCSI to be the pri-
mary reasons for this performance difference. We pro-
pose enhancements to NFS to improve its meta-data per-
formance and present preliminary results that show its
effectiveness. As part of future work, we plan to imple-
ment this enhancement in NFS v4 and study its perfor-
mance for real application workloads.

Acknowledgments

We thank the anonymous reviewers and our shepherd
Greg Ganger for their comments.

References

[1] S Aiken, D. Grunwald, A. Pleszkun, and J. Willeke. A
Performance Analysis of the iSCSI Protocol. InProceed-
ings of the 20th IEEE Symposium on Mass Storage Sys-
tems, San Diego, CA, April 2003.

[2] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. Passive
NFS Tracing of Email and Research Workloads. InPro-
ceedings of USENIX FAST’03, San Francisco, CA, March
2003.

[3] G A. Gibson et. al. A Cost-Effective, High-Bandwidth
Storage Architecture. InProceedings of the 8th Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS-VIII),
San Jose, CA, pages 92–103, Oct 1998.

[4] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-
narayanan, R. Sidebotham, and M. West. Scale and Per-
formance in a Distributed File System.ACM Transactions
on Computer Systems, 6(1):51–81, February 1988.

[5] Y. Lu and D. Du. Performance Study of iSCSI-Based
Storage Subsystems.IEEE Communications Magazine,
August 2003.

[6] R. Van Meter, G. Finn, and S. Hotz. VISA: Netsta-
tion’s Virtual Internet SCSI Adapter. InProceedings of
ASPLOS-VIII, San Jose, CA, pages 71–80, 1998.

[7] T. Myklebust. Status of the Linux NFS Client. Pre-
sentation at Sun Microsystems Connectathon 2002,
http://www.connectathon.org/talks02, 2002.

[8] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith,
D. Lebel, and D. Hitz. NFS Version 3 Design and Imple-
mentation. InProceedings of the Summer 1994 USENIX
Conference, June 1994.

[9] P. Radkov, Y. Li, P. Goyal, P. Sarkar, and P. Shenoy.
An Experimental Comparison of File- and Block-Access
Protocols for IP-Networked Storage. Technical Report
TR03-39, Department of Compute Science, University of
Massachusetts, Amherst, September 2003.

[10] K K. Ramakrishnan and J Emer. Performance Analysis
of Mass Storage Service Alternatives for Distributed Sys-
tems. IEEE Trans. on Software Engineering, 15(2):120–
134, February 1989.

[11] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and Implementation of the Sun Network
Filesystem. InProceedings of the Summer 1985 USENIX
Conference, pages 119–130, June 1985.

[12] P Sarkar and K Voruganti. IP Storage: The Challenge
Ahead. InProceedings of the 19th IEEE Symposium on
Mass Storage Systems, College Park, MD, April 2002.

[13] K. Shirriff and J. Ousterhout. A Trace-Driven Analysis
of Name and Attribute Caching in a Distributed System.
In Proceedings of the Winter 1992 USENIX Conference,
pages 315–331, January 1992.

[14] Performance Comparison of iSCSI and NFS IP Storage
Protocols. Technical report, TechnoMages, Inc.

