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1 Introduction

A liquid droplet falling at terminal velocity through a quiescent gas experiences a balance of
gravity and drag forces. Though this is a common physical multiphase phenomenon (e.g., rain-
drops), the use of numerical methods to model droplet behavior generally have been limited to
axisymmetric models with little droplet deformation [1]. As the inertial effects lead to drop de-
formation, many computational methods have difficulty in tracking the droplet interface without
introducing significant amounts of computational error, especially in the presence of the large
density ratio at the gas-liquid interface. Analytical closed-form solutions are also very limited
in predicting droplet behavior: they exist for inviscid or highly viscous flow assumptions, with
the additional assumption that the droplet remains nearly spherical [1].

A relevant computational model of liquid droplets must accurately track the interface between
the two immiscible fluids. The gas and liquid are characterized by a high density ratio which,
combined with the velocity difference between the two phases (drop internal circulation is slow
compared to the drop’s velocity through the air), can lead to significant numerical errors in
tracking momentum. Specifically, models fail when they incorrectly locate the interface and
predict a region of high density liquid phase traveling at high velocity.

The relevant dimensionless numbers characterizing this flow are as follows. The density ratio
p = pi/pg and viscosity ratio p = /g characterize the ratio of liquid to gas phase properties.
For this project, it was desired to study values typical for water and air: a density ratio of
1000 and 100 for the viscosity ratio. Two other significant dimensionless numbers for such an
analysis are Reynolds number and Weber number.
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where U is the drop velocity, D the characteristic drop diameter, and o the surface tension
coefficient between water and air. Reynolds number characterizes inertial to viscous forces and
Weber number characterizes inertia to surface tension forces. By characterizing the flow with
these dimensionless numbers, the differences observed in drop behavior can be correlated to
how the multiphase flow depends on physical parameters.

Beard [2] introduced a relevant multiphase regime classification for falling drops:
e Small cloud droplets: 1ym< D < 20um (steady wake, 1075 < Re < 0.01).

e Large cloud droplets to small raindrops: 20um< D < lmm (steady wake,
0.01 < Re < 300)

e Small to large raindrops: 1 mm < D < 7 mm (unsteady wake, 300 < Re < 4000).

The overarching goal of this project was to apply the piecewise linear interface calculation
(PLIC) volume-of-fluid (VOF) method that incorporates a three-dimensional, un-split, dis-
cretely conservative, and bounded computation scheme as developed by Owkes and Desjardins
[3] to the phenomenon of a liquid droplet falling through gas. Although many experiments and
some theoretical analysis has been conducted to characterize drop terminal velocity and shape,
few numerical simulations have been developed that effectively predict the liquid/gas interface
at intermediate to high Reynolds numbers characterized by Beard’s [2] second and third regime
categories. The focus of this project was to verify the code’s ability to predict the location of
the interface and to accurately predict the terminal velocity of a falling droplet.



The classical theoretical method to predict the terminal velocity of a falling liquid drop for
very small Reynolds numbers is given in the Hadamard-Rybczynski equation [1]. Two of the
most definitive experimental measurements of drop terminal velocities for a range of drop sizes
have been those of Gunn and Kinzer [4] and Beard and Pruppacher [5]. In a later work, Beard
[2] collected several primary experimental sources and summarized the data in empirical formu-
las for terminal velocity. For larger ellipsoidal drops that depart from spherical, Clift, Grace,
and Weber [1] recommend empirical equations be used to calculate a “correlation Reynolds
number” that can then be compared directly to Gunn and Kinzer or Beard and Pruppachers
experimental data.

Droplet deformation is characterized by a flattening of the drop at the front (lower) surface
as a result of the increased hydrodynamic pressure. Deformation increases as inertia dominates
over surface tension. One theoretical treatment of drop deformation, McDonald [6], used a
distribution of aerodynamics pressure deduced from photographs of droplets traveling at ter-
minal velocity to determine drop deformation. Taylor and Acrivos [7] outlined a method for
calculating the theoretical deformation and drag of a falling drop, but restricted their analysis
to low Reynolds numbers (and hence only very small deformations). Pruppacher and Pitter [8]
improved an earlier method of balancing normal stresses at the interface by incorporating better
experimental pressure distributions. One particularly relevant numerical prediction, Feng [9],
used a Galerkin finite-element method to solve steady axisymmetric Navier-Stokes equations
and elliptic mesh-generation equations for deformable drops characterized by a density ratio
of ~ 1000 and a viscosity ratio of ~ 100. However, because of the axisymmetric assumption,
Feng’s results are limited to low to intermediate Reynolds numbers.

2 Mathematical Formulation

This section introduces the equations that describe the carrier and droplet fluid flows. Both
are described by the Navier-Stokes equations for a low Mach number, variable density flow.
Continuity for the carrier phase is given by
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where p. and u. are the point wise carrier fluid density and velocity. The droplet is described
similarly (changing the subscript ¢ to d). Conservation of momentum for the carrier phase is
expressed as follows (similarly for the droplet as done with continuity):
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where g is the acceleration due to gravity, and 7 is the point wise value of the fluid stress tensor
given by
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The hydrodynamic pressure is given by p, dynamic viscosity coefficient by p, and the identity
tensor by I.

The no-slip condition at the phase interface is given by a continuous zero velocity between
the phases,
[up =0 (7)

discontinuous density and viscosity at the interface between the two phases,

[plr = p1 — py (8)
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and finally, a pressure jump at the interface due to surface tension and the velocity gradient.
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3 Solution Methodology

Several computational models have been developed to simulate multiphase flow. Volume-of-fluid
(VOF) methods track the interface between the two phases by computing the liquid volume frac-
tion and surface normal for each cell. This method, first developed by DeBar [10], Hichols and
Hirt [11], and Noh and Woodward [12], is attractive because it can provide discrete mass con-
servation. The level-set method, introduced initially by Osher and Sethian [13], models the
phase interface through the use of an iso-level of a smooth function. Unlike the VOF method,
it cannot ensure mass conservation. In his use of the Galerkin finite element method of a falling
drop, Feng [9] used a boundary-fitted mesh. The mesh interface was recomputed at each time
step, and the flow was treated as two independent single phase flows coupled at the interface.
Hybrid methods have also been used to combine the positive characteristics of some methods.

Owkes and Desjardins’ [3] VOF model was used for

this investigation. The computational domain is a
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To simulate the moving reference frame, an inflow carrier Uin

phase velocity condition is applied at the boundary in the

opposite direction in which a gravity force is applied. The Y

flow field is initialized with the droplet at rest and the carrier
with a uniform velocity. As gravity accelerates the drop, the
inflow velocity is calculated using the following expression
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Figure 1: Schematic diagram of
the moving reference frame asso-
ciated with the falling droplet.
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with Uy, the inflow velocity and Vj.,, the velocity of the

drop in the moving reference frame. The constant « is a

parameter used to specify how much the inflow velocity is corrected at each numerical iteration.
With o = 0, the inflow velocity is constant, and « = 1 the full correction velocity is applied
to the inflow velocity. Incorporating a strong correction parameter allows the simulation to
respond quickly to a shift in the drop’s location within the computational domain; however,
the inflow velocity may change in response to non-physical, numerical velocity fluctuations and
contribute to poor simulation results. Generally a value of a = 0.7 was used.

The applicable boundary conditions are as follows. The diameter and location of the droplet
were specified to define the initial location and shape of the gas-liquid interface. The computa-
tional domain was periodic in the x direction (and in z also if the model was 3D).



The Owkes and Desjardins’ [3] VOF model, like other geometric VOF models, tracks the vol-
ume fraction of each fluid phase in each cell. It uses a flux-based, semi-Lagrangian transport
scheme to update the liquid phase volume fraction between time steps. Flux volumes as shown
in Figure 2 are defined as streak-tubes and can be transported back and forward in time along
the streak-lines to determine the flux through each cell face between iterations. By defining a
flux of volume fraction, the liquid volume fraction in a cell at the new time step is calculated.
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To compute the flux across a cell face, the flux volume
is partitioned using geometrical operations into a col-
lection of simplices (triangles or tetrahedra in 2D and
0.0 Gas 3D, respectively). One unique aspect of this approach
is that it uses the corner vertices’ velocity vectors for
the transport method. As a result, the flux volumes
are non-overlapping and conservation is ensured. Fig-
ure 3 shows two examples of the flux volume partition-
N ing method in two-dimensions. Simplices are defined
to determine both the sign and volume of flux crossing
the face. The liquid volume fraction in a cell at the
new time step is obtained by adding the fluxes for all
faces of the cell. Most VOF methods struggle to com-
pute this flux when a cell experiences both a positive
Liquid and negative flux across a single face. As shown in the
right side of Figure 3, the model used here needs only
to divide the region into simplicies, determine the sign
Figure 4: Interface reconstruction us- of the flux based on a convention (e.g., right hand rule),
ing the PLIC method: the percent and compute the total flux to determine the liquid vol-
volume fraction of liquid specifies the ume fraction in a cell at the next time step. Where
amount of fluid and the surface normal the positive and negative simplex flux volumes overlap,
determines the orientation. they cancel each other and the true flux is obtained.
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The PLIC method is then used to approximate the surface interface as a straight line or plane
(in two or three-dimensions, respectively) whose normal determines the interface orientation.
The reconstructed geometry is shown in Figure 4.
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Figure 5: Method of heights used to calculate curvature

The computation to obtain curvature, k, used here is a modified version of the height function
method [10]. Columns defining the average height of the amount of fluid in the direction most
in line with the interface normal vector are used to define a set of points. The height values
at these points are used with finite difference methods to calculate the curvature. Historically,
this method is impractical for interfaces that deform significantly because the interface shape
might not be oriented in any of the three directions, yielding a poor approximation. Popinet
[14] introduced a scheme whereby heights and widths are combined to compute a parabolic
curve-fit (Figure 5 shows the approximation for heights); this method yields improved results
for interfaces with large curvatures. The modified version of the method of heights used here was
developed by Owkes and Desjardins [15]. It orients the heights such that they are aligned with
the surface normal. Though this is more computationally expensive, it provides an accurate
curvature for under-resolved or highly curved interfaces.

4 Computational Results

The code developed by Prof. Desjardins’ lab, NGA, was used to complete the simulations. It
had been validated for the canonical Zalesak’s disk model and is capable of modeling two phases
with high density and viscosity ratios. Of note is that some of the simulations reported here are
a 2D circle model. In three dimensions, this represents an infinitely long cylinder perpendicular
to the flow stream, and not a falling sphere. As such, results from these cases cannot be directly
compared to analytical and experimental droplet results.

The objective of this project was to focus on common liquids (density p; ~ 1000 kg m~3
and viscosity y; ~ 1073 N s m~2) and gases (p; ~ 1 kg m™3 and p,; ~ x1075 N s m™2). At
lower Reynolds numbers, drop deformation is less significant, making it easier to conduct code
validation. Thus, the behavior was explored for Rep ~ 10 and We ~ 0.01. The gas viscosity
was increased to 107* N s m~2 to achieve the reduction in Reynolds number. Because Weber
number is not a function of dynamic viscosity, this strategy effectively reduced the Reynolds



number of the flow, without making surface tension effects more dominant.

Figure 6 illustrates the inflow velocity behavior of a representative 1 mm drop. Even with a
low Reynolds number, significant oscillations were observed (though steady flow was expected).
In this case, the velocity fluctuations could be attributed partly to wake instability from defor-
mation. However, for a 0.5 mm droplet test case, the droplet remained quite spherical, but the

inflow velocity still oscillated significantly.
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Figure 6: Behavior of 1lmm drop simulation with higher carrier phase viscosity. Note the
continued presence of strong velocity oscillations.
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Figure 7: Movement of 0.5 mm drop with
no gravity acting. Location of interface at
start and end of simulation.

It was determined that the unsteady wake
at low Reynolds number flows resulted from
errors in curvature calculations. At  this
point, the modified method of heights as
described earlier had not yet been imple-
mented. Large density and viscosity ra-
tios, combined with strong surface tension,
yielded local accelerations on the drop sur-
face when computing curvature. The ex-
pression used to calculate the inflow veloc-
ity viewed these local accelerations as overall
changes in the drop’s velocity within the mov-
ing reference frame and adjusted inflow accord-

ingly.

To confirm that the curvature calculation was the
driving cause of the unsteady behavior, the 0.5
mm case was computed without an applied gravity
force. Without any external forces acting on the
drop, one would expect the drop to remain station-
ary. However, as shown in Figure 7, it is clear that
droplet moves over time. Additionally, refining the
mesh and increasing the number of points used to

calculate curvature did not improve the results: it took longer for these “computational vibra-
tions” to occur, but when they did, they were much stronger. Further investigations showed
that modifying the o parameter (i.e., « = 0.2,0.7, and 1) did not reduce the destabilizing accel-



erations. It was concluded that the computation of curvature required modification to obtain
physically meaningful results.
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Figure 8: Behavior of 2D 0.5 mm drop simulation with corrected curvature calculation.

The local accelerations may have also been partly attributable to the fact that these simulations
were being run with a time-step such that the viscous Courant-Fridrichs-Lewy (CFL) >> 1.
With the new curvature method implemented and a reduced time-step such that the viscous
CFL ~ 1, the drop displayed better stability as shown in Figure 8. The inflow velocity as given
in Figure 8(a) is still fluctuating, but this is likely because the simulation was not completed
up to the characteristic drop time; the flow is still in a transient period.
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Figure 9: Inflow velocity of 3D droplet. p = 1000 and p = 10.

The 3D droplet models yielded improved results; the droplet experienced the “three-dimensional
relieving effect” whereby the gas phase has a third dimension, and thus greater freedom, to pass
by the drop. Using a model which resolved the droplet to approximately 8 computational cells
across the droplet diameter, the inflow velocity oscillation was significantly reduced and the
droplet remained relatively stationary. The velocity trend is given in Figure 9(a). The velocity
oscillation was within approximately 10 % in excess and less than the average value at any given
time once steady behavior was established. The average velocity after the transitory period had
passed was approximately 0.8 m/s.



The mesh was further refined to 15 cells across the droplet diameter in effort to reduce the
magnitude of the oscillations. The results shown in Figure 9(b) show the inflow velocity after
approximately one and a half characteristic time lengths. It appears that the droplet had not
reached expected behavior; however, further testing was not completed at this time.

5 Discussion

In the aforementioned computational experiments of a falling liquid drop, the numerical param-
eters of interest include classic variables such as mesh grid fineness and time step length, as well
as case-specific parameters such as the damping coefficient « in the inflow velocity equation.
As investigated in various simulations, it was determined that these parameters had some effect
on the calculation results.

In this particular study, grid refinement received less attention because the focus was on at-
taining code functionality. Before investigating mesh dependency of solutions, it is important
to confirm that predicted results are reasonable.

As reported in the Results section, the time step selection was an important factor in ob-
taining physically meaningful results. The CFL condition is used to make appropriate choices
for the time step in simulations. The viscous CFL number, C', in one dimension is given as:

C= 4H(AA;)2 (11)

where At is the time step, and Ax is the grid spacing. Specifically, it was observed that in the
2D simulations, the viscous CFL could not be greater than ~ 1 if local velocity fluctuations
were to be avoided. The 3D cases did not require such a stringent requirement on this CFL
number because of 3D relief behavior (viscous CFL was allowed to increase to ~ 30).

The parameter «, which specifies the percentage by which the inflow velocity changes to offset
the velocity of the drop within the moving reference frame between each time step, did not
impact the model significantly if a = 0.2 or greater. As expected, the extremely small o values
resulted in the droplet falling freely through the domain. For slightly larger values and above;
however, the simulation was insensitive to variations in «. This was expected because the sim-
ulations focused on steady flow: with only small changes in velocity, the parameter o would
not have a large impact. In unsteady simulations; however, o may have a greater impact on
simulation results.

After observing the movement of the drop in the absence of any physical applied forces, it
was determined that the numerical model struggled to compute curvature when surface tension
was more dominant than inertial effects. Decreasing the surface tension forces (thereby increas-
ing Weber number) relaxed the curvature calculations such that local velocity accelerations did
not occur on the interface. As a result, the simulation achieved steady behavior. However, by
increasing Weber number too significantly, the surface tension forces were too weak to maintain
the drop’s spherical shape, and it deformed and broke apart.

To verify the 3D results, the inflow velocity was compared to the terminal velocity prediction
obtained from the differential governing equation for a heavy sphere subject to gravity
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where u is the background fluid velocity, v is the drop velocity, and 7, is the characteristic
particle response time
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and f is the drag factor. In this case, for Re = 10, the Shiller-Nauman correlation was used

(13)
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For a 0.5mm droplet with density of 1000 kg m ™3, viscosity of 1073 N s m~2, and surface tension
of 0.0625 N m~! falling through carrier phase with density 1 kg m™> and viscosity 107* N s
m~2, the Shiller-Nauman correlation predicted a terminal velocity of 0.9 m/s.

The 3D model with a coarse mesh of 8 cells across the drop diameter yielded an average termi-
nal velocity of 0.8 m/s with fluctuations plus/minus 10 percent of the average. Further testing
would be necessary to determine if the refined mesh yielded results closer to the Shiller-Nauman
prediction.

6 Conclusions

The behavior of falling drops has been widely studied in experimental work and in some sim-
plifying analytical cases; however, numerical work has been relatively limited, particularly in
the area of higher Reynolds numbers, when the droplet significantly deforms and even begins
to break apart. This project focused on showing that the NGA code can track the behavior of
liquid droplets falling in a quiescent gas where the two phases are characterized by large density
and medium viscosity ratios: on the order of 1000 and 10, respectively.

The simulations conducted were of low Reynolds number (~ 10) and low Weber number
(~ 0.01 — 1) droplets. The 3D droplet model showed fairly good agreement with the Shiller-
Nauman correlation for a falling liquid droplet. As a result of this project, a method for
calculating the velocity of the moving reference frame traveling with the drop was developed,
and the effect of different numerical parameters (e.g., the damping parameter « for the inflow
velocity calculation) on the numerical model was investigated.

From this investigation, it is clear that there are several important requirements when mod-
eling a falling liquid drop using this VOF scheme. First, a robust method of calculating and
resolving the curvature of the drop in all the surface normal directions (particularly the normals
oriented off of the Cartesian coordinate axes) should be employed. Appropriately sized time
steps should be selected to maintain temporal accuracy of viscous dynamics. Finally, to capture
three-dimensional relaxation effect and prevent the strong velocity fluctuations as observed in
2D, a 3D model with relatively good drop resolution is required.

The simulations discussed in this project are significantly limited in application: only steady
flow (i.e., low Reynolds numbers) with a relatively low viscosity ratio and somewhat low Weber
number were investigated. The density ratio of these flows is characteristic of common liquids
and gases; however, the viscosity ratio is an order of magnitude smaller than what is common
for liquids and gases. Future work in this area would be to complete a full regime mapping
over a range of Reynolds and Weber numbers to characterize numerically the behavior of falling
liquid drops, while verifying with the available experimental data.
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