The development of subchondral bone lesions of the medial femoral condyle in horses

A finite element study
Jiadi Fan, the department of Mechanical and Aerospace Engineering, Cornell University, NY.
jf653@cornell.edu

Abstract

Subchondral cystic lesions (SCLs) found on the medial femoral condyle (MFC) are a common problem in horses. However, the mechanism of the growth of SCLs is still debated.

Proposed mechanisms for development of SCLs include osteochondrosis and trauma. Osteochondrosis claimed that the degenerate and necrotic parts of the cartilage led to formation of cartilage flaps and eventually to loss bodies. Small pieces of subchondral bone could be ripped off when a cartilage flap was formed. Trauma claimed that damage to the articular cartilage alone or articular cartilage plus subchondral bone resulted in the formation of subchondral cystic lesions.

In this article, a finite element method was used to evaluate these two proposed mechanism, and try to determine the etiology of SCLs at MFC of horses. A three-dimensional laminated FEA model of MFC joint was built to study the von Mises stress, minimum principal strain, strain energy density in relation to cartilage and cortical bone destructions.

Our study supports that the osteochondrosis mechanism and trauma mechanism both influence the development of SCLs on MFC. The lesions at cartilage are dominated by osteochondrosis; the lesions at cortical bone are dominated by trauma.

Introduction

Cartilage serves as a cushion between the bones of joints, allowing the bones to glide over one another and absorb the shock from physical movements. Subchondral bone is the layer of bone just below the cartilage. Osteoarthritis is caused by the breakdown of cartilage in one or more joints. A subchondral cyst (Figure 1) is a fluid-filled sac that extrudes from the joint, consisting of thickened joint material (mostly hyaluronic acid, a substance found in normal joint fluid that serves to lubricate the joint).

Subchondral cystic lesions found on the medial femoral condyle are a common problem in horses. SCLs are usually located on the weightbearing surface of condyle and are frequently associated with lameness. There is increased blood flow and other changes that develop in the subchondral layer -- subchondral sclerosis (increased bone density), subchondral cyst formation and increased pressure within the bone -- all of which may cause osteoarthritis pain.

The etiology of SCLs is still unclear. In 1940, Freund found evidences that pressure-instrusion of synovial fluid may cause enlargement of cystic lesions. In 1955, Rhaney and Lamb claimed that the "violent impact" between opposing joint surface without cartilage shelter led to bone necrosis. In 1978, Rejno and Stromber claimed that the loss of material in the cartilage was due to the degeneration and necrotic parts of cartilage. In 1996, Baxter suggested that damage to the articular cartilage alone or articular cartilage plus subchondral bone resulted in the formation of subchondral cystic lesions. In this article, a three-demensional laminated finite element model
was used to study the mechanical response of cartilage and subchondral bone under load. The purpose was to evaluate these mechanisms and try to figure out the formation process of SCLs.

Figure 1 Post mortem sagittal section showing the typical gross appearance of a subchondral cystic lesion. The lesion is surrounded by sclerotic subchondral bone (a). A dense layer of fibrous tissure is found just beneath the bone around the periphery of cyst (b). The centre of cyst is often filled with a gelatinous material (c). (Wallis. T. W 2007)

Materials and methods

Model description

A three-dimensional laminated finite element model was constructed. The surface of MFC was sphere with radius of 18 mm . The surface of foundation was flat plane (Figure 2).The entire height of this model was 9 mm . The thickness of cartilage was 2 mm , which was constant. Three cartilage/cortical bone thickness ratio were chosen, which were $2: 1,1: 1$, and $1: 2$, to implement
parametrical analysis. Various material properties of foundation were chosen to study how the foundation influenced the mechanical response of bone. The geometry parameter and material properties show below (Table 1). A concentrated force of 1.5 kN was implemented perpendicular to the rigid shell. Therefore, the load at MFC was 1.5 kN uniform load. All the degrees of freedom were fixed on the bottom of foundation. The rigid shell and MFC could only move along the direction of load.

A CAD software TrueGrid was used to generate this model. TrueGrid is a programming based CAD software. Users could use code to descript the geometry, mesh, point sets, surfaces, material proprieties they need. TrueGrid could read the code and generate the prescribed model (Appendix 1).

After generating the three-dimension model and mesh. An ABAQUS head file (Appendix 2) was needed to define the boundary condition, load, contact, and simulation step.

(a)

(b)

Figure 2. Geometry descriptions. In (a), the green layer is cartilage, the yellow layer is cortical bone, the pink layer is cancellous bone. In (b) the joint includes spherical MFC and flat foundation. The flat plane upon MFC is a rigid shell which is used to generate uniform pressure.

	Cartilage	Cortical bone	Cancellous bone
Thickness (mm)	2	$1 ; 2 ; 4$	$6 ; 5 ; 3$
Young's Modulus (Mpa)	20	20000	1000
Poison's ratio	0.46	0.3	0.3

Table 1 Parameter descriptions.

Simulation process

Firstly, parametrical analysis was implemented to figure out a proper Cartilage/Cortical bone thickness ratio and Young's modulus of foundation for further cysts study. Perfect MFC model without cyst was used. Cartilage/Cortical bone thickness ratio were chosen as 1:2, 2:2, and 2:1. Young's modulus of foundation was set as $20 \mathrm{Mpa}, 200 \mathrm{Mpa}$, 2000 Mpa and 20000 Mpa . After
determining these two parameters. The proper parameters were implemented into models with various types of cysts to get the van Mises stress distribution, minimum principal strain distribution, strain energy density distribution of the deformed MFC.

Secondly, Cyst shape analysis was implemented. Various types of SCLs were implemented into the model to study how cyst shape influenced the mechanical resoponse of MFC. Specificly, two models with short and long cysts (Figure 3) were built. The weight/ depth ratio of these two cysts were $2: 1$ and $1: 1$ respectively. The von Mises stress distribution, maximum principal strain distrbution, and strain energy density distribution were compared to figure out how different cyst shape influenced the mechanical response of cartilage, cortical bone, and cancellous bone.

Thirdly, cyst transformation analysis was implemented. Models with various geometries (from small cysts to large cysts) and positions (from partial cartilage cyst to entire cartilage cyst, then to cortical bone defect, Figure 4) were made. Again, by comparing the von Mises stress distribution, maximum principal strain distribution, and strain energy density distribution, we would like to study the effect of cyst to the mechanical response of cartilage and cortical bone under load, and how the imperfection at cartilage influences the growth of cyst.

(b)

(c)

Figure 3 Cyst shape analysis. (a) Perfect MFC without cyst. (b) Weight/Depth=2/1 cyst.
(c)Weight/Depth=1/1 cyst.

Figure 4 Four cyst types. (a) Perfect MFC without cyst. (b) Small cyst at cartilage. (c) Entire loss of material at cartilage. (d) Entire loss of material plus a small defect at cortical bone.

Result

Parametrical analysis

The von Mises stress distribution matrix (Figure 5) and maximum von Mises stress table (Table
2) show below. All the maximum von Mises stress appear in the cortical bone. As the Young's modulus of foundation increases, the maximum value of von Mises stress increases. As the
thickness of cortical bone increases, the maximum value of von Mises stress decreases. In the model with the Young's modulus of 2000 Mpa and 20000 Mpa , after deformation, the maximum values of von Mises stress are similar. 20Mpa is the Young's Modulus of cartilage, which is too soft for the foundation. So, 200Mpa was chosen as the Young's Modulus of foundation, and $1 / 1$ (both are 2 mm) was chosen as cartilage/ cortical bone thickness ratio for further research.

Figure 5 von Mises stress distribution for parametrical analysis

Cartilage/Compact	20 Mpa	200 Mpa	2000 Mpa	20000 Mpa
$2 / 1$	25.74	53.38	63.64	64.90
$1 / 1$	20.81	36.29	43.57	43.57
$1 / 2$	20.59	22.90	25.22	25.52

Table 2 Maximum value of von Mises stress

Cyst shape analysis

After parametrical analysis, Young's Modulus of foundation was chosen as 200 Mpa , and cartilage /cortical bone thickness ratio was $1 / 1$ and $2 / 1$. Von Mises stress distribution, maximum principal strain distribution, and strain energy density distribution after deformation were studied. (Figure 6, 7, 8 and Table 3 is for cartilage/cortical bone thickness ratio of $1 / 1$; Figure 9, 10, 11 and Table 4 is for cartilage/cortical bone thickness ratio of 2/1)

From Figure 6 and Figure 9, the von Mises stress at cartilage above the cyst was always low for all parameters, and the stress peak was at the edge for all parameters.

From Figure 7 and Figure 10, all the deformation were in the cartilage. However, the cartilage with longer cyst will deform more.

From Figure 8 and Figure 11, the strain energy density above the cyst was also low, and the strain energy density peak was also at the edge for all parameters.

Comparing (a), (b) and (c) in each figure, the cyst generated a low von Mises stress and strain energy density area above the cyst at cartilage. The cyst also generated a von Mises stress and strain energy density peak around the edge of the cyst at cartilage. The "longer" cyst led to a more dramatic change. However, at cortical bone, the cyst made the von Mises stress bone a little more concentrated. From Figure $7-\mathrm{c}$ and Figure $10-\mathrm{c}$, we noticed that the cyst also generated a low strain area above the cyst, and a strain peak at the edge. However, the change of strain was not obvious in the "short" cyst model (Figure 7-b and Figure 10-b).

Comparing the result of two thickness ratio, the maximum value of von Mises stress (compare Table 3 and Table 4) in a thinner cortical bone model (Cartilage/Cortical bone thickness ratio $=$

2:1) was increased by about 45% compared with that in a thicker cortical bone model (Cartilage/Cortical bone thickness ratio $=1: 1$). However, the maximum principal strain and strain energy density didn't change too much.

Cartilage/Cortical bone thickness ratio=1/1 (both are 2mm)

Figure 6, von Mises stress distribution with cartilage/cortical bone thickness is 1/1. (a)Prefect cartilage without cyst. (b)Weight/Depth of cyst is $2 / 1$. (c) Weight/Depth of cyst is $1 / 1$

(a)
(b)
(c)

Figure 7, Maximum principal strain distribution with cartilage/cortical bone thickness is $1 / 1$.
(a)Prefect cartilage without cyst. (b)Weight/Depth of cyst is $2 / 1$. (c) Weight/Depth of cyst is $1 / 1$

Figure 8, Strain energy density distribution with cartilage/cortical bone thickness is $1 / 1$. (a) Prefect cartilage without cyst. (b)Weight/Depth of cyst is $2 / 1$. (c) Weight/Depth of cyst is $1 / 1$

Cyst information	Without cyst	W/D $=2: 1$	W/D=1:1
Max value of von	37.32	36.29	36.15
Max value of		The max value is maximum principal (Mpa) most area is in the	The max value is in most area is in the range of $0 \sim 0.35$ range $0 \sim 0.45$
Max value of strain	0.33672	9.84	13.0
energy density			

Table 3 Maximum value of three results with cartilage/cortical bone thickness is 1/1.

(a)
(b)
(c)

Figure 9, von Mises stress distribution with cartilage/cortical bone thickness is 2/1. (a) Prefect cartilage without cyst. (b)Weight/Depth of cyst is $2 / 1$. (c) Weight/Depth of cyst is $1 / 1$

Figure 10, Maximum principal strain distribution with cartilage/cortical bone thickness is 2/1.
(a)Prefect cartilage without cyst. (b)Weight/Depth of cyst is $2 / 1$. (c) Weight/Depth of cyst is $1 / 1$

(a)
(b)
(c)

Figure 11, Strain energy density distribution with cartilage/cortical bone thickness is 2/1. (a) Prefect cartilage without cyst. (b)Weight/Depth of cyst is $2 / 1$. (c) Weight/Depth of cyst is $1 / 1$

Cyst information	Without cyst	W/D $=2: 1$	W/D=1:1
(Mpa)	53.38	52.75	54.32
Max Von Mises stress	0.3346	The max value is 0.4922, but the value in most area is in the range of $0 \sim 0.35$	The max value is in most area is in the range $0 \sim 0.45$
Strain energy density	3.325	9.37	11.08

Table 4 Maximum value of three results with cartilage/cortical bone thickness is 2:1.

We would like to focus on the von Mises stress distribution at cartilage. So, a zoom-in contour in the same scale at cartilage (Figure 12,13) as built. The change of cortical bone thickness didn't influence the von Mises stress distribution at cartilage too much. However, in the thinner cortical bone model, the stress at cancellous bone is larger than that in the thicker one.

Figure 12 Blow up at cartilage with cartilage/cortical bone thickness is $1: 1$

Figure 13 Blow up at cartilage with cartilage/cortical bone thickness is 2:1

Cyst transformation analysis

In this part, 200Mpa was used as the Young's Modulus of foundation, and $1 / 1$ as the cartilage/cortical bone thickness ratio. Von Mises stress distribution, maximum principal strain distribution, and strain energy density distributions after deformation were compared. (Figure 14, $15,16)$

In the model with an entire cyst at cartilage, the cyst generated a stress peak at cortical bone (Figure 14-c) and a maximum principal strain peak around the cyst at cartilage (Figure 15-c).

In the model with an entire cyst at cartilage plus a small damage at cortical bone, the cyst also generated a stress peak upon the cyst (Figure 14-d), the area and maximum value were larger than those in model with the entire cyst at cartilage. Similar with (c), the cyst generated a peak of maximum principal strain around the cyst (Figure $15-\mathrm{d}$). The position and value of strain distribution didn't change too much.

Figure 14 von Mises distribution. (a) Perfect cartilage with no cyst. (b) Small cyst at cartilage. (c) Entire loss of material at cartilage. (d) Entire loss of material at cartilage plus a small damage at cortical bone.

(a)
(b)

Figure 15 Maximum principal stain distribution. (a) Perfect cartilage with no cyst. (b) Small cyst at cartilage. (c) Entire loss of material at cartilage. (d) Entire loss of material at cartilage plus a small damage at cortical bone.

(a)
(b)

(c)
(d)

Figure 16 Strain energy density distribution. (a) Perfect cartilage with no cyst. (b) Small cyst at cartilage. (c) Entire loss of material at cartilage. (d) Entire loss of material at cartilage plus a small damage at cortical bone.

	No cyst (a)	Small cyst at cartilage (b)	Entire loss of material at cartilage (c)	Entire loss of material plus small defect at cortical bone (d)
Max value of von Mises stress (Mpa)	37.32	36.29	50.78	58.60
Max value of Maximum principal strain	0.33672	The max value is 0.4935 , but the value in most area is in the range of $0 \sim 0.35$	The max value is 0.70, but the value in most area is in the range of $0 \sim 0.5$	The max value is 0.6712 , but the value in most area is in the range of $0 \sim 0.5$

Table 5 Maximum value of von Mises stress and maximum principal strain

Discussion

Parametrical analysis

This article focused on the mechanical response at the MFC. As the model was laminated heterogeneous, the thickness of cortical bone influenced the mechanical response at MFC. Actually, the foundation of joint should be a laminated heterogeneous model, as well. However, as foundation was not our interest, it could be defined as a homogenous model with certain

Young's modulus, which should be an average of cartilage ($\mathrm{E}=20 \mathrm{Mpa}$), cortical bone ($\mathrm{E}=20000 \mathrm{Mpa}$), and cancellous bone $(\mathrm{E}=1000 \mathrm{Mpa})$. The purpose of parametrical analysis was to study how Young's modulus of foundation and cartilage/cortical bone thickness ratio influence the stress distribution after deformation, then to determine the proper Young's modulus of foundation and cartilage/cortical bone thickness ratio for further research.

The result from parametrical analysis showed that when the Young's modulus was set as 2000 Mpa and 20000 Mpa , both the maximum value and the distribution of von Mises stress for three thickness ratio was similar. If the Young's modulus of foundation was higher than 2000 Mpa , the change of this parameter will not lead to change, which meant 2000Mpa was too stiff for the foundation. When the Young's modulus of foundation was set as 20 Mpa , which was equal to the Young's modulus of cartilage, the von Mises stress was very small. Young's modulus of 20 Mpa seemed too soft for the foundation. When the Young's modulus of foundation was set as 200 Mpa , the maximum value of van Mises stress was not too big, either too small. So, 200Mpa was the proper Young's modulus for foundation of joint.

Cyst shape analysis

Base on the clinical research, there were various shapes of cysts in the MFC of horse (T.W. Wallis, L.R. Goodrich 2007). Some cysts were shallow (Figure 17-a), some cysts were deep (Figure 17-b), some were small in the surface, but big inside the bone, like a mushroom (Figure 17-c).

Figure 17 Various types of SCLS

This article focused on the (a) and (b), by implementing the cyst shape analysis to study the effect of cyst shape to the mechanical response of MFC.

From the result of cyst shape analysis, the following conclusions were made: (1) All the low stress and strain energy density areas were above the cyst. (2) All the peak stress and strain energy density areas at cartilage were in the edge of cyst. (3) The change of cortical bone's thickness rarely influenced the mechanical response at cartilage. (4) The cortical bone was like a shell to protect cancellous bone. So, in the bone with a thinner cortical bone, the cancellous bone suffered more von Mises stress.

Cyst transformation analysis

Cyst transformation analysis was the most important session of this article, which could tell us a story about a possible mechanism of how cysts at cartilage grow, and how SCLs was generated. The way that cartilage cells get nutrition is stress. From the result of cyst transformation analysis, the small cartilage defect generated a low stress, low energy, and low strain area above the cyst. Then, the cartilage would have necrosis part because the death of cells. The cyst at cartilage grew because of bone resorbtion, until the entire loss of material at cartilage. This process supported the osteochondrosis theory. After the entire loss of body at cartilage, the subchondral bone lost
the protection of cartilage. This change generated a stress peak at cortical bone, which was 35% higher than that without cyst. This stress peak might generate micro-fracture of cortical bone, and then caused the loss of cortical bone. Under the assumption of this cortical damage, the stress peak in the cortical bone was even 15% higher than the one in the entire cartilage cyst model, which could lead to a further damage at cortical bone. This process supported Rhaney and Lamb's theory and the trauma mechanism.

Strength and limitation

Former research (Durr, Hans, 2004) had used finite element method to study the course and development of subchondral bone cysts. However, their model was two-dimensional axisymmetric model. They did not explain why the cyst at cartilage developed, but only claimed that with the loss of material at cartilage, the development of SCLs was caused by stress-induced micro-fracture. The model in our article was three-dimensional laminated model. We simulated how small cyst at cartilage became large cyst, and then led to the entire loss of material at cartilage. We not only gave hypothesis about how SCLs happened without the shelter of cartilage, but also explained how MFC lost cartilage.

The MFC is highly heterogeneous material. Even though our model was laminated different, but it was homogenous in each lamina. The geometry of our model was prefect sphere. However, the real geometry of MFC should be more complicated. These ideal simplifications would somewhat led to loses of accuracy.

In conclusion, our study claimed that both osteochondrosis theory and trauma theory effected in the formation of subchondral bone. Osteochondrosis mechanism dominated when small cartilage
cyst grew into big cartilage cyst; trauma mechanism dominated after the entire loss of material at cartilage happened, and it was the mechanism that cysts grew at cortical bone.

Reference

1. Dürr, Hans, et al. "The cause of subchondral bone cysts in osteoarthrosis A finite element analysis." Acta Orthopaedica 75.5 (2004): 554-558.
2. Freund, E. "The pathological significance of intra-articular pressure." Edinburgh Med $J 47.192 .1940$ (1940).
3. Ray, C. S., et al. "Development of subchondral cystic lesions after articular cartilage and subchondral bone damage in young horses." Equine veterinary journal 28.3 (1996): 225-232.
4. Rejnö, S., and B. Strömberg. "Osteochondrosis in the horse. II. Pathology." Acta Radiologica. Supplementum 358 (1977): 153-178.
5. Rhaney, K., and D. W. Lamb. "THE CYSTS OF OSTEOARTHRITIS OF THE HIP A Radiological and Pathological Study." Journal of Bone \& Joint Surgery, British Volume 37.4 (1955): 663-675.
6. Wallis, T. W., et al. "Arthroscopic injection of corticosteroids into the fibrous tissue of subchondral cystic lesions of the medial femoral condyle in horses: a retrospective study of 52 cases (20012006)." Equine veterinary journal 40.5 (2008): 461-467.

Appendix 1: True Grid code

abaqus
para mtibia 1 mtit 2 mcart 3 mcort 4 mcanc 5;
abaqmats \%mtibia aqelas aqelis $200.46 ;$;
abaqmats \%mtit aqelas aqelis 110000 0.3; ;; abaqmats \%mcart aqelas aqelis 20 0.46;;;
abaqmats \%mcort aqelas aqelis 20000 0.3;;;
abaqmats \%mcanc aqelas aqelis 1000 0.3; ;;
errmod 2
c parameters
para true 1 false 0 ;
para r1 18.0 theart 2 theort 1 olap 0.000 ; para r2 [\%r1-\%thcart] r3 [\%r2-\%thcort]; para ellipse 1 facets 2 voidtype \%facets;
para cywth 2 cyht 1 cyst $\%$ true;
para fullvoid \%true;
para cortvoid \%false;
if (\%fullvoid .eq. \%true) then
para cortvoid $\%$ false flat 1 bump 2
cvtype \%flat bumpht .20;
endif
para socart 1 socort 2 socanc 3 svoid 4 svoidtop 5 sload 6;
sd \%socart sp 00 [\%r1-\%olap] \%r1;
sd \%socort sp 00% r1 \%r2;
sd \%socanc sp 00% r1 \%r3;
if (\%voidtype .eq. \%ellipse) then
sd \%svoid er 000001
[\%cywth/2] \%cyht;
else
para cvoid \%nextcrv ct [\%cywth/2];
if (\%fullvoid .ne. \%true) then
curd \%cvoid lp3 [-\%ct-. 1$] 00$ [-\%ct-.05]
0 [.04*\%cyht]
[-\%ct] 0 [.1*\%cyht] [-0.7*\%ct] 0
[.7*\%cyht]
[-.2*\%ct] 0 [.96*\%cyht] 00
[.97*\%cyht];;
else
c get the intersection point with the cortical bone
para iptoff [\%r2*(1-
$\cos (\operatorname{asin}((\% c y w t h / 2) / \% r 2)))] ;$
if (\%cvtype .eq. \%flat) then
c above the intersection point slightly
curd \%cvoid $\operatorname{lp} 3[-\% c t-.1] 00[-\% c t] 0$
0.1
[-\%ct] 0 [\%thcart+\%iptoff] 00
[\%thcart+\%iptoff];;
else
curd \%cvoid lp3 [-\%ct-. 1$] 00[-\% c t] 0$
0.1
[-\%ct] 0 [\%thcart+\%iptoff];;
arc3 seqnc rt [-\%ct] 0
[\%thcart+\%iptoff]
rt [-0.5*\%ct] 0
[0.707*\%bumpht+\%thcart+\%iptoff]
rt 00 [\%bumpht+\%thcart+\%iptoff];
endif
endif
sd \%svoid R3DC 000001 \%cvoid 0 365;;
endif
c factor is to get decent intersection with cyst opening for ceiling corner
sd \%svoidtop sp 00% r1 [\%r1-0.8*\%cyht] sd \%sload xyplan mz 9;

c Tibia

c went to a center refined region so do it here. include viewing, $x=0$
block 1234 5; 123 4;12;
-20-2.25 02.25 20;-20-2.25 2.25 20;-10
0 ;
angle 0
para ntibwng 15 ntibcen 30 ntibz 12;
mseq i [\%ntibwng-1] [\%ntibcen/2-1]
[\%ntibcen/2-1] [\%ntibwng-1]
mseq j [\%ntibwng-1] [\%ntibcen-1]
[\%ntibwng-1]
mseq k [\%ntibz-1]
c make outer els smaller towards center
res 111242 i .85
res 411542 i [1/.85]
res 111522 j .85
res $131542 \mathrm{j}[1 / .85]$
c contact; to avoid equivalencing
c condyle on tibia
sid 1 dummy;
c load on condyle
sid 2 dummy;
sii ;;-2; 1 s
fseti ;;-2; or toptibia
c smaller els at top. Second one is for block w/o central refinement
res 111542 k .85
c res 111222 k .85
c for BCs
nseti ;;2; or ntop
nseti ;;-1; or nbot
eseti ;;; or etibia
eseti $13 ; ;$; or emedtibia
eseti 3 5;;; or elattibia
mate \%mtibia
endpart
c Bone
block 123 4;1 23 4;12;
-10-10 10 10;-10-10 10 10;0 10;
dei 1203 4; 1203 4;;
c now create a central section...
para nwng 12 ncent 36 ;
para nwng 12 ncent 42;
mseq i [\%nwng-1] [\%ncent-1] [\%nwng-1]
mseq j [\%nwng-1] [\%ncent-1] [\%nwng-1]
mseq k 5
c move wings
mbi -1;-2;;xy -20-20
mbi -2;-1;;xy -20-20
mbi -3;-1;;xy 20-20
mbi -4;-2;;xy 20-20
mbi -3;-4;;xy 2020
mbi -4;-3;;xy 2020
mbi -2;-4;;xy -20 20
mbi -1;-3;;xy-20 20
c create layers for cartilage/cortical
insprt 1611
insprt 1621
c increase the elements
para nz12 12;
mseq $k[\% n z 12-1][\% n z 12-1] 10$
c split for cyst
insprt 161 [\%cyht/(\%r1-\%r2)*\%nz12]
c here, " 20 " is the initial width of the central portion. However, use
c 15 to put extra els there and then res to get smaller near cyst
insprt 113 [(15-\%cywth)/15*\%ncent/2]
insprt 122 [(15-\%cywth)/15*\%ncent/2]
insprt 133 [(15-\%cywth)/15*\%ncent/2]
insprt 142 [(15-\%cywth)/15*\%ncent/2]
for 1341
c project to the spheres
sfi ;;-1; sd \%socart
c don't put top of void on the (layer) sphere
sfi 1304 6;; -2;sd \%svoidtop
sfi 3 4; 1304 6; -2;sd \%svoidtop
if (\%cortvoid .ne. \%true) then
sfi ;;-3; sd \%socort
else
sfi 1304 6;; -3;sd \%socort
sfi 34; 1304 6;-3;sd \%socort
endif
sfi ;;-4; sd \%socanc
c outer edges to top plane
for i-1-4-1
sfi -1 $0-6 ; 2$ 5;\%i; sd \%sload
sfi 2 5;-1 $0-6 ; \%$; sd \%sload
endfor
c activate this check and one above for uniform mesh w/ no void
c if (\%cyst .eq. \%true) then
c project the surfaces to the cyst
sfi -3 $0-4 ; 34 ; 12 ;$ sd \%svoid
sfi $34 ;-30-4 ; 12 ;$ sd \%svoid
sfi $34 ; 34 ;-2$; sd $\%$ svoid
c bring in center for top of cort. because of void extra els (=distortion)
pb 34% i 34 \%i xy [0.65*(-\%cywth/2)] [0.65*(\%cywth/2)]
pb 44 \%i 44 \%i xy [0.65*(\%cywth/2)] [0.65*(\%cywth/2)]
pb 43% i 43 \%i xy [0.65*(\%cywth/2)] [0.65*(-\%cywth/2)]
pb 33% i 33% xy [0.65*(-\%cywth/2)] [0.65*(-\%cywth/2)]
endfor
c for thick cartilage ($\mathrm{th}=4$), need to bring in upper center
if (\%thcort .gt. 2.5) then
mbi -2; 2 5;-4;x 2.5
mbi -5; 2 5; -4;x-2.5
mbi 2 5; -2; -4;y 2.5
mbi $25 ;-5 ;-4 ; y-2.5$
endif
c more elements near the void
res 221354 i [1/1.1]
res 421554 i 1.1
res 221534 j [1/1.1]
res 241554 j 1.1
c and make rest more uniform by dist els at edges of center
for i 141
for j 011
res $[2-\% j] 2 \% i[2-\% j] 5 \% i 21$
res $[5+\% \mathrm{j}] 2 \% \mathrm{i}[5+\% \mathrm{j}] 5 \% \mathrm{i} 21$
res $2[2-\% j] \% i 5[2-\% j] \% i 11$
res $2[5+\% \mathrm{j}] \% \mathrm{i} 5[5+\% \mathrm{j}] \% \mathrm{i} 11$
endfor
endfor
c try to make top elements more square
relaxi 3 4;34;-2;200.01 1
if (\%cyst .eq. \%true) then
if (\%fullvoid .ne. \%true) then c remove the cyst region dei $34 ; 34 ; 12$;
else
c remove all of the cartilage dei $34 ; 34 ; 13$;
c project rest of void to the "cyst"
sfi -3 $0-4 ; 3$ 4;2 3;sd \%svoid
sfi 3 4;-3 $0-4 ; 2$ 3;sd \%svoid
relaxi 3 4; 3 4; -3;200. 011
if (\%cortvoid .eq. \%true) then if (\%cvtype .eq. \%bump) then
sfi 3 4;3 4;-3; sd \%svoid
endif
endif
endif
else
relaxi $34 ; 34 ;-1 ; 200.011$
endif
c contact
sii ;;-1; 1 m
fseti ;;-1; or ball
if (\%cyst .eq. \%true) then
sii -3 $0-4 ; 34 ; 12 ; 1 \mathrm{~m}$ sii 3 4;-3 $0-4 ; 12$; 1 m sii $34 ; 34 ;-2 ; 1 \mathrm{~m}$
fseti -3 $0-4 ; 34 ; 12$; or ball
fseti $34 ;-30-4 ; 12$; or ball
fseti $34 ; 34 ;-2$; or ball
endif
c since we'll use the cyst geom w/ or w/o the cyst, include the surf
fseti - $30-4 ; 34 ; 12$; or cyst
fseti $34 ;-30-4 ; 12$; or cyst
fseti 3 4; 3 4;-2; or cyst
c top, for loading
sii -1 $0-6 ;$; $14 ; 2$ s
sii ;-1 $0-6 ; 14 ; 2$ s
fseti -1 $0-6$;; 14 ; or bonetop
fseti ;-1 0-6; 14; or bonetop
c will add top by another block for convenience so remove and bb
dei ;;45;
bb 124254 1;
bb 2545642 ;
bb 524654 ;
bb 2145244 ;
bb 2245545 ;
nseti ;;-4; or ndist
nseti -1 $0-4 ; 23$; ; or ndist
nseti 2 3;-1 $0-4$;; or ndist
mti ;;13; \%mcart
mti ;;34; \%mcort
c make for easy bone BCs and internal viewing
insprt 123 [\%ncent/2-int((15-
\%cywth)/15*\%ncent/2)]
insprt 143 [\%ncent/2-int((15-
\%cywth)/15*\%ncent/2)]
c the bc nodes
nseti $-4 ;-4 ;-4$; or nbonecen
nseti -2 ; -4 ; -4 ; or nboneonx
eseti $14 ;$; or emedball
eseti $47 ;$; or elatball
eseti ;;; or eball
eseti ;;13; or ecart
eseti ;;34; or ecort
interrupt
endpart
c top part of bone
block 12 3;12;12;
-10 0 10;-10 10;7 9;
c add elements
mseq i [\%ncent/2-1] [\%ncent/2-1]
mseq j [\%ncent-1]
mseq k [\%nwng-1]
bb 1111221 ;
bb 121322 2;
bb 311322 3;
bb 1113124 ;
bb 1113215 ;
c get the top els in slightly
tmei ;; -2;500 . 011
c contact
sii ;;-2; 2 s
fseti ;;-2; or bonetop
eseti ;;; or eball
eseti ;;; or ecanc
eseti $12 ;$; or emedball
eseti $23 ; ;$ or elatball
mate \%mcanc
endpart
c Load plane
block 12 3;1 2 3;-1;
-20 0 20;-20 0 20;9;
para nload 50;
mseq i [\%nload/2-1] [\%nload/2-1]
mseq j [\%nload/2-1] [\%nload/2-1]
c should be unnecessary but put on same plane since contact there
sfi ;; sd \%sload
c contact
sii ;;; 2 m
fseti ;"; or load
c rigid reference node (why there are 2 regions in ij)
nseti $-2 ;-2 ;-1$; or rignode
eseti ;;; or loadplane
endpart

C put it together
merge
stp .01

Appendix 2: ABAQUS head file

** These are additional/substitute lines for shell->rigid els
***RIGID BODY, ELSET=erigid, REF
NODE=rignode
***ELEMENT, TYPE=R3D4, ELSET=erigid
**
\qquad
*PREPRINT,ECHO=NO,MODEL=YES,C ONTACT=YES
** \qquad
** in case the opening is large and can't get COPEN values
** add TRACKING THICKNESS=\# to SURFACE INTERACTION card
** polished titanium on bone
*SURFACE INTERACTION, NAME=FRIC
*FRICTION
0.41
*SURFACE INTERACTION, NAME=CARTFRIC
*FRICTION
0.01

```
**
**
**
```

** Try general contact; could not get orig. contact working 1st step!
*CONTACT
** default to everything (could be longer; whole surf. for CP in viewer)
*CONTACT INCLUSIONS, ALL EXTERIOR
** could specify paris if desired
*CONTACT PROPERTY ASSIGNMENT
„CARTFRIC
load,bonetop,FRIC
**
** other contactpair options
** ADJUST=0.0, EXTENSIONZONE=0, SMALL SLIDING,
***CONTACTPAIR, INTERACTION=FRIC,
TYPE=SURFACETOSURFACE
**topplane, ball
**
***CONTACTPAIR, INTERACTION=BIGFRIC,TIED,ADJUST
$=0.05$, EXTENSIONZONE $=0.001$
**midashft,midax

** \qquad
*BOUNDARY, OP=NEW
** bottom of "tibia"
nbot, 1,3, 0 .
** symmetry for the bone (no rotation)
nbonecen, 1,2, 0.0
nboneonx, 2,, 0.0
** force only Z displacement for loading surface
rignode, $1,2,0.0$
rignode, 4,6, 0.0
**
**
*STEP,AMPLITUDE=RAMP,INC=100,NL GEOM
*STATIC
0.0006,1.0,1.000E-07
**
***BOUNDARY, OP=MOD
**** displacement loading
**rignode, 3,, -1.00
**
*CLOAD, OP=NEW
** distributed load for t20, 1000 total (/7129 nodes)
rignode, $3,-1500$

*OUTPUT, FIELD, FREQ=99
*NODE OUTPUT
U
*ELEMENT OUTPUT,
VARIABLE=preselect
*CONTACT OUTPUT
CSTRESS, CDSTRESS,CDISP,CFORCE

**** history outputs, for $\mathrm{x}-\mathrm{y}$ rpts
**** get output at 4 intervals, FORCED on th
*****OUTPUT, HISTORY, TIME
INTERVAL=0.25, TI
**** get them every step because of motion a
*OUTPUT, HISTORY, FREQ=4
***NODE OUTPUT, NSET=rignode
**** might want cf for $\mathrm{x}-\mathrm{y}$ plots (and moment
**U
***CONTACT OUTPUT
**CSTRESS, CFT, CMT, XT, CAREA
**
*PRINT, FREQ=99, CONTACT=YES
**
** dat output if desired. For this step, ?
**
***NODE PRINT, FREQ=99
**U
***NSET,NSET=cnodes
**1565,1690,1815,5856,5940,6024
***NODE PRINT, NSET=cnodes
**coord
** for t 20 , get reaction force to make sure $=1000$
*NODE PRINT, NSET=nbot, FREQ=99
RF
*NODE PRINT, NSET=rignode, FREQ=99
RF
CF

**** will generally want all the contact
pairs
*CONTACT PRINT, FREQ=2
**CSTRESS
**CDISP
CAREA
**CFT
**CMT
**XT
**
*END STEP
**

