1

With the advent of high-speed LAN technologies suc
as Gigabit Ethernet, IP-networked storage has become
increasingly common in client-server environments. Th

A Performance Comparison of NFS and iSCSI

for IP-Networked Storage

*

Peter Radkov, Li Yith, Pawan Goygl, Prasenijit Sarkgand Prashant Shenoy

Dept. of Computer Science tStorage Systems Research fComputer Science Division

University of Massachusetts
Amherst MA 01003

Abstract

IP-networked storage protocols such as NFS and
iISCSI have become increasingly common in to-
day’s LAN environments. In this paper, we exper-
imentally compare NFS and iSCSI performance
for environments with no data sharing across ma-
chines. Our micro- and macro-benchmarking
results on the Linux platform show that iSCSI
and NFS are comparable for data-intensive work-
loads, while the former outperforms latter by a
factor of two or more for meta-data intensive
workloads. We identify aggressive meta-data
caching and aggregation of meta-data updates in
iISCSI to be the primary reasons for this perfor-
mance difference and propose enhancements to
NFS to overcome these limitations.

Introduction

IBM Almaden Research Center
San Jose CA 95120

ivasity of California
Berkeley CA 94720

the remote disk no differently than its local disks—it runs
a local file system that reads and writes data blocks to the
remote disk. Rather than accessing blocks from a local
disk, the I/O operations are carried out over a network
using a block access protocol (see Figurel(b)). In case
of iISCSI, remote blocks are accessed by encapsulating
SCSI commands into TCP/IP packets [12].

The two techniques for accessing remote data employ
fundamentally different abstractions. Whereas a network
file system accesses remote data at the granularity of
files, SAN protocols access remote data at the granu-
larity of disk blocks. We refer to these techniques as
file-accesandblock-accesgrotocols, respectively. Ob-
serve that, in the former approach, the file system resides
at the server, whereas in the latter approach it resides
at the client (see Figure 1). Consequently, the network
I/0 consists of file operations (file and meta-data reads
and writes) for file-access protocols and block operations
(block reads and writes) for block-access protocols.

Given these differences, it is natpriori clear which

hprotocol type is better suited for IP-networked storage.

In this paper, we take a first step towards addressing this

equestion. We use NFS and iSCSI as specific instantia-

tions of file- and block-access protocols and experimen-

availability of 10 Gb/s Ethernet in the near future is likely . o
) .tally compare their performance. Our study specifically
to further accelerate this trend. IP-networked storage is ; . . .
) ..assumes an environment where a single client machine
broadly defined to be any storage technology that permits ; .
. accesses a remote data store (i.e., there is no data shar-
access to remote data over IP. The traditional method for . ;
: . . ing across machines), and we study the impact of the
networking storage over IP is to simply employ a net- : .
. ' abstraction-level and caching on the performance of the
work file system such as NFS [11]. In this approach, the
. ; WO protocols.
server makes a subset of its local namespace available 10

clients; clients access meta-data and files on the server IIUSrIrTi% racl)-Ltl)glrJ])c(:-hbrﬁZ?I? frt]?;aegeszztrzrt-?otﬁ?tg?(:h\ge,\lcgge'
using a RPC-based protocol (see Figure 1(a)). y . 9 ;
L protocols—NFS versions 2, 3 and 4, and iSCSI. We also
In contrast to this widely used approach, an alter-

nate approach for accessing remote data is to use an |pieasure application performance using a suite of data-

based storage area networking (SAN) protocol such aiﬁtensive and meta-data intensive benchmarks such as
) 9 . 9 pro ﬁostMark, TPC-C and TPC-H on the two systems. We
iISCSI [12]. In this approach, a remote disk exports a ; . : .
; !) . choose Linux as our experimental platform, since it is
portion of its storage space to a client. The client handle%urrently the only open-source platform to implement all

This research was supported in part by NSF grants CCR-988403 three versions of NFS as well as the iSCSI protocol. The
EIA-0080119 and a gift from IBM Corporation. choice of Linux presents some challenges, since there are

client client
block

<~ reads/ 7}
blloék Block server | block access writes 5
B protocol 4_ .‘_5
- N8

file ©

110
>

(a) File-access Protocol (NFS) (b) Block-access ProtaSa $l)

File server < file reads/
block file access writes
110
protocol /_meta-data
|| reads/writes
>

system client
WHN

/ T\
applications

Network file

55

Figure 1 : An overview of file- and block-access protocols.

known performance issues with the Linux NFS imple- writes to improve performance; and (vi) adds support for
mentation, especially for asynchronous writes and servef CP as a transport protocol in addition to UDP.
CPU overhead. We perform detailed analysis to separate Tha |atest version of NES—NFES version 4—aims to
out the protocol behavior from the idiosyncrasies of thejrove the locking and performance for narrow data
Linux implementations of NFS and iSCSI that we en-gnaring applications. Some of the key features of NFS
counter during our experiments. , _version 4 are as follows: (i) it integrates the suite of pro-
Broadly, our results show that, for environments in o5 (nfs, mountd, nlm, nsm) into one single protocol
which storage is not shared across machines, iISCSI and; gase of access across firewalls; (ii) it supports com-
NFS are comparable for data-intensive workloads, Wh'lepound operations to coalesce multiple operations into
the former outperforms the latter by a factor of two for 5o single message: (iii) it istatefulwhen compared
meta-data inten_sive workloads. _We identify aggressivg, the previous incarnations of NFS — NFS v4 clients
meta-data caching and aggregation of meta-data updatgge OPEN and CLOSE calls for stateful interaction with
in iISCSI as the primary reasons for this performance difyhg server: (iv) it introduces the concept of delegation to

ference. We propose enhancements to NFS to extraghqy clients to aggressively cache file data; and (v) it
these benefits of meta-data caching and update aggreggisndates strong security using the GSS API
tion. '

The rest of this paper is structured as follows. Section
2 provides a brief overview of NFS and iSCSI. Sections
3, 4, and 5 present our experimental comparison of NF
and iSCSI. Implications of our results are discussed i
Section 6. Section 7 discusses our observed limitations
of NFS and proposes an enhancement. Section 8 di¢SCSI is a block-level protocol that encapsulates SCSI

cusses related work, and we present our conclusions ifommands into TCP/IP packets, and thereby leverages
Section 9. the investment in existing IP networks.

.2 iISCSI Overview

SCSl is a popular block transport command protocol

2 Background: NFS and iSCSI thatis used for high bandwidth transport of data between
hosts and storage systems (e.g., disk, tape). Tradition-

In this section, we present a brief overview of NFS and@lly; SCSI commands have been transported over dedi-
iSCSI and discuss their differences. cated networks such as SCSI buses and Fiber Channel.

With the emergence of Gigabit and 10 Gb/s Ethernet

) LANS, it is now feasible to transport SCSI commands

2.1 NFS Overview over commodity networks and yet provide high through-

There are three generations of the NFS protocol. In NFUt to bandwidth-intensive storage applications. To do
version 2 (or simply “NFS v27), the client and the server SO iISCSI connects a SCSI initiator port on a host to a
communicate via remote procedure calls (RPCs) ovePCS! target port on a storage subsystem. For the sake
UDP. A key design feature of NFS version 2 is its state-of uniformity W|tr_1 NFS, we will refer to the initiator and
less nature—the NFS server does not maintain any staff® target as an iSCSl client and server, respectively.
about its clients, and consequently, no state information Some of the salient features of iSCSI are as follows:
is lost if the server crashes. (i) it uses the notion of a session between the client

The next version of NFS—NFS version 3—provides and the server to identify a communication stream be-
the following enhancements: (i) support for a variabletween the two; (ii) it allows multiple connections to
length file handle of up to 64 bytes, instead of 32 bytebe multiplexed into a session; (iii) it supports advanced
files handles; (ii) eliminates the 8 KB limit on the maxi- data integrity, authentication protocols as well as encryp
mum data transfer size; (iii) support for 64 bit offsets for tion (IPSEC)—these features are negotiated at session-
file operations, up from 32 bits; (iv) reduces the numberstartup time; and (iv) it supports advanced error recovery
of fetch attribute calls by returning the file attributes on using explicit retransmission requests, markers and con-
any call that modifies them; (v) supports asynchronousection allegiance switching [12].

2.3 Differences Between NFS and iSCSI 3 Setup and Methodology

. . , This section describes the storage testbed used for our
NFS and iSCSI provide fundamentally different data gy periments and then our experimental methodology.
sharing semantics. NFS is inherently suitable for data

sharing, since it enable files to be shared among multi-
ple client machines. In contrast, a block protocol such3-1 System Setup
as iSCSI supports a single client for each volume ony

the block C v, iSCSI it i he storage testbed used in our experiments consists of
ne block server. Lonsequently, 1551 PErMILS applicay gqryer and a client connected over an isolated Gigabit
tions running on a single client machine to share remot

data, but it is not directly suitable for sharing dataoss Ethernet LAN (see Figure 2). Our server is a dual pro-

hi It bile. h ¢ lov iSCSI i cessor machine with two 933 MHz Pentium-IIl proces-
machines. 1t 1S possibie, however, 1o empioy | Nsors, 256 KB L1 cache, 1 GB of main memory and an In-

sh_ared .m“.'“'c"e”.t environments by deS|gn|ng an approe| 8o540EM Gigabit Ethernet card. The server contains
priate distributed file system that runs on multiple chentsan Adaptec ServeRAID adapter card that is connected to
and accesses data from block server. a Dell PowerVault disk pack with fourteen SCSI disks;
The implications of caching are also different in the each disk is a 10,000 RPM Ultra-160 SCSI drive with
two scenarios. In NFS, the file system is located at thel8 GB storage capacity. For the purpose of our experi-
server and so is the file system cache (hits in this cachgents, we configure the storage subsystem as two iden-
incur a network hop). NFS clients also employ a cachdical RAID-5 arrays, each in a 4+p configuration (four
that can hold both data and meta-data. To ensure corflata disks plus a parity disk). One array is used for
sistency across clients, NFS v2 and v3 require that clienour NFS experiments and the other for the iSCSI exper-
perform consistency checks with the server on cacheéments. The clientis a 1 GHz Pentium-lll machine with
data and meta-data. The validity of cached data at th@56KB L1 cache, 512 MB main memory, and an Intel
client is implementation-dependent—in Linux, cached82540EM Gigabit Ethernet card.
meta-data is treated as potentially stale after 3 seconds Both machines run RedHat Linux 9. We use version
and cached data after 30 seconds. Thus, meta-data a@dt.20 of the Linux kernel on the client for all our exper-
data reads may trigger a message exchange (i.e., a coiments. For the server, we use version 2.4.20 as the de-
sistency check) with the server even in the event of dault kernel, except for the iSCSI server which requires
cache hit. NFS v4 can avoid this message exchange fdternel version 2.4.2 and the NFS version 4 server which
data reads if the server supports file delegation. From theequires 2.4.18. We use the default Linux implementa-
perspective of writes, both data and meta-data writes iion of NFS versions 2 and 3 for our experiments. For
NFS v2 are synchronous. NFS v3 and v4 supports asynNFS version 4, which is yet to be fully supported in
chronous data writes, but meta-data updates continue teanilla Linux, we use the University of Michigan imple-
be synchronous. Thus, depending on the version, NF8entation (release 2 for Linux 2.4).
has different degrees of write-through caching. For iSCSI, we employ the open-source SourceForge
Linux iSCSI implementation as the client (version
3.3.0.1) and a commercial implementation as the iSCSI
&erver. While we found several high-quality open-source
¥SCSI client implementations, we were unable to find a
ble open-source iSCSI server implementation that was
patible with our hardware setup; consequently, we
se a commercial server implementation.

The default file system used in our experiments is
xt3 The file system resides at the client for iISCSI and at
he server for NFS (see Figure 2). We use TCP as the de-
fault transport protocol for both NFS and iSCSI, except
for NFS v2 where UDP is the transport protocol.

In iISCSI, the caching policy is governed by the file
system. Since the file system cache is located at th
client, both data and meta-data reads benefit from an

file systems. In modern file systems, meta-data update(ls0
are also asynchronous, since such systems use log-bas
journaling for faster recovery. In the ext3 file system, for
instance, meta-data is written asynchronously at commi

points. The asynchrony and frequency of these commif
points is a trade-off between recovery and performanc
(ext3 uses a commit interval of 5 seconds). Thus, whe
used in conjunction with ext3, iSCSI supports a fully
write-back cache for data and meta-data updates.

Observe that the benefits of asynchronous meta—dat?éf2 Experimental Methodology

update in iISCSI come at the cost of lower reliability of We experimentally compare NFS versions 2, 3 and 4
data and meta-data persistence than in NFS. Due to symvith iSCSI using a combination of micro- and macro-
chronous meta-data updates in NFS, both data and methenchmarks. The objective of our micro-benchmarking
data updates persist across client failure. However, irexperiments is to measure the network message overhead
iISCSI, meta-data updates as well as related data may e various file and directory operations in the two proto-
lost in case client fails prior to flushing the journal and cols, while our macro-benchmarks experimentally mea-
data blocks to the iISCSI server. sure overall application performance.

server client server client

2 0
igabit NP | T % igabit =~ |2
gigal . _— iscsi gigabi ext =2

o el =
© &
disk disk
(a) NFS setup (b) iISCSI setup

Figure 2 : Experimental setup. The figures depict the setup used faBS and iISCSI experiments.

Our micro-benchmarks measure the network message Table 1- Fil ddi lated I
overhead (number of network messages) for a variety of__120'e 1: File and directory-related system calls.
system calls that perform file and directory operations| Directory operations __ File operations
We first measure the network message overhead assu nD!recmry creation (mkdir) File create (creaf)
| ' g Directory change (chdir) File open (open)
ing a cold cache at the client and the server and then re-Rread directory contents (readdif) Hard link to a file (link)

peat the experiment for a warm cache. By using a cold Directory delete (rmdir) Truncate afile (truncate)

and warm cache, our experiments capture the worst andSymbolic link creation (symlink)| Change permissions (chmod)
h ively. f h K Symbolic link read (readlink) Change ownership (chown)
the average.case, respectively, for the networ messageSymbolic link delete (unlink) Query file permissions (access)
overhead. Since the network message overhead depends Query file attributes (stat)

on the directory depth (path length), we also measure Alter file access time (utime)

these overheads for varying directory depths. In case

of file reads and writes, the network message overhead.1 Overhead of System Calls

is dependent on (i) the 1/O size, and (ii) the nature of i))

the workload (i.e., random or sequential). ConsequentlyOur first experiment determines network message over-
we measure the network message overhead for varyingeads for common file and directory operations at

/0 sizes as well as sequential and random requests. WBe granularity of system calls. We consider sixteen
also study the impact of the network latency between th&ommonly-used system calls shown in Table 1 and mea-
client and the server on the two systems. sure their network message overheads usingthereal

We also measure application performance using seyPacket monitor. Note that this I_ist does not i_nclude the
eral popular benchmarks: PostMark, TPC-C and TPC-Hread andwrite system calls, which are examined sepa-
PostMark is a file system benchmark that is meta-data inf&t€ly in Section 4.4. _ _
tensive due its operation on a large number of small files. For €ach system call, we first measure its network
The TPC-C and TPC-H database benchmarks are datf€ssage overhead assuming a cold cache and repeat the

intensive and represent online transaction processing arfkperiment for a warm cache. We emulate a cold cache
decision support application profiles. by unmounting and remounting the file system at the
We use a variety of tools to understand system behav(_:lient and restarting the NFS server or the iSCSI server;
this is done prior to each invocation of a system call. The

ior for our experiments. We udetherealto monitor net- .) .
work packets, théinux Trace toolkiendvmstatto mea- ~ Warm cache is emulated by invoking the system call on a
cold cache and then repeating the system call with sim-

sure protocol processing times, am@statto obtain nfs . ; :
é|ar (though not identical) parameters. For instance, to

to measure iSCSI network message overheads. Finall nderstand warm cache behavior, we create two directo-
we use logging in the VFS layer to trace the generatio €S :cnl th? sahme parenc}_dlrectory u_sml‘gd| r, We open
of network traffic for NFS. While we use these tools to two files in the same directory usirapen, or we per-

obtain a detailed understanding of system behavior, relorm two differentchmod operation on a file. In each
iougase, the network message overhead of the second invo-

benchmarks) are without the various monitoring tools (tocauon is assumed to be the overhead in the presence of a
prevent the overhead of these tools from influencing perWarm ca(_:hé. _
formance results). The directory structure can impact the network mes-

sage overhead for a given operation. Consequently, we
eport overheads for a directory depth of zero and a direc-
ory depth of three. Section 4.3 reports additional results
obtained by systematically varying the directory depth

from O to 16.

The next two sections provide a summary of our key
experimental results. A more detailed presentation of th
results can be found in [9].

4 Mlcro-benchmarklng Experlments 1Depending on the exact cache contents, the warm cache hetwor

message overhead can be different for different caches. avégutly

This section compares the performance of various fileshoose the system call parameters so as to emulate a “rédsbna
and directory operations, focusing on protocol messag&®™ cache. Moreover, we deliberately choose slightlyedifit pa-
. o . rameters across system call invocations; identical irvaes will re-

counts as well as their sensitivity to file system paramexzyt in a hot cache (as opposed to a warm cache) and resulton ze

ters. network message overhead for many operations.

the absence of meta-data or data locality, however, read-
ing entire disk blocks may hurt performance.
While the message size can be an important contrib-

Table 2: Network message overheads for a cold cache

Directory depth 0 Directory depth 3 utor to the network message overhead analysis of the
— V22 V23 \T 'S(;S' V52 V53 \{g 'Slcgs' two protocols, our observations in the macro-benchmark
chdir T 113 > S 5 analysis indicated thaf[the numbgr of messages ex-
readdir | 2 5 1 4 6 5 5 10 12 changed was the dominant factor in the network mes-
symink | 3 | 2 | 4 6 6 | 5 [10] 12 sage overhead. Consequently, we focus on the number
feéll_dlll(”k g 5 i g g g 190 1(1) of messages exchanged as the key factor in network mes-
uniin H H
i > 7 - =170 7 sage overhead in the rest of the analysis.
creat 3 3 10 7 6 6 16 13
open 2 2 7 3 5 5 13 9 .
Tk a7 5 0t 9 16 o Table 3: Network message overheads for a warm cache.
rename | 4 3 7 6 10 | 10 | 16 12 _ _
trunc 3 3] 5 5 5 14 12 Directory depth 0 Directory depth 3
chown | 3 | 3 | 5 6 6 [6 | 11| 11 mkdir 4
access | 2 | 2 | 5 3 5 [5 | 11 9 chdir
stat 3 3] 5 3 6 | 6 | 11| 9 readdir
utime 2 2 | 4 6 51 5 10| 12 symlink
readlink
unlink
. rmdir
Table 2 depicts the number of messages exchang\.dOpen

between the client and server for NFS versions 2, 3, 4 creat
and iSCSI assuming a cold cache. open
We make three important observations from the table] rename
First, on an average, iSCSI incurs a higher network mest ”ﬁ”cd
sage overhead than NFS. This is because a single me ghgnven
sage is sufficient to invoke a file system operation on & access
path name in case of NFS. In contrast, the path name stat
must be completely resolved in case of iISCSI before the_utime
operation can proceed; this results in additional message
exchanges. Second, the network message overhead in-

creases as we increase the directory depth. For NFS, X
this is due to the additional access checks on the patH2etween the client and the server for warm cache oper-
name. In case of ISCSI, the file system fetches the di&tions. Whereas iSCSI incurred a higher network mes-

rectory inode and the directory contents at each level in29€ overhead thanbll\IFS iln the presen(l:(e of a cold cache,
the path name. Since directories and their inodes may b% |n<c:jurhs a comparfﬁ € or lower rfletwor mesiage ovEr-
resident on different disk blocks, this triggers additiona N€ad than NFS in the presence of a warm cache. Further,

block reads. Third, NFS version 4 has a higher networkh€ network message overhead is identical for directory
: ' Iq&apths of zero and three for iISCSI, whereas it increases

ith directory depth for NFS. Last, both iISCSI and NFS

deenefit from a warm cache and the overheads for each op-
eration are smaller than those for a cold cache. The bet-
ter performance of iISCSI can be attributed to aggressive
eta-data caching performed by the file system; since

IV TRV INIFNFN P ENER EEN P IR PP PN Y
| N | | No| M| 0ol] cof Mol No| M| o Mof | 2| o
| N | R R B M| & o] oof M| M| o | of of b
| N | | M| M| Mo o Mol M| M| M| o mof mof of b
INES FNENENEE N ENFN R ENEE PR FRITR ENIY
s o & oo o o B | g B B ol A w|w

| 01| w| 0| o] | o o o of W w| Lo A wf M| w
N O o M| M| M| M| o Mof M| M| M| Mo mof hof of N

Table 3 depicts the number of messages exchanged

head in NFS version 4 is due to access checks perform
by the client via theaccesRPC call?

We make one additional observation that is not di-
rectly reflected in Table 2. The average message size iFﬂ , . i :
iSCSI can be higher than that of NFS. Since iSCSI is 4N€ file system is resident at the client, many requests
block access protocol, the granularity of reads and write$2n Pe serviced directly from the client cache. This is
in ISCSI is a disk block, whereas RPCs allow NFS totrue even for long path names, since all dlre_ctorles in
read or write smaller chunks of data. While reading en-N€ Path may be cached from a prior operation. NFS

tire blocks may seem wasteful, a side-effect of this policy!S Unable to extract these benefits despite using a client-
side cache, since NFS v2 and v3 need to perform consis-

is that iISCSI benefits from aggressive caching. For in- : ; ;
stance, reading an entire disk block of inodes enable ag€NCcy checks on cached entries, which triggers message

plications with meta-data locality to benefit in iISCSI. In €Xchanges with the server. Further, meta-data update op-
erations are necessarily synchronous in NFS, while they
2TheaccessRPC call was first introduced in NFS V3. Our Ethereal can be asynchronous in iSCSI. This asynchronous nature

logs did not reveal its use in the Linux NFS v3 implementatiotier R ; _
than for root access checks. However, the NFS v4 client tisesan- enables appllcatlons to uPdate a dlrty cache block mul

sively to perform additional access checks on directoriesthereby tiple times prior to a flush, thereby amortizing multiple
incurs a higher network message overhead. meta-data updates into a single network block write.

iSCs! Batching Effects 4.3 Impact of Directory Depth

! L ' ' create —— Our micro-benchmarking experiments gave a prelimi-
VAN renamk nary indication of the sensitivity of the network message
\\ chmod = overhead to the depth of the directory where the file op-
855 . access --o--] eration was performed. In this section, we examine this
% AR) . | sensitivity in detail by systematically varying the direc-
= \ e tory depth.
o 3¢ v - i For each operation, we vary the directory depth from
£ [\ e 0 to 16 and measure the network message overhead in
228 N\ \ 1 NFS and iSCSI for the cold and warm cache. A direc-
al g \\ | tory depth ofi implies that the operation is executed in
S . mnt_point : /dirl/.../diri. Figure 4 lists the observed
0 M — overhead for three different operations.
0 2 4 6 8 10 In the case of cold cache, iISCSI needs two extra mes-

Number of Operations (log2 scale) sages for each increase in directory depth due to the need

. i . o0 access the directory inode as well as the directory con-
Figure 3 : Benefit of meta-data update aggregation an

hing in iSCSI. The fi h h tized net ents. In contrast, NFS v2 and v3 need only one extra
caching In | - The figure shows the amortized ne ‘message for each increase in directory depth, since only

work message ove_rhgad per operation fo_r varying batc%ne message is needed to access directory contents—the
sizes. The batch size is shown on a logarithmic scale. directory inode lookup is done by the server. As indi-

cated earlier, NFS v4 performs an extra access check on
] each level of the directory via theccesscall. Due to
4.2 Impact of Meta-data Caching and Up- this extra message, its overhead matches that of iSCSI
date Aggregation and increases in tandehConsequently, as the directory
depth is increased, the iSCSI overhead increases faster
than NFS for the cold cache.
Our micro-benchmark experiments revealed two im- |ncontrast, a warm cache results in a constant number
portant characteristics of modern local file systems —of messages independent of directory depth due to meta-
aggressive meta-data caching, which benefits meta-datta caching at the client for both NFS and iSCSI. The

reads, and update aggregation, which benefits meta-dagbserved messages are solely due to the need to update
writes. Recall that, update aggregation enables multipleneta-data at the server.

writes to the same dirty block to be “batched” into a sin-
gle asynchronous network write. We explore this behav-4 4
ior further by quantifying the benefits of update aggrega-
tion and caching in iISCSI. Our experiments thus far have focused on meta-data op-
,) erations. In this section, we study the efficiency of data
We choose eight common operations that read an@perations in NFS and iSCSI. We consider tbad and
update meta-data, namelyr eat, |ink, rename, yite system calls and measure their network message
chnod, st at, access, wr i t e andnkdi r. Foreach oyerheads in the presence of a cold and a warm cache.
operation, we issue a batch ¥fconsecutive calls of that To measure the read overhead, we issue reads of vary-
operation and measure the network message overhead mb sizes—128 bytes to 64 KB—and measure the result-
the entire batch. We vary¥ from 1 to 1024 (e.g., issue jng network message overheads in the two systems. For
1 mkdir, 2 mkdirs, 4 mkdirs and so on, while starting the warm cache, we first read the entire file into the cache
with a cold cache prior to each batch). Figure 3 plots theyng then issue sequential reads of increasing sizes. The
amortized network message overhead per operation fqyite overhead is measured similarly for varying write
varying batch sizes. As shown, the amortized overheadjzes. The cold cache is emulated by emptying the client
reduces significantly with increasing batch sizes, whichynd server caches prior to the operation. Writes are how-

demonstrates that update aggregation can indeed signifyer not measured in warm cache mode—we use macro-
icantly reduce the number of network writes. Note thatpenchmarks to quantify warm cache effects.

some of the reduction in overhead can be attributed to Figyre 5 plots our results. We make the following ob-
meta-data caching in iSCSI. Since the cache is warm afseryations from our results. For read operations, iSCSI

terth_e firstopgrationin a.batch, su_bsequentoperations %quires one or two extra messages over NFS to read
not yield additional caching benefits—any further reduc-
tion in overhead is solely due to update aggregation. In *The extra overhead afccesss probably an artifact of the imple-
general, our experiment demonstrates applications thdgentation. Itis well-known that the Linux NFS implementatidoes
o . Lo not correctly implement thaccesscall due to inadequate caching sup-
exhibit meta-data locality can benefit significantly from port at the client [7]. This idiosyncrasy of Linux is the litecause of

update aggregation. the extra overhead in NFS v4.

Impact of Read and Write Operations

Number of messages [mkdir] Number of messages [chdir] Number of messages [readdir]

"iscsI (cold) —— "iscs| (cold) ——

" isCsi (colﬂ) — j
o e o i s
L iSCSi(warm) a i L {
35 NFSv4 (warm) ----- 35
NFSv2,3 (warm) --o--

NFSv4 (warm) &
iSCSI,NFSv2,3 (warm) ---#--

Number of messages
Number of messages
Number of messages

! ! ! ! ! ! ! 2 £ g g 2 £ 2 ; " " " ! " !
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Directory Depth Directory Depth Directory Depth

(@)nkdir (b)chdir (c)readdir

Figure 4 : Effect of the directory depth on the network message owthe

or update uncached file meta-data (e.g., inode blocksyead the blocks in that order. We perform this experi-
While NFS incurs a smaller overhead for small cold ment first for NFS v3 and then for iSCSI. Table 4 depicts
reads, the read overhead exceeds that of iISCSI beyortle completion times, network message overheads and
8KB requests. For NFS v2, this is due to the maximumbytes transferred in the two systems. As can be seen, for
data transfer limit of 8KB imposed by the protocol spec-sequential reads, both NFS and iSCSI yield comparable
ification. Multiple data transfers are needed when theperformance. For random reads, NFS is slightly worse
read request size exceeds this limit. Although NFS v3(by about 15%). The network message overheads and
eliminates this restriction, it appears that the Linux NFSthe bytes transfered are also comparable for iISCSI and
v3 implementation does not take advantage of this flexiNFS.
bility and uses the same transfer limit as NFS v2. Conse- Next, we repeat the above experiment for writes. We
quently, the cold read overhead of NFS v3 also increasesreate an empty file and write 4KB data chunks sequen-
beyond that of iSCSI for large reads. In contrast, thetially to a file until the file size grows to 128MB. For
NFS v4 implementation uses larger data transfers and inrandom writes, we generate a random permutation of the
curs fewer messages. In case of the warm cache, sin@2K blocks in the file and write these blocks to newly
the file contents are already cached at the client, the inereated file in that order. Table 4 depicts our results. Un-
curred overhead in NFS is solely due to the consistencyike reads, where NFS and iSCSI are comparable, we find
checks performed by the client. The observed overheathat iSCSI is significantly faster than NFS for both se-
for iISCSI is due to the need to update the access time iguential and random writes. The lower completion time
the inode. of ISCSl is due to the asynchronous writes in the ext3 file
Similar observations are true for write requests (seesystem. Since NFS version 3 also supports asynchronous
Figure 5(c)). Initially, the overhead of iISCSI is higher writes, we expected the NFS performance to be similar to
primarily due to the need to access uncached meta-dat8CSI. However, it appears that the Linux NFS v3 imple-
blocks. For NFS, all meta-data lookups take place at thenentation can not take full advantage of asynchronous
server and the network messages are dominated by dataites, since it specifies a limit on the number of pend-
transfers. The network message overhead for NFS v2 ining writes in the cache. Once this limit is exceeded, the
creases once the write request size exceeds the maximunnrite-back caches degenerates to a write-through cache
data transfer limit; the overhead remains unchanged foand application writes see a pseudo-synchronous behav-
NFS v3 and 4. ior. Consequently, the NFS write performance is sig-
nificantly worse than iSCSI. Note also, while the byte
overhead is comparable in the two systems, the number
of messages in iSCSI is significantly smaller than NFS.

Two key factors impact the network message overhead$his is because iSCSI appears to issue very large write

of data operations—the size of read and write request&€duests to the server (mean request size is 128KB as op-

and the access characteristics of the requests (sequent@sed to 4.7KB in NFS).

or random). The previous section studied the impact of

request sizes on the network message overhead. In thjsg Impact of Network Latency

section, we study the effect of sequential and random ac-

cess patterns on network message overheads. Our experiments thus far have assumed a lightly loaded
To measure the impact of reads, we create a 128MBsigabit Ethernet LAN. The observed round trip times on

file. We then empty the cache and read the file sequemur LAN is very small K1ms). In practice, the latency

tially in 4KB chunks. For random reads, we create abetween the client and the server can vary from a few

random permutation of the 32K blocks in the file and milliseconds to tens of milliseconds depending on the

4.5 Impact of Sequential and Random I/O

Number of Messages

10

Read sizes (Cold Cache)

Number of Messages

,,,,,,,,,,,,,,,,,

9 10 11 12 13 14 15 16

Read sizes (Warm Cache)

" isCsl ——

NFSv4
NFSv3

NFSv2 &

x

7 8

9

10 11

12 13 14

15 16

Write sizes (Cold Cache)

iSCSI ——
NFSV4 ---oxc---
NFSV3 --x
NFSv2 @

Number of Messages

7 8

9

10 11 12 13 14 15 16

Write Size (bytes) (log2 scale)

(c) Cold Writes

Read Size (bytes) (log2 scale)

(b) Warm reads

Read Size (bytes) (log2 scale)

(a) Cold reads
Figure 5 : Network message overheads of read and write operatiorespiing sizes.

Table 4: Sequential and Random reads and writes: completion timasber of messages and bytes transferred for
reading and writing a 128MB file.

Performance Messages Bytes |
NFS V3] iSCSI| NFSv3] iSCSI | NFSv3] iSCSI |
Sequential reads| 35s 35s 33,362 | 32,790 | 153MB | 148MB
Random reads 64s 55s 32,860 | 32,827 | 153MB | 148MB ‘
Sequential writeg 17s 2s 32,990 | 1135 | 151MB | 143MB
Random writes 21s 5s 33,015 | 1150 | 151MB | 143MB ‘

distance between the client and the server. Consequently, Macro-benchmarking Experiments

in this section, we vary the network latency between the

two machines and study its impact on performance. This section compares the overall application level per-
We use the NISTNet package to introduce a latencyformance for NFS v3 and iSCSI.

between the client and the server. NISTNet introduces

a pre-configured delay for each outgoing and incomings 1 postMark Results

packet so as to simulate wide-area conditions. We vary

the round-trip network latency from 10ms to 90ms andPostMark is a benchmark that demonstrates system per-

study its impact on the sequential and random reads anfdrmance for short-lived small files seen typically in In-

writes. The experimental setup is identical to that out-ternet applications such as electronic mail, netnews and

lined in the previous section. Figure 6 plots the com-web-based commerce. The benchmark creates an initial

pletion times for reading and writing a 128 MB file for pool of random text files of varying size. Once the pool

NFS and iSCSI. As shown in Figure 6(a), the comple-has been created, the benchmark performs two types of

tion time increases with the network latency for both sys-transactions on the pool: (i) create or delete a file; (ii)

tems. However, the increase is greater in NFS than imead from or append to a file. The incidence of each

iISCSIl—the two systems are comparable at low latenciesransaction and its subtype are chosen randomly to elim-

(< 10ms) and the NFS performance degrades faster thanate the effect of caching and read-ahead.

iSCSI for higher latencies. Even though NFS v3 runs Our experiments use a equal predisposition to each

over TCP, arktherealtrace reveals an increasing number type of transaction as well as each subtype within a trans-

of RPC retransmissions at higher latencies. The Linuxaction. We performed 100,000 transactions on a pool of

NFS client appears to time-out more frequently at higheffiles whose size was varied from 1,000 to 25,000 in mul-

latencies and reissues the RPC request, even though tkiples of 5.

data is in transit, which in turn dregrades performance. Table 5 depicts our results. As shown in the table,

An implementation of NFS that exploits the error recov-iSCSI generally outperforms NFS v3 due to the meta-

ery at the TCP layer will not have this drawback. data intensive nature of this benchmark. An analysis of
In case of writes, the iISCSI completion times arethe NFS v3 protocol messages exchanged between the

not affected by the network latency due to their asyn-server and the client shows that 65% of the messages are

chronous nature. The NFS performance is impacted byneta-data related. Meta-data update aggregation as well

the pseudo-synchronous nature of writes in the Linuxas aggressive meta-data caching in iSCSI enables it to

NFS implementation (see Section 4.5) and increases withave a significantly lower message count than NFS.

the latency. As the pool of files is increased, we noted that the

Read Performance : Effect of Latency Write Performance : Effect of Latency
250

1800

"NFS [sequential] —x— " NFS [sequential] —x—

1600 NFS [random] —&— NFS [random] ---&--
iSCSI [sequential] = iSCSI [sequential] = -

1400 | iSCSI [random] 6 | 200 iSCSI [random] o<

1200 -
1000 -

Seconds
Seconds

800 -
600 -
400

200 4

. 0 "
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

RTT (msec) RTT (msec)
(a) Reads (b) Writes

Figure 6 : Impact of network latency on read and write performance.

Table 5: PostMark Results. Completion times and mes-Table 6: TPC-C Results. Reported throughput (tpmC)
sage counts are reported for 100,000 operations on 1,008 normalized by a factar equivalent to the throughput

5,000 and 25,000 files. obtained with NFS v3.
Completion time (s) Messages Peak Throughput (TpmC| Messages
Files || NFSv3| IiSCSI NFS v3 | iSCSI NFS v3 iISCSI NFSv3 | iSCSI
1,000 146 12 371,963| 101 a 1.08x« 517,219| 530,745
5,000 201 35 451,415| 276
25,000 516 208 639,128 66,965

difference between NFS v3 and iSCSI. This is not sur-
prising since TPC-C is primarily data-intensive and as
benefits of meta-data caching and meta-data update aghown in earlier experiments, iSCSI and NFS are com-
gregation starts to diminish due to the random nature oparable for data-intensive workloads. An analysis of the
the transaction selection. As can be seen in Table Smessage count shows that the vast majority of the NFS
the number of messages relative to the file pool size/3 protocol traffic (99%) is either a data read or a data
increases faster in iSCSI than that in NFS v3. Consewrite. The two systems are comparable for read opera-
quently, the performance difference between the two detions. Since data writes are 4KB each and less-intensive
creases. However, as a side effect, the benchmark also rgyan in other benchmarks, NFS is able to benefit from
duces the effectiveness of meta-data caching on the NF&synchronous write support and is comparable to iSCSI.

server, leading to higher server CPU utilization (see Sec- The TPC-H benchmark emulates a decision support

tion 5.4). systems that examines large volumes of data, executes
queries with a high degree of complexity, and gives an-
5.2 TPC-C and TPC-H Results swers to critical business questions. Our TPC-H exper-

)))) iments use a database scale factor of 1 (implying a 1
TPC-C is an On-Line Transaction Processing (OLTP)Gp gatabase). The page size and the extent size for
benchmark that leads to small 4 KB random 1/Os. TwWo-{he database were chosen to be 4 KB and 32 KB. re-

thirds of the I/Os are reads. We set up TPC-C with 3005pectively. We run the benchmark for iSCSI and NFS
warehouses and 30 clients. We use IBM's DB2 databasgn report the observed throughout and network mes-
for Linux (version 8.1 Enterprise Edition). The met- g54e overheads in Table 7. Again, we report normalized
ric for evaluating TPC-C performance is the number ofy,qyghputs since our results are unaudited. The reported
transactions completed per minute (tpmC). throughput for TPC-H is the number of queries per hour
Table 6 shows the TPC-C performgnce an(_j the netso, a given database size (QphH@1GB in our case).
work message overhead for NFS and iSCSI. Since these . si0d the performance of NFS and iSCSI is compa-

are results from an unaudited run, we withhold the actua| s Tpc-H_ Since the benchmark is dominated by

results and instead report normalized thro_ughput fqr therarge read requests—an analysis of the traffic shows that
two systems. As shown in the table, there is a marginal

the vast majority of the messages are data reads—this
4The Transaction Processing Council does not allow unalidite ~ "€SUIt iS consistent with prior experiments where iSCSI
sults to be reported. and NFS were shown to have comparable performance

Table 7: TPC-H Results. Reported throughput Table 9: Server CPU utilization for various benchmarks.
(QphH@1GB) is normalized by a fact@requivalentto The 99t* percentile of the CPU utilization at the server

the throughput obtained in NFS v3. is reported for each benchmark.
Throughput (QphH@1GB Messages NFS v3 | iSCSI
NFS v3 iSCSI NFSv3 | iSCSI PostMark| 77% 13%
B 1.07%3 261,769 62,686 TPC-C 13% 7%
TPC-H 20% 11%

Table 8: Completion times for other benchmarks. amount of processing for each request. The lower utiliza-
tion of iISCSI can be attributed to the smaller processing

Benchmark NFSv3 | iSCSI path seen by iSCSI requests. In case of iSCSI, a block
tar -xzf 60s oS read or write request at the server traverses through the
I's -1R > /dev/null 12s 6s network layer, the SCSI server layer, and the low-level
kernel conpile 222s 193s block device driver. In case of NFS, an RPC call received
rm-rf 40s 22s by the server traverses through the network layer, the

NFS server layer, the VFS layer, the local file system, the
block layer, and the low-level block device driver. Our

for read-intensive v_vorkloads.) measurements indicate that the server processing path for
Workloads dominated by large sequential reads caprg requests is twice that of iISCSI requests. This is

also signify the maximum application throughputthat be o irmed by the server CPU utilization measurements
sustained by a protocol. The experiments indicate no pelf,; qata intensive TPC-C and TPC-H benchmarks. In

ceptible difference in this particular edge-conditioneeas hese henchmarks, the server CPU utilization in for NFS
is twice that of iISCSI.

5.3 Other Benchmarks The difference is exacerbated for meta-data intensive
workloads. A NFS request that triggers a meta-data
We also used several simple macro-benchmarks to chaleokup at the server can greatly increase the processing
acterize the performance of iSCSI and NFS. Thesgath—meta-data reads require multiple traversals of the
benchmarks include extracting the Linux kernel sourceyFs layer, the file system, the block layer and the block
tree from a compressed archive (tar xfz), listing the con-device driver. The number of traversals depends on the
tents (Is -IR), compiling the source tree (make) and fi-degree of meta-data caching in the NFS server. The in-
nally removing the entire source tree (rm -rf). The first, creased processing path explains the large disparity in
second and fourth benchmarks are met-data intensive anfle observed CPU utilizations for PostMark. The Post-
amenable to meta-data caching as well as meta-data uptark benchmark tends to defeat the meta-data caching
date aggregation. Consequently, in these benchmarksn the NFS server because of the random nature of trans-
iISCSI performs better than NFS v3. The third bench-action selection. This causes the server CPU utilization
mark, which involves compiling the Linux kernel, is to increase significantly since multiple block reads may
CPU-intensive, and consequently there is parity betweene needed to satisfy a single NFS data read.
ISCSI and NFS v3. The marginal difference between the \yjle the iSCSI protocol demonstrates a better profile
tWO, can be attributed to the impact of the iSCSI proto-j, server CPU utilization statistics, it is worthwhile te in
col's reduced processing length on the single-threadegegtigate the effect of these two protocols on client CPU
compiling process. utilization. If the client CPU utilization of one protocol
has a better profile than that of the other protocol, then
54 CPU utilization the first protocol_will be able to scale to a larger number
of servers per client.
A key performance attribute of a protocol is its scalabil- Table 10 depicts th@9t* percentile of the client CPU
ity with respect to the number of clients that can be sup-utilization reported every 2 seconds byst at for the
ported by the server. If the network paths or I/O channels/arious benchmarks. For the data-intensive TPC-C and
are not the bottleneck, the scalability is determined by theTPC-H benchmarks, the clients are CPU saturated for
server CPU utilization for a particular benchmark. both the NFS and iSCSI protocols and thus there is no
Table 9 depicts the9t" percentile of the server CPU difference in the client CPU utilizations for these macro-
utilization reported every 2 seconds byst at for the benchmarks. However, for the meta-data intensive Post-
various benchmarks. The table shows that, the server utMark benchmark, the NFS client CPU utilization is an
lization for iISCSI is lower than that of NFS. The server order of magnitude lower than that of iISCSI. This is not
utilization is governed by the processing path and thesurprising because the bulk of the meta-data processing

clients with the caveat that there is no sharing between
client machines). It is worth noting that NFS appliances
use specialized techniques such as cross-layer optimiza-
tions and hardware acceleration support to reduce server
CPU utilizations by an order of magnitude — the relative
effect of these techniques on NFS and iSCSI serversiis a
matter of future research.

Table 10: Client CPU utilization for various bench-
marks. The99t" percentile of the CPU utilization at the
server is reported for each benchmark.

NFS v3 | iSCSI
PostMark 2% 25%

TPC-C 100% | 100%
TPC-H 100% | 100%

6.2 Meta-data intensive applications

NFS and iSCSI show their greatest differences in their
handling of meta-data intensive applications. Overall,
we find that iISCSI outperforms NFS for meta-data in-
tensive workloads—workloads where the network traffic
6 Discussion of Results is dominated by meta-data accesses.
The better performance of iISCSI can be attributed to
This section summarizes our results and discuss theliwvo factors. First, NFS requires clients to update meta-
implications for IP-networked storage in environmentsdata synchronously to the server. In contrast, iSCSI,
where storage in not shared across multiple machines. when used in conjunction with modern file systems, up-
dates meta-data asynchronously. An additional bene-
6.1 Data-intensive applications fit of asynchronolus meta-data updates is that it enables
update aggregation—multiple meta-data updates to the
Overall, we find that iISCSI and NFS yield comparablesame cached cached block are aggregated into a single
performance for data-intensive applications, with a fewnetwork write, yielding significant savings. Such opti-
caveats for write-intensive or mixed workloads. mizations are not possible in NFS v2 or v3 due to their
In particular, we find that any application that gener- synchronous meta-data update requirement.
ates predominantly read-oriented network traffic will see Second, iSCSI also benefits from aggressive meta-
comparable performance in iISCSI and NFS v3. Sincalata caching by the file system. Since iSCSI reads are
NFS v4 does not make significant changes to those poiin granularity of disk blocks, the file system reads and
tions of the protocol that deal with data transfers, we docaches entire blocks containing meta-data; applications
not expect this situation to change in the future. Furtherwith meta-data locality benefit from such caching. Al-
more, the introduction of hardware protocol accelerationthough the NFS client can also cache meta-data, NFS
is likely to improve the data transfer part of both iSCSI clients need to perform periodic consistency checks with
and NFS in comparable ways. the server to provide weak consistency guarantees across
In principle, we expect iSCSI and NFS to yield com- client machines that share the same NFS namespace.
parable performance for write-intensive workloads asSince the concept of sharing does not exist in the SCSI
well. However, due to the idiosyncrasies of the Linux architectural model, the iSCSI protocol also does not pay
NFS implementation, we find that iSCSI significantly the overhead of such a consistency protocol.
outperforms NFS v3 for such workloads. We believe this
is primarily due to the limit on the_number (_)f pending_ 6.3 Applicability to Other File Protocols
asynchronous writes at the NFS client. We find that this
limit is quickly reached for very write-intensive work- An interesting question is the applicability of our results
loads, causing the write-back cache at the NFS cliento other protocols such as NFS v4, DAFS, and SMB.
to degenerate into a write-through cache. The resulting The SMB protocol is similar to NFS v4 in that both
pseudo-synchronous write behavior causes a substantiptovide support for strong consistency. Consistency is
performance degradation (by up to an order of magniensured in SMB by the use of opportunistic locks or
tude) in NFS. We speculate that an increase in the pendplocks which allow clients to have exclusive access over
ing writes limit and optimizations such as spatial write a file object. The DAFS protocol specification is based
aggregation in NFS will eliminate this performance gap.on NFS v4 with additional extensions for hardware-
Although the two protocols yield comparable appli- accelerated performance, locking and failover. These ex-
cation performance, we find that they result in differenttensions do not affect the basic protocol exchanges that
server CPU utilizations. In particular, we find that the we observed in our performance analysis.
server utilization is twice as high in NFS than in iSCSI. NFS v4, DAFS and SMB do not allow a client to
We attribute this increase primarily due to the increasedupdate meta-data asynchronously. NFS v4 and DAFS
processing path in NFS when compared to iSCSI. Anallow the use of compound RPCs to aggregate related
implication of the lower utilization in iISCSI is that the meta-data requests and reduce network traffic. This can
server is more scalable (i.e., it can service twice as manimprove performance in meta-data intensive benchmarks

is done at the server in the case of NFS while the revers
is true in the case of the iSCSI protocol.

such as PostMark. However, it is not possible to specudata update intensive benchmarks. Directory delegation
late on the actual performance benefits, since it dependsan be implemented using leases and callbacks [4].

on the degree of compounding. The effectiveness of strongly-consistent read-only
meta-data cache as well as directory delegation depends
on the amount of meta-data sharing across client ma-
chines. Hence, we determine the characteristics of meta-

Extrapolating from our NFS and iSCSI resullts, it appearsdata sharing in NFS by analyzing two real-world NFS
that block- and file-access protocols are comparable oWorkload traces from Harvard University [2]. We ran-
data-intensive benchmarks and the former outperformgomly choose one day (09/20/2001) trace from the EECS
the latter on the meta-data intensive benchmarks. Frorfaces (which represents a research, software develop-
the perspective of performance for IP-networked storagénent, and course-based workload) and the home02 trace
in an unshared environment, this result favors a blockfrom the Campus traces (which represents a email and
access protocol over a file-access protocol. Howevepveb workload). Roughly 40,000 file system objects were
the choice between the two protocols may be governe@ccessed for the EECS traces and about 100,000 file sys-
by other significant considerations not addressed by thié€em objects were visited for the Campus traces.
work such as ease of administration, availability of ma- Figure 7 demonstrates that the read sharing of directo-
ture products, cost, etc. ries is much higher than write sharing in the EECS trace.
Observe that the meta-data performance of the NF$ Campus trace, we find that although the read-sharing
protocol suffers primarily because it was designed foriS higher at smaller time-scales, it is less than the read-
sharing of files across clients. Thus, when used in an en&rite sharing at larger time-scales. However, in both
vironment where files are not shared, the protocol payshe traces, a relatively small percentage of directories ar
the penalty of features designed to enable sharing. Theroth read and written by multiple clients. For example, at
are two possible ways to address this limitation: (1) De-time-scale 0800 seconds only 4% and 3.5% percentage
sign a file-access protocol for an unshared environment$f directories are read-write shared in EECS and Campus
and (2) Extend the NFS protocol so that while it providestraces, respectively. This suggests that cache invadidati
sharing of files when desired, it does not pay the penaltyate in strongly consistent meta-data read cache and con-
of “sharing” when files are not shared. Since sharing oftention for leases in directory delegation should not be
files is desirable, we propose enhancements to NFS ifiignificant, and it should be possible to implement both

Section 7 that achieve the latter goal. techniques with low overhead.
We evaluated the utility of strongly-consistent read-
. only meta-data caching using simulations. Our simula-
7 Potential Enhancements for NFS tion results demonstrated that a directory cache si#e of
leads to more tha®0% reduction in meta-data messages.
Our previous experiments identified three factors thatrurthermore, the number of messages for cache invali-
affect NFS performance for meta-data-intensive appli-dation is fairly low. The callback ratio, defined as ratio
cations: (i) consistency check related messages (iipf cache-invalidation messages and number of meta-data
synchronous meta-data update messages and (i) nofessages , is less thar% for a directory cache size of
aggregated meta-data updates. This section explores effor the EECS and campus traces.
hancements that eliminate these overheads. The above preliminary results indicate that imple-
The consistency check related messages can be eliminenting a strongly-consistent read-only meta-data cache
nated by using a strongly-consistent read-only name angind directory delegation is feasible and would enable a
attribute cache as proposed in [13]. In such a cacheNFS v4 client with these enhancements to have compa-
meta-data read requests are served out of the local cach@ble performance with respect to an iSCSI client even
However, all update requests are forwarded to the servefor meta-data intensive benchmarks. A detailed design
On an update of an object, the server invalidates thgf these enhancements and their performance is beyond
caches of all clients that have that object cached. the scope of this paper and is the subject of future re-
The meta-data updates can be made asynchronousgarch.
in an aggregated fashion by enhancing NFS to supjport
rectory delegation In directory delegation a NFS client
holds a lease on meta-data and can update and read tBe Related Work
cached copy without server interaction. Since NFS v4
only supports file delegation, directory delegation wouldNumerous studies have focused on the performance and
be an extension to the NFS v4 protocol specification. Ob<ache consistency of network file-access protocols [4, 8,
serve that directory delegation allows a client to asyn-11, 13]. In particular, the benefits of meta-data cachingin
chronously update meta-data in an aggregated fashio® distributed file system for a decade old workload were
This in turn would allow NFS clients to have comparable evaluated in [13].
performance with respect to iISCSI clients even for meta- The VISA architecture was notable for using the con-

6.4 Implications

1.2

T T
Read By One Client ---x---
Written By One Client ------
Read By Multiple Client &
Written By Multiple Client ---& - b

08 & R

06 - 4

Normalized Num of Directories Accessed Per Interval

***** .
0.4 - P 3
=} 8 e
s
02 - B
ﬁﬂ
R . SR SRS SOy . R
oBage — @Y g . .
0 200 400 600 800 1000 1200
Interval T
(a) EECS Trace
© 12 T T T
< Read By One Client ---x-—-
= Written By One Client ------
- Read By Multiple Client &
& 1r Written By Multiple Client ---o--- b
©
Q
@
8
S 08 4
3
<
3 X B RSttt SELEEE Koo P
= L R
g 0.6 *
£ X X
a \
5 04X 4
€ B
CRE N
B o02f - 4
N) . RV =
= o . T Y STk
e 7 e
S 0 o- @ 1 I I I
0 200 400 600 800 1000 1200

Interval T

(b) Campus Trace

Figure 7 : Sharing Characteristics of Directories

Their models correctly predicted higher server CPU uti-
lizations for file access protocols as well as the need for
data and meta-data caching in the client for both proto-
cols. Our experimental study complements and corrobo-
rates these analytical results for modern storage systems.

9 Concluding Remarks

In this paper, we use NFS and iSCSI as specific instanti-
ations of file- and block-access protocols and experimen-
tally compare their performance in environments where
storage is not shared across client machines. Our re-
sults demonstrate that the two are comparable for data-
intensive workloads, while the former outperforms the
latter by a factor of 2 or more for meta-data intensive
workloads. We identify aggressive meta-data caching
and update aggregation allowed by iSCSI to be the pri-
mary reasons for this performance difference. We pro-
pose enhancements to NFS to improve its meta-data per-
formance and present preliminary results that show its
effectiveness. As part of future work, we plan to imple-
ment this enhancement in NFS v4 and study its perfor-
mance for real application workloads.

Acknowledgments

We thank the anonymous reviewers and our shepherd
Greg Ganger for their comments.

References

[1] S Aiken, D. Grunwald, A. Pleszkun, and J. Willeke. A
Performance Analysis of the iISCSI Protocol . Aroceed-
ings of the 20th IEEE Symposium on Mass Storage Sys-

cept of SCSI over IP[6]. Around the same time, a parallel
effort from CMU also proposed two innovative architec- 2]
tures for exposing block storage devices over a network
for scalability and performance [3].

Several studies have focused in the performance of the
iISCSI protocol from the perspective of on data path over-]
heads and latency[1, 5, 12]. With the exception of [5],
which compares iSCSI to SMB, most of these efforts fo-
cus solely on iSCSI performance. Our focus is different
in that we examine the suitability of block- and file-level
abstractions for designing IP-networked storage. Conse-{4]
quently, we compare iSCSI and NFS along several di-
mensions such as protocol interactions, network latency
and sensitivity to different application workloads. A re-
cent white paper [14] compares a commercial iISCSI tar- [5]
get implementation and NFS using meta-data intensive
benchmarks. While their conclusions are similar to ours
for these workloads, our study is broader in its scope and[s]
more detailed.

A comparison of block- and file-access protocols was

tems, San Diego, CApril 2003.

D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. Passive
NFS Tracing of Email and Research Workloads.Pho-
ceedings of USENIX FAST'0San Francisco, CA, March
2003.

3] G A. Gibson et. al. A Cost-Effective, High-Bandwidth

Storage Architecture. IRroceedings of the 8th Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS-VIII),
San Jose, CApages 92-103, Oct 1998.

J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-
narayanan, R. Sidebotham, and M. West. Scale and Per-
formance in a Distributed File Syste®aCM Transactions

on Computer System8(1):51-81, February 1988.

Y. Lu and D. Du. Performance Study of iSCSI-Based

Storage SubsystemdEEE Communications Magazine
August 2003.

R. Van Meter, G. Finn, and S. Hotz. VISA: Netsta-
tion’s Virtual Internet SCSI Adapter. IRroceedings of
ASPLOS-VIII, San Jose, Cpages 71-80, 1998.

first carried out in the late eighties [10]. This study pre- [7] T. Myklebust. Status of the Linux NFS Client. Pre-

dated both NFS and iSCSI and used analytical modeling
to compare the two protocols for DEC’s VAX systems.

sentation at Sun Microsystems Connectathon 2002,
http://www.connectathon.org/talks02, 2002.

(8]

(9]

[10]

[11]

[12]

[13]

[14]

B. Pawlowski, C. Juszczak, P. Staubach, C. Smith,
D. Lebel, and D. Hitz. NFS Version 3 Design and Imple-
mentation. InProceedings of the Summer 1994 USENIX
ConferenceJune 1994.

P. Radkov, Y. Li, P. Goyal, P. Sarkar, and P. Shenoy.
An Experimental Comparison of File- and Block-Access
Protocols for IP-Networked Storage. Technical Report
TRO03-39, Department of Compute Science, University of
Massachusetts, Amherst, September 2003.

K K. Ramakrishnan and J Emer. Performance Analysis
of Mass Storage Service Alternatives for Distributed Sys-
tems. IEEE Trans. on Software Engineering5(2):120—
134, February 1989.

R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and Implementation of the Sun Network
Filesystem. IrProceedings of the Summer 1985 USENIX
Conferencepages 119-130, June 1985.

P Sarkar and K Voruganti. IP Storage: The Challenge
Ahead. InProceedings of the 19th IEEE Symposium on
Mass Storage Systems, College Park,,Mpril 2002.

K. Shirriff and J. Ousterhout. A Trace-Driven Analysis
of Name and Attribute Caching in a Distributed System.
In Proceedings of the Winter 1992 USENIX Conference
pages 315-331, January 1992.

Performance Comparison of iSCSI and NFS IP Storage
Protocols. Technical report, TechnoMages, Inc.

