

Controller Design for a Steerable Self

Stabilizing Bicycle

Master of Engineering Project

5/19/2014

Diego Olvera (do98)

Table of Contents

SUMMARY 3

MOTIVATION 3

DYNAMICS MODEL 4

LINEARIZED EQUATIONS OF MOTION 4
POINT MASS BICYCLE 5
VALIDITY OF THE POINT MASS MODEL 6
A B AND C FORM 7

CONTROL DESIGN FOR SELF STABILIZATION 7

SPECIFICATIONS 7
BLOCK DIAGRAM 8
CONTROLLER DESIGN USING CVX 8
CLOSED LOOP SYSTEM SIMULATION 8

OBSERVER BASED CONTROLLER WITH REFERENCE TRACKING 11

AUGMENTED SYSTEM 12
CONTROLLER DESIGN USING CVX FOR REFERENCE TRACKING 12
OBSERVER DESIGN USING CVX 12
SIMULATION OF OBSERVER AND CONTROLLER 13

COMPARING THE CONTROLS MODELS 16

CONCLUSION 16

APPENDIX A: BICYCLE MODEL PARAMETERS 17

APPENDIX B: CONTROLLER AND OBSERVER DESIGN USING CVX 18

CONVEX OPTIMIZATION 18
CONTROLLER DESIGN USING CVX 18
OBSERVER DESIGN USING CVX 22

APPENDIX C: BICYCLE SIMULATOR 24

ROTATION/TRANSLATION ONE 25
ROTATION/TRANSLATION TWO 25
ROTATION/TRANSLATION THREE 26
PLOTTING APPROACH 26

The following work was done in the Robotics and Biomechanics Lab at Cornell University under

the supervision of Professor Andy Ruina.

Summary
This report describes the approach undertaken to create a controller for a self-stabilizing bicycle.

The model for the bicycle chosen is based on a simplified version of the linearized equations of

motion cited in footnote 1. Two controllers were then created using this model: one for bicycle

stability, and another for bicycle stability and steering reference tracking. These controllers were

then implemented in simulation by using the ode45 Matlab solver and they were shown to meet

the specifications.

Motivation

The goal of this project is to create a controller for a bicycle that self-stabilizes. This controller

should receive a reference steering angle and then make the bicycle follow this reference while

staying upright.

In the future it is desired to implement the controller on a real bicycle, which will be able to self-

stabilize and navigate using position data. This controller will also be used to create a steer-by-

wire bicycle in which the rider turns a handlebar that is essentially a joystick. The

microcontroller implementing the controller will then turn the steering wheel as needed, thus

causing the bicycle to turn stably. Such a bicycle will be able to be ridden by people who do not

know how to ride a bicycle or who cannot stabilize it themselves.

Dynamics Model

Linearized Equations of Motion
The Dynamics model of a bicycle used here are based on the linearized equation of motion

described in a paper co-written by professor Andy Ruina1. These equations are as follows:

 [1] [
𝜙̈

𝛿̈
] = 𝑀−1(−𝐶 [

𝜙̇

𝛿̇
] − 𝐾 [

𝜙
𝛿
] + [

𝑇𝜙

𝑇𝛿
])

 [2] 𝜓̇ =
𝑣𝛿+𝑐𝛿̇

𝑤
cos(𝜆)

 [3] 𝑥̇ = 𝑣𝑐𝑜𝑠(𝜓)

 [4] 𝑦̇ = 𝑣𝑠𝑖𝑛(𝜓)

where:

 𝜙 = 𝑟𝑜𝑙𝑙 𝑎𝑛𝑔𝑙𝑒 𝜓 = 𝑦𝑎𝑤 𝑎𝑛𝑔𝑙𝑒 (ℎ𝑒𝑎𝑑𝑖𝑛𝑔)

 𝛿 = 𝑠𝑡𝑒𝑒𝑟 𝑎𝑛𝑔𝑙𝑒 𝑥 = 𝑥 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑏𝑎𝑐𝑘 𝑤ℎ𝑒𝑒𝑙 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑎 𝑓𝑖𝑥𝑒𝑑𝑓𝑟𝑎𝑚𝑒

 𝑇𝜙 = 𝑟𝑜𝑙𝑙 𝑡𝑜𝑟𝑞𝑢𝑒 𝑦 = 𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑏𝑎𝑐𝑘 𝑤ℎ𝑒𝑒𝑙 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑎 𝑓𝑖𝑥𝑒𝑑𝑓𝑟𝑎𝑚𝑒

 𝑇𝛿 = 𝑠𝑡𝑒𝑒𝑟 𝑡𝑜𝑟𝑞𝑢𝑒 𝑣 = 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑏𝑖𝑐𝑦𝑐𝑙𝑒 (𝑎𝑠𝑠𝑢𝑚𝑒𝑑 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)

 𝑤 = 𝑤ℎ𝑒𝑒𝑙𝑏𝑎𝑠𝑒 𝜆 = 𝑠𝑡𝑒𝑒𝑟 𝑎𝑥𝑖𝑠 𝑡𝑖𝑙𝑡

Figure 1: Bicycle Coordinate Axes [Figures from paper cited in 1]

It should be noted that this model assumes a constant forward velocity. In practice this would be

ensured by another controller acting on a hub motor attached to one of the wheels guaranteeing a

constant rotation rate of the wheel.

The matrices M, C and K are obtained from the parameters of the bicycle being used. (See

appendix A for the values used to model the bicycle which will be used for this specific project.

1 Linearized dynamics equations for the balance and steer of a bicycle J.P. Meijaard, Jim M. Papadopoulos, Andy Ruina, A.L.
Schwab

As will be seen later, many of these parameters will be ignored except for some geometric

parameters and the overall mass of the bicycle)

For more detail on how to obtain these matrices please see the cited paper. A Matlab script was

written which obtains these matrices for a bicycle with any parameters of mass, inertia, and

dimension given. The matrices from this script were compared the paper’s benchmark values,

thus confirming their validity.

Equations 2, 3, and 4 above are mostly for simulation purposes. Equation 1, which describes the

dynamics of the bicycle’s roll angle and steer angle, is the one which will inform how the

controller for the bicycle will be created.

Point Mass Bicycle
The linearized equations of motion above are a good start, but they can be difficult to use for

controls purposes because these equations deal with the steering torque, a state that is difficult to

control and measure in a real bicycle. Upon a suggestion by professor Ruina, the following

simplifications to the model were made:

 The front frame has no inertia

 A vertical head angle (𝜆 = 0)
 No trail (𝑐 = 0)

 Rear wheel has no inertia

 Rear frame is a point mass

 Front wheel has no mass or inertia

These simplifications essentially turn the bicycle into a point mass, thus eliminating the

individual inertias of the bicycle’s components and leaving only a large steerable, point mass

“hinge” satisfying the rolling constraint.

Because these simplifications remove the interactions between the steering torque and inertia, the

second equation (𝛿̈) becomes meaningless and can be removed. This leaves the following

equation:

 [5] 𝜙̈ = −𝑀𝑖𝐾11𝜙 − 𝑀𝑖𝐾12𝛿 − 𝑀𝑖𝐶12𝛿̇ + 𝑀𝑖11𝑇𝜙

where MiK11 is the element in the first row and first column of the matrix produced by left

multiplying the inverse of the M matrix times the K matrix in the linearized equations.

Equation 5 is what will be used for controls formulation.

Validity of the point mass model

It may not be immediately obvious that this simplification yields a valid model. To test this, a

controller was created for stabilizing the bicycle and it was implemented using the linearized

equations and the simplified equations. The results are compared in Figure 2.

As can be seen, the dynamics vary slightly with the largest differences being in the overshoot of

each of the states.

Figure 2: Comparison of the Linearized Equations and the Point Mass Bicycle Equations

Figure 3: Comparison of the Linearized Equations and the Point Mass Bicycle Equations

A B and C form
The controls strategy used here will involve assuming that a servo-motor mounted to the steering

wheel can provide any steering angular velocity desired. In this way the 𝛿̇ variable in equation 5

can be treated as a control variable as well as a state. This leads to the following dynamics

formulation:

 [6] [

𝜙̇

𝛿̇
𝜙̈

] = [
0 0 1
0 0 0

−𝑀𝑖𝐾11 −𝑀𝑖𝐾12 0
] [

𝜙
𝛿
𝜙̇

] + [
0
1

−𝑀𝑖𝐶12

] 𝛿̇ + [
0
0

𝑀𝑖11

] 𝑇𝜙

or

 [7] 𝑧̇ = 𝐴𝑧 + 𝐵𝑢 + 𝐷 𝑇𝑑𝑖𝑠𝑡

The outputs of interest are the roll and steer angles so the output variable is:

𝑦 = 𝐶𝑧

where:

𝐶 = [
1 0 0
0 1 0

]

Control Design For Self Stabilization
Now that a model is obtained, a controller can be designed to stabilize the bicycle.

Specifications
In order to guide the control design process, a set of desired specifications are listed for the

overall system dynamics. Firstly, the bicycle is required to have a 5% settling time smaller than 1

second to a step input, ensuring a fast response. The steering angular velocity is also desired to

be kept below 7 𝜋 radians per second to ensure that the servomotor can provide this actuation.

This limit can be imposed on a step response of size
𝜋

4
 radians to represent a worst-case scenario

when the bicycle is operational.

Specs

 1 second 5% settling time

 steering angular velocity < 7𝜋 as response to a step input of 𝜋/4

Block Diagram
Knowing the system dynamics of the bicycle and the specifications, the overall system can be

put into block diagram form:

It is desired to find a K matrix that will stabilize the bicycle and meet the specifications.

Controller Design Using CVX
CVX is a convex optimization toolbox for Matlab, and it is what will be used here to create

controllers and observers that meet the required specifications. This technique for controller

design states the creation of a closed loop system as an optimization problem, which must satisfy

a set of linear matrix inequalities. Please refer to Appendix B for details on this process.

CVX outputs the following controller when given the mentioned specs and a point mass bicycle

model with parameters listed in Appendix A.

 [8] 𝐾 = [−9.4964 5.9447 − 2.8767]

Closed Loop System Simulation
Using the controller listed in equation 8, a simulation is made of the closed loop system with the

initial conditions of the bike as shown below:

 𝜙0 =
−𝜋

4

 𝛿0 = 0

 𝜙̇0 = 0

The results are shown in figures 4 to 6.

For more details on how the animation was achieved, please see Appendix C.

As can be seen, the system meets the settling time requirement of 1 second and the steering

angular velocity does not exceed 7𝜋 in magnitude. The states of the bicycle also stay within

reasonable values, the steering angle does not exceed 𝜋/2 and the roll angle does not fluctuate on

its way to the upright position.

Figure 4: ODE Simulation of Closed Loop System

Figure 5: Bicycle Trajectory

Figure 6: Animation of ODE simulation

Observer Based Controller With Reference Tracking
The ultimate goal of this project is to create a bicycle which can track a steering reference and

self-stabilize. While the controller mentioned in the previous section is adequate for stabilization,

it does not track a steering reference and does not provide integral control to guarantee zero

steady state error. In order to do this, we can refine the specifications mentioned previously:

Specs

 1 second 5% settling time

 steering angular velocity < 7𝜋 as response to a step input of 𝜋/4

 zero steady state steering angle reference tracking

The approach here will be to create new states which will be the integral of the reference error,

and a controller will be designed for reference tracking. Because these new states are not easy to

sense in a practical setting, an observer will also be designed to provide full state knowledge to

the controller. The observer will be made to converge to the real states much faster than the

controller dynamics to ensure the separation principle holds. Finally, this system will be

simulated using an ode45 solver.

Figure 7 shows a block diagram of the overall system approach. The system in the dotted box is

the system observer.

Figure 7: Observer Controller For Reference Tracking Block Diagram

Augmented System
In order to meet the mentioned specifications, we can re-formulate our dynamics system to

include two new states:

 𝑒𝑟𝑒𝑓 = ∫ 𝑟 − 𝐶
𝑡

0
𝑧

where

 𝑟 = [
𝜙𝑟𝑒𝑓

𝛿𝑟𝑒𝑓
] = [

0
𝛿𝑟𝑒𝑓

]

is the reference signal, and eref is the integral of the error between the current states and the

reference states. The new augmented system takes the form:

 [
𝑧̇

𝑒𝑟𝑒𝑓̇
] = [

𝐴 0
−𝐶 0

] [
𝑧

𝑒𝑟𝑒𝑓
] + [

𝐵
0
] 𝑢 + [

0
𝐼
] 𝑟

or:

 [
𝑧̇

𝑒𝑟𝑒𝑓̇
] = 𝑧̇̃ = 𝐴̃𝑧̃ + 𝐵̃𝑢 + 𝐵𝑟𝑒𝑓𝑟

Controller Design Using CVX for Reference Tracking

Using these new 𝐴̃ and 𝐵̃ matrices, the procedure described in in Appendix B can be used to

create a controller which uses all of these states to track the steering reference and maintain

stability.

CVX outputs the following controller. As mentioned before, it is using the point mass bicycle

model with values in Appendix A.

 𝐾 = [−22.7218 9.1335 − 2.5151 47.6035 − 29.9128]

Observer Design Using CVX
In order to obtain all of the states needed for the feedback controller above, an observer must be

created to approximate the real states of the system. This problem essentially reduces to creating

an observer feedback matrix 𝐾𝑜 which is guaranteed to converge to the real states of the system.

 𝑒𝑜𝑏𝑠 = [𝐴 − 𝐾𝑜𝐶]𝑒𝑜𝑏𝑠

This observer can be designed using CVX and the process for doing this is detailed in Appendix

B. The only thing required of this observer is that it obtains a 5% settling time of less than 0.1

seconds so that it does not interfere with the control dynamics.

CVX outputs the following observer gain:

 𝐾𝑜 = [
0.1559 −0.0007
0.0004 0.0443
6.1965 −0.0401

] ∗ 103

however, because we have two unobservable states in our observer, the Ko matrix must be

modified slightly for the matrix dimensions to match.

 𝐾𝑜 =

[

0.1559 −0.0007
0.0004 0.0443
6.1965 −0.0401

0 0
0 0]

∗ 103

Simulation of Observer and Controller
In order to simulate the response of the observer controller, the whole system can be put into the

following form:

 [
𝑧̇
𝑧̇̃
] = [

𝐴 −𝐵𝐾
𝐾𝑜𝐶 (𝐴̃ − 𝐵̃𝐾 − 𝐾𝑜𝐶̃)

] [
𝑧
𝑧̃
] + [

0
𝐼
] 𝑟

and simulated using the Matlab ode45 solver.

For this simulation the following reference signals and initial conditions are used:

 𝑧0 = [

𝜙0

𝜙̇0

𝛿0

] = [

𝜋

8

0
0

] 𝑧̃0 =

[

𝜙𝑜𝑏𝑠

𝜙̇𝑜𝑏𝑠

𝛿𝑜𝑏𝑠
𝑒𝜙𝑟𝑒𝑓

𝑒𝛿𝑟𝑒𝑓]

=

[

0
0.1
0.2
0
0]

Figures 8 to 11 show the system response. As can be seen, the observer converges to the real

states within a tenth of a second, the bicycle stabilizes in less than 1 second and at steady state,

the bicycle travels in a circle, as expected.

Figure 8: Observer Transient Behavior (on the Timescale of Milliseconds)

Figure 9: Controller Transient Behavior

Figure 10: Bicycle Trajectory (10 second simulation)

Figure 11: Reference Tracking Simulation

Comparing the Controls Models
Two controllers were described in this report and were demonstrated to meet the specifications

required. However, these two models differ in ways the deserve mentioning.

The controller for self-stabilization, while only stabilizing the bicycle without reference tracking,

is a very easy controller to implement on a real microcontroller. If all of the states can be

provided by sensors, then all that is needed to implement the control law is a one line operation:

 𝑢 = −𝐾𝑧

The second controller is a bit more complicated to implement. Because it involves an observer,

an integrator is needed to predict the states of the bicycle. However, this controller is much more

complete and allows for steering reference tracking witch is our goal.

Conclusion
This report has detailed the approach taken towards creating a self-stabilizing bicycle. A

simplified point mass model was described, and its validity was confirmed by comparing it to the

linearized equations of motion for a bicycle. Then, this point mass model was used to create two

different kinds of controllers: one for stability and another for stability and steering reference

tracking. The controllers were then simulated and shown to meet the required specifications.

Appendix A:

Bicycle Model Parameters
These parameters are based on measurements of the bicycle, which is desired to stabilize. Some

of these parameters were not changed from the benchmark values listed in the paper cited in

footnote 1 because no effort was made yet to measure these values from the real bicycle.

 Parameter Symbol Value

 Wheel base w 1.02 m

Trail c 0.08 m

Steer Axis Tilt 𝜆 𝜋/10

Gravity g 9.81 m/s^2

Forward Speed v 3.57 m/s

Rear

Wheel

Wheel Radius rR 0.1905 m

Wheel Mass mR 6.5 kg

Mass Moments of Inertia (IRxx,IRyy) (0.0603,0.12)*mR/2 kg*m^2

Rear Body

and Frame

Assembly

Position Center of Mass (XB,zB) (0.3,-0.9) m

Mass mB 15.65 kg

Mass Moments of Inertia

[

𝐼𝐵𝑥𝑥 0 𝐼𝐵𝑥𝑧

0 𝐼𝐵𝑦𝑦 0

𝐼𝐵𝑥𝑧 0 𝐼𝐵𝑧𝑧

] [
9.2 0 2.4
0 11 0

2.4 0 2.8
]*mB/85

Front

Handlebar

and Fork

Assembly

Position Center of Mass (XH,zH) 0.9 m

Mass mH 4 kg

Mass Moments of Inertia

[

𝐼𝐻𝑥𝑥 0 𝐼𝐻𝑥𝑧

0 𝐼𝐻𝑦𝑦 0

𝐼𝐻𝑥𝑧 0 𝐼𝐻𝑧𝑧

] [
0.05892 0 −0.00756

0 0.06 0
−0.00756 0 0.00708

]

Front

Wheel

Radius rF 0.1905 m

Mass mF 1.81 kg

Moments of Inertia (IFxx,IFyy) (0.1405,0.28)*mF/3

Appendix B:

Controller and Observer Design Using CVX

Convex Optimization
CVX2 is a convex optimization toolbox for Matlab. This toolbox can be used for the design of

control algorithms by stating the creation of the controller K as an optimization problem in

which the closed loop system is required to meet any set of given specs.

Controller Design Using CVX
For this section, a dynamics model of the following form will be assumed:

 𝑧̇ = 𝐴𝑧 + 𝐵𝑢

subject to a control law:

 𝑢 = −𝐾𝑧

Solving for K is stated as a convex optimization by four linear matrix inequalities. One of these

linear matrix inequalities guarantees Lyapunov stability of the closed loop system, LMIs two and

three, along with the first, place bounds on the control effort used for a given set of initial

conditions, and the fourth places limits on the settling time of the closed loop system.

Linear Matrix Inequality 1 – Guarantee Lyapunov Stability

This first LMI aims to ensure that the closed loop system will be a Lyapunov stable system that

settles to our desired stability point. That is, it will ensure that our system will always head in the

direction of the desired final states. To do this, a value function is defined as such:

 𝑉 = 𝑧𝑇𝑃𝑧

where z is a vector of our states and P is a cost matrix to be determined. The derivative of this

function is:

 𝑉̇ = 𝑧̇𝑇𝑃𝑧 + 𝑧𝑇𝑃𝑧̇

 𝑉̇ = 𝑧𝑇(𝐴𝑐𝑙
𝑇 𝑃 + 𝑃𝐴𝑐𝑙)𝑧

where:

 𝐴𝑐𝑙 = 𝐴 − 𝐵𝐾

In order to ensure Lyapunov stability the following properties are required:

 𝑉 > 0

 𝑉̇ < 0

2 http://cvxr.com/cvx/ CVX Matlab Convex Optimization Michael C. Grant, Stephen P. Boyd

so that the value function to always heads to zero. In order for this to be the case, P must be a

positive definite matrix, and (𝐴𝑐𝑙
𝑇 𝑃 + 𝑃𝐴𝑐𝑙) must be a negative definite matrix.

 𝑃 > 0

 (𝐴𝑐𝑙
𝑇 𝑃 + 𝑃𝐴𝑐𝑙) < 0

This can be guaranteed by creating P and K in the right way. However, P and K appear

nonlinearly in the above inequalities. In order to do this we can restate our problem as one

inequality:

 [−(𝐴𝑐𝑙
𝑇 𝑃 + 𝑃𝐴𝑐𝑙) 0

0 𝑃
] > 0

and apply a congruence transformation:

 [𝑃
−1 0
0 𝑃−1

] [−(𝐴𝑐𝑙
𝑇 𝑃 + 𝑃𝐴𝑐𝑙) 0

0 𝑃
] [𝑃

−1 0
0 𝑃−1

]
𝑇

> 0

 [
−(𝑃−1𝐴𝑇 − 𝑃−1𝐾𝑇𝐵𝑇 + 𝐴𝑃−1 − 𝐵𝐾𝑃−1) 0

0 (𝑃−1)𝑇
] > 0

Now, as can be seen, the terms 𝑃−1 and 𝐾𝑃−1 appear linearly. Applying a change of coordinates:

 𝐽 = 𝑃−1𝐾𝑇

 𝑌 = 𝑃−1

the expression becomes:

 [9] [
−(𝑌𝐴𝑇 − 𝐽𝐵𝑇 + 𝐴𝑌 − 𝐵𝐽𝑇) 0

0 𝑌𝑇
] > 0

Using CVX we can solve for a J and Y that satisfy this LMI and thus find K and P:

 𝑃 = 𝑌−1

 𝐾 = (𝑃𝐽)𝑇

Linear Matrix Inequalities 2 and 3 – Minimize Control Effort

Because the value “V” from the Lyapunov stability definition is a non-physical value, we can use

it to create bounds on the control effort 𝑢. This can be done by way of the following inequality:

 𝑢2 < 𝑉(𝑧) < 𝑉(𝑧0) < 𝛾2

where 𝑢 is the control effort, 𝑉(𝑧0) is the first value of the system in time, and 𝛾 is some spec

we choose.

LMI 1

The inequality

 𝑉(𝑧) < 𝑉(𝑧0)

is already guaranteed by Lyapunov stability, but the first and third each require an LMI.

LMI 2

The inequality

 𝑉(𝑧0) < 𝛾2

Ensures that the first cost of the Lyapunov function is lower than the square of our control

specification.

This can be rewritten as:

 0 > −𝛾2 + 𝑧0
𝑇𝑃𝑧0

applying a Schur complement:

 [
−𝛾2 𝑧0

𝑇

𝑧0 −𝑃−1] < 0

and using the same change of variables as before

 [10] [
−𝛾2 𝑧0

𝑇

𝑧0 −𝑌
] < 0

Now that this inequality is linear with respect to Y it can be put into the CVX solver. The value 𝛾

and the initial conditions matrix 𝑧0 will be specs we input as required max control effort for a

given initial condition.

LMI 3

The third inequality

 𝑢2 < 𝑉(𝑧)

can be rewritten as:

 𝑧𝑇𝐾𝑇𝐾𝑧 < 𝑧𝑇𝑃𝑧

 𝐾𝑇𝐾 < 𝑃

Applying a congruence transformation:

 𝑃−1𝐾𝑇𝐾(𝑃−1)𝑇 < (𝑃−1)𝑇

and changing variables once again:

 𝐽 𝐽𝑇 − 𝑌 < 0

And, applying a Schur Complement:

 [11] [
𝑌 𝐽

𝐽𝑇 𝐼
] > 0

This LMI now ensures the control effort inequality.

Linear Matrix Inequality 4– Ensure Settling Time Spec

In order to ensure that our closed loop system has a settling time of less than ts, the system must

have poles to the left of:

 𝜎 = 𝜇𝑤𝑛 =
3

𝑡𝑠

in the complex plane, where ts is the 5% settling time spec. This approach is typically used to

check how well a closed loop system will respond to a step input by looking at where the closed

loop poles are, however we can turn this into an LMI spec to require that our closed loop system

meet this spec. This is done by way of the following inequality:

 𝑃(𝐴𝑐𝑙 + 𝜎𝐼) + (𝐴𝑐𝑙 + 𝜎𝐼)𝑇𝑃 < 0

which can be rewritten as:

 𝑃𝐴𝑏 − 𝑃𝐵𝐾 + 𝜎𝑃 + 𝐴𝑏
𝑇𝑃 − 𝐾𝑇𝐵𝑇𝑃 + 𝜎𝑃 < 0

Applying a congruence transformation

 𝑃−1[𝑃𝐴𝑏 − 𝑃𝐵𝐾 + 𝜎𝑃 + 𝐴𝑏
𝑇𝑃 − 𝐾𝑇𝐵𝑇𝑃 + 𝜎𝑃]𝑃−1𝑇

< 0

 −(𝐴𝑏𝑃
−1𝑇

− 𝐵𝐾𝑃−1𝑇
+ 𝑃−1𝐴𝑏

𝑇 − 𝑃−1𝐾𝑇𝐵𝑇 + 2𝜎𝑃−1𝑇
) > 0

and a change of variables:

[12] −(𝐴𝑏𝑌 − 𝐵𝐽𝑇 + 𝑌𝐴𝑏
𝑇 − 𝐽𝐵𝑇 + 2𝜎𝑌) > 0

Equation 11 is now an LMI that will ensure that the settling time spec is met.

Using CVX

Equations 9 to 12 are now ready to be put into the CVX solver to create a P and K matrix.

Figure 12 shows the LMIs in the convex optimization solver. As can be seen, the value

“control_max_sqrd” is input as a variable to minimize and the settling time spec “ts” is strictly

specified. This is because any controller created must make a trade-off between these two specs.

My making one of the two specs a requirement and another an optimization parameter, we can

control what CVX optimizes for.

Figure 12: Matlab code specifying LMIs to CVX

Observer Design Using CVX
The design of an observer can be stated as the creation of a closed loop system of the following

form:

 𝑒̇ = [𝐴 − 𝐾𝑜𝐶]𝑒

 𝑒 = 𝑧 − 𝑧𝑜𝑏𝑠

Where Ko is the observer gain matrix desired, e is the error between the real states and the

observed states, and A and C are the system matrices.

Observer Lyapunov Stability

In order to ensure Lyapunov stability of the observer, a procedure similar to the one stated for the

controller can be used to create an LMI for this spec:

 𝑃 > 0

 (𝐴𝑐𝑙
𝑇 𝑃 + 𝑃𝐴𝑐𝑙) < 0

Writing these as one inequality

 [−(𝐴𝑐𝑙
𝑇 𝑃 + 𝑃𝐴𝑐𝑙) 0

0 𝑃
] > 0

 [−(𝐴𝑇𝑃 − 𝐶𝑇𝐾𝑜
𝑇𝑃 + 𝑃𝐴 − 𝑃𝐾𝑜𝐶) 0
0 𝑃

] > 0

Using a change of variables:

 𝐽 = 𝑃𝐾𝑜

[13] [−(𝐴𝑇𝑃 − 𝐶𝑇𝐽𝑇 + 𝑃𝐴 − 𝐽𝐶) 0
0 𝑃

] > 0

Equation 13 will ensure Lyapunov stability of the observer.

Observer Settling Time

In order for the separation principle to hold when using an observer, the observer settling time

must be much smaller than the controller settling time, and so specifying a settling time for the

observer is important. This can be done in a way similar to the controller settling time LMI:

 𝑃(𝐴𝑐𝑙 + 𝜎𝐼) + (𝐴𝑐𝑙 + 𝜎𝐼)𝑇𝑃 < 0

 −(𝑃𝐴 − 𝑃𝐾𝑜𝐶 + 𝜎𝑃 + 𝐴𝑇𝑃 − 𝐶𝑇𝐾𝑜
𝑇𝑃 + 𝜎𝑃) > 0

using a change of variables:

 𝐽 = 𝑃𝐾𝑜

 [13] −(𝑃𝐴 − 𝐽𝐶 + 𝜎𝑃 + 𝐴𝑇𝑃 − 𝐶𝑇𝐽𝑇 + 𝜎𝑃) > 0

Equation 13 guarantees the settling time spec for the observer closed loop system.

Appendix C:

Bicycle Simulator
The bicycle simulator created in Matlab for animating the solutions to the dynamics uses a single

function repeatedly to plot the pose of the bicycle.

The function

[COG_hand,SH_hand,CPfw_hand,CPrw_hand]=DrawBikePose(x,y,z,yaw,roll,steer)

takes in the x,y and z coordinates of the bicycle’s rear wheel contact point, the bicycle’s yaw, roll

and steer angles, and outputs the object handles of the plotted bicycle components.

This function achieves this plotting by way of a series of matrix multiplications to rotate and

translate a series of points. The following dimensions and frames will be used:

Figure 13: Bicycle Parameters and Frames

Rotation/Translation One
The first rotation/translation matrix describes the location of the moving frame {p1,p2,p3}

located at the rear wheel contact point, with respect to the fixed { i , j , k } frame.

𝑅1 = [

cos (𝜓) − sin(𝑝𝑠𝑖)

sin(𝜓) cos(𝜓)
0 𝑥
0 𝑦

0 0
0 0

1 𝑧
0 1

]

Rotation/Translation Two
The second rotation/translation matrix describes the location and orientation of the {g1, g2 , g3}

frame fixed to the center of gravity point with respect to the frame {p1,p2,p3}.

𝑅2 = [

1 0
0 cos(𝜙)

0 𝑥𝐺

−sin(𝜙) −|𝑦𝐺| ∗ sin(𝜙)

0 sin(𝜙)

0 0
cos(𝜙) |𝑦𝐺| ∗ cos(𝜙)

0 1

]

Rotation/Translation Three
The third rotation/translation matrix describes the location and orientation of the {s1, s2 , s3}

steering frame with respect to the {g1,g2,g3} frame.

𝑅3 = [

cos (𝛿) − sin(𝛿)

sin(𝛿) cos(𝛿)
0 𝐻𝑎𝑛𝑑𝑤
0 0

0 0
0 0

1 𝐻𝑎𝑛𝑑ℎ
0 1

]

Plotting Approach
Using these matrices described to move from frame to frame, plotting is a matter of creating

points in a convenient coordinate and then multiplying those points by the coordinate

transformation matrices to obtain the positions of those points expressed in the global {i,j,k}

frame. Then, the plot3() command can be used.

