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In this article, we are going to discuss on the statistical
tests available to analyse continuous outcome variables.
The parametric tests will be applied when normality (and
homogeneity of variance) assumptions are satisfied
otherwise the equivalent non-parametric test will be
used (see table I).

TableI. Parametric vs Non-Parametric tests.

Parametric Non-Parametric

1 Sample T-test Sign Test/Wilcoxon Signed Rank test

Paired T-test Sign Test/Wilcoxon Signed Rank test

2 Sample T-test Mann Whitney U test/Wilcoxon Sum Rank test

ANOVA Kruskal Wallis test

We shall look at various examples to understand
when each test is being used.

1 SAMPLE T-TEST
The 1-Sample T test procedure determines whether the
mean of a single variable differs from a specified
constant. For example, we are interested to find out
whether subjects with acute chest pain have abnormal
systolic (normal = 120 mmHg) and/or diastolic (normal
= 80 mmHg) blood pressures. 500 subjects presenting
themselves to an emergency physician were enrolled.

Assumption for 1 sample T test: Data are normally distributed.
We have discussed in the last article(1) on how to check
the normality assumption of a quantitative data. One
issue being highlighted was that these formal normality
tests are very sensitive to the sample size of the variable
concerned. As seen here, table II shows that the normality
assumptions for both the systolic and diastolic blood
pressures are violated but basing on their histograms
(see figure 1), normality assumptions are feasible.

Table II. Formal normality tests.

Tests of Normality

Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

systolic blood pressure .049 500 .006 .990 500 .002

diastolic blood pressure .042 500 .032 .992 500 .011
a  Lilliefors Significance Correction.

Figure 1. Histograms of Systolic & Diastolic blood pressures.
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So with the normality assumptions satisfied, we
could use the 1 Sample T-test to check whether
the systolic and diastolic blood pressures for these
subjects are statistically different from the norms of
120 mmHg and 80 mmHg respectively.

Firstly, a simple descriptive would give us some
idea, see table III.

Table III. Descriptive statistics for the systolic & diastolic BP.

Mean Std Minimum Maximum Median
Deviation

systolic
blood pressure 140.51 24.08 79.00 200.00 139.00

diastolic
blood pressure 78.65 12.91 48.00 110.00 79.00



In the Sign test, the magnitude of the differences
between the variable and the norm is not taken into
consideration when deriving the significance. It
uses the number of positives and negatives of the
differences. Thus if there were nearly equal numbers of
positives and negatives, then no statistical significance
will be found regardless of the magnitude of the
positives/negatives. The Wilcoxon Signed Rank
test, on the other hand, uses the magnitude of the
positives/negatives as ranks in the calculation of the
significance, thus a more sensitive test.

PAIRED T-TEST
When the interest is in the before and after responses
of an outcome (within group comparison), say, the
systolic BP before and after an intervention, the
paired T-test would be applied.

Table VIII shows the descriptive statistics for
the before and after intervention systolic BPs of
167 subjects.

To perform a 1 Sample T-test, in SPSS, use
Analyze, Compare Means, One-Sample T test. For
systolic, put test value = 120 and for diastolic put
test value = 80 (we have to do each test separately).
Tables IV & V shows the SPSS output.
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Table IV.  1 Sample T-test for systolic BP testing at 120 mmHg.

One-Sample Test

Test Value = 120

95% Confidence
Interval of the

Difference

t df Sig. Mean Lower Upper
(2-tailed) Difference

systolic
blood
pressure 19.046 499 .000 20.5080 18.3925 22.6235

Table V.  1 Sample T-test for diastolic BP testing at 80 mmHg.

One-Sample Test

Test Value = 80

95% Confidence
Interval of the

Difference

t df Sig. Mean Lower Upper
(2-tailed) Difference

diastolic
blood
pressure -2.345 499 .019 -1.3540 -2.4886 -0.2194

These subjects had a much higher systolic BP
(p<0.001, difference = 20.5, 95% CI 18.4 to 22.6)
compared to the norm of 120 mmHg. This difference
is clinically ‘relevant’ too. For the diastolic BP,
though there was a statistical significance of 1.35
(95% CI 0.22 to 2.5, p = 0.019) lower than the norm
of 80 mmHg, this difference may not be of clinical
significance. By now, we should realize that the
p-value is significantly affected by sample size(2), thus
we should be looking at the clinical significance first
then the statistical significance.

If the normality assumptions were not satisfied,
then the equivalent non-parametric Sign test or
Wilcoxon Signed Rank test would be used. In
SPSS, before we could perform the non-parametric
analysis, we will have to create a new variable in the
dataset, say, sysnorm (which is just a column of
120). Use the Transform, Compute command to do
this (likewise, we have to create a new variable, say,
dianorm which is just a column of 80). Then go to
Analyze, Non Parametric tests, 2 related samples
to do the tests (we can do both tests for systolic
and diastolic simultaneously, Tables VI & VII
show the SPSS outputs). In this case, we are
analyzing the medians of the variables rather than
their means.

Table VIII. Descriptive statistics for the before & after
intervention systolic BP.

Std
Mean  Deviation Minimum Maximum Median

systolic
BP before 142.31 22.38 90.00 200.00 139.00

systolic
BP after 137.14 24.87 90.00 199.00 137.00

Table VI. Wilcoxon Signed Rank tests.

Test Statisticsc

SYSTOLIC - DIASTOLI -
systolic blood diastolic blood

pressure pressure

z -14.965 -2.474

Asymp. Sig. (2-tailed) .000 .013
c  Wilcoxon Signed Ranks test.

Table VII. Sign test.

Test Statisticsa

SYSTOLIC - DIASTOLI -
systolic blood diastolic blood

pressure pressure

z -13.169 -2.343

Asymp. Sig. (2-tailed) .000 .019
a  Sign Test.

Assumption for the Paired T test:
The difference between the before & after is normally

distributed
We will have to compute a new variable for the
difference between the before & after systolic BP and
then check it’s normality assumption. Table IX shows
the formal tests for the checking of the normality



2. Homogeneity of variance (The population variances
are equal).

3. The 2 groups are independent random samples.

The 3rd assumption is easily checked from the
design of the experiment – each subject can only be in
one of the groups or intervention. The 1st assumption
of normality is also easily checked by using the
Explore option in SPSS (with group declared in the
Factor list – this will produce normality checks for
each group separately). Normality assumptions must
be satisfied for both groups for the 2 Sample T test to
be applied. Lastly, the 2nd assumption of homogeneity
of variance will be given in the 2 Sample T test analysis.

assumption and figure 2 shows the corresponding
histogram.

Table IX. Normality assumption checks.

Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic df Sig.

Systolic
BP before .048 167 .200 .991 167 .388

Table X. Paired T-test for the Before & After intervention systolic BP.

Paired Differences

95% Confidence
Interval of the

Difference

Std.
Std. Error Sig. (2-

Mean Deviation Mean Lower Upper t df tailed)

Pair 1
systolic BP before

5.17 34.11 2.64 -.04 10.38 1.958 166 .052
systolic BP after

Table XII. Wilcoxon Signed Rank test on the difference on the
Before & After intervention systolic BP.

Test Statisticsb

systolic BP after -
systolic BP before

z -1.803a

Asymp. Sig. (2-tailed) .071
a Based on positive ranks
b Wilcoxon Signed Ranks Test

Table XIII. Descriptive statistics of Systolic BP by group.

Mean Std Minimum Maximum Median
Deviation

over-weight 141.65 23.06 90.00 200.00 138.00

normal-weight 97.12 10.82 80.00 132.00 100.00
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Figure 2. Histogram of the difference between the Before &
After intervention systolic BP.

Since the normality assumption is satisfied, we can
use the paired T-test to perform the analysis: In SPSS,
use Analyze, Compare Means, Paired Samples T test.
Table X shows the SPSS output for the paired T-test.

Clinically there was a mean reduction of
5.17 mmHg but this was not statistically significant
(p = 0.052). Should we then increase the sample size
to ‘chase after the p-value’? We shall discuss this
issue at the end of this article.

Alternatively, we can use the 1-Sampe T test (with
test value = 0) on the difference between the Before
& After to check whether there was a statistical
significance; see Table XI.

In the event that the normality assumption was
not satisfied, we will use the Wicoxon Signed Rank
test to perform the comparison on the medians. In
SPSS, use Analyze, Non Parametric tests, 2 related
samples: table XII shows the SPSS output.

2 SAMPLE T-TEST
When our interest is the Between-Group comparison,
the 2 Sample T test would be applied. For example,
we want to compare the systolic BP between the
normal weight and the over-weight (a proper power
analysis should be done before embarking on the
study(2)). 250 subjects for each group were recruited.
Table XIII gives the descriptive statistics.

Assumptions of the 2 Sample T test:
1. Observations are normally distributed in each

population.

Table XI. 1 Sample T test for the difference between the Before &
After intervention systolic BP.

One-Sample Test

Test Value = 0

95% Confidence
Interval of the

Difference

t df Sig. Mean Lower Upper
(2-tailed) Difference

systolic BP
before - after 1.958 166 .052 5.1677 -.0442 10.3795



To perform a 2 Sample T test, in SPSS, use
Analyze, Compare Means, Independent Samples
T-test. Table XIV shows the SPSS output.

The Levene’s Test for equality of variances
checks the 2nd assumption. The Null hypothesis is:
Equal Variances assumed. The Sig value (given in
the 3rd column) shows that the Null hypothesis of
equal variances was rejected and SPSS adjusts the
results for us. In this case we have to read off the
p-value (Sig 2-tailed) from the 2nd line (equal variances
not assumed) rather than from the 1st line (equal
variances assumed). As expected, there was a
significant difference in the systolic BP between the
over-weight and normal (p<0.001, difference = 44.53,
95% CI 41.36 to 47.69 mmHg)

When normality assumptions are not satisfied for
any one or both of the groups, the equivalent non-
parametric Mann Whitney U/Wilcoxon Ranked Sum
tests should be applied. In SPSS, use Analyze, Non
Parametric tests, 2 Independent Samples. Table XV
shows the results for the non-parametric test.

Table XV. Mann Whitney U & Wilcoxon Rank Sum tests.

Test Statisticsa

BPSYS

Mann-Whitney U 1664.000

Wilcoxon W 33039.000

z -18.454

Asymp. Sig. (2-tailed) .000
a  Grouping Variable: TRT.

Observe that only 1 p-value will be given for both
Mann Whitney U and Wilcoxon Rank Sum tests.

ANOVA (ANALYSIS OF ONE WAY VARIANCE)
The ANOVA is just an extension of the 2-Sample T test
– when there are more than 2 groups to be compared.
The 3 assumptions for the 2-Sample T test also apply
for the ANOVA. Let’s say, this time we have 3 weight
groups (normal, under and over weight), the descriptive
statistics is given in Table XVI.

After checking for the normality assumptions, to
perform an ANOVA, in SPSS, use Analyze, Compare
Means, One-Way ANOVA. Click on Options and tick
the Homogeneity of Variance test. Tables XVII &
XVIII shows the results for the homogeneity of
variance and ANOVA tests respectively.

Table XVII. Homogeneity of Variance test.

Test of Homogeneity of variances

systolic BP

Levene statistic df1 df2 Sig.

4.249 2 296 .090

The Null hypothesis is: Equal Variances
assumed. Since p = 0.09>0.05, we cannot reject the
null hypothesis of equal variance.

Table XVIII. ANOVA results.

ANOVA

systolic BP

Sum of df Mean F Sig.

Squares Square

Between Groups 72943.542 2 36471.771 61.126 .000

Within Groups 176613.970 296 596.669

Total 249557.512 298

The Null Hypothesis: All the groups’ means are equal.
Since p<0.001, not all the groups’ means are

equal. We would want to carry out a post-hoc test to
determine where the differences were. In SPSS,
under the ANOVA, click on the Post Hoc button and
tick Bonferroni(3) (this method is most commonly
used and rather conservative in testing for multiple

Table XIV. 2 Sample T test.

Independent Samples Test

Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence
F Sig. t df Sig. Mean Std. Error Interval of the

(2-tailed) Difference Difference  Difference

Lower Upper

 Equal variances assumed 131.183 .000 27.638 498 .000 44.5280 1.61111 41.36258 47.69342

 Equal variances not assumed 27.638 353.465 .000 44.5280 1.61111 41.35943 47.69657

Table XVI. Descriptive statistics of Systolic BP by weight
groups.

Mean Std Minimum Maximum Median

Deviation

over-weight 140.89 24.65 90.00 195.00 137.50

under-weight 104.72 21.58 80.00 186.00 100.00

normal-weight 112.14 26.79 80.00 194.00 100.00
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comparisons). Table XIX shows the post-hoc multiple
comparisons using Bonferroni adjustments.

The systolic BP of the over-weights were statistically
(and clinically) higher than the other 2 weight
groups but there was no statistical difference between
the normal and under weights (p = 0.099). If we have
carried out multiple 2 Sample T tests on our own,
we have to adjust the type 1 error manually. By
Bonferroni, we have to multiply the p-value obtained
by the number of comparisons performed. For 3
groups, there will be 3 comparisons (ie. A vs B, B vs
C & A vs C).

Table XX shows the 2 Sample T-test between the
normal and under weights. It seems that there’s
also a statistical difference between the 2 groups in
systolic BP but taking into account multiple comparison
and adjusting for type 1 error, we will have to multiply
the p-value (= 0.033) by 3 which gives the same
result as in ANOVA post-hoc.

Table XX. 2 Sample T test for Normal vs Under weight.

Independent Samples Test

Levene’s Test for t-test for Equality
Equality of Variances of Means

Sig. (2-
F Sig. t df tailed)

systolic BP Equal
variances
assumed 7.470 .007 -2.153 197 .033

Equal
variances
not assumed -2.151 187.71 .033

When normality and homogeneity of variance
assumptions are not satisfied, the equivalent non-
parametric Kruskal Wallis test will be applied. In SPSS,

use Analyze, Non Parametric tests, k Independent
Samples. Table XXI shows the SPSS results.

Table XXI. Kruskal Wallis test on systolic BP for the
3 groups.

Test Statisticsa,b

systolic BP

Chi-Square 101.083

df 2

Asymp. Sig. .000

a  Kruskal Wallis Test
b  Grouping Variable: GROUP

There was a statistical significant difference amongst
the groups. In Kruskal Wallis, there’s no post-hoc option
available, we will have to do adjust for the type 1 error
manually for multiple comparisons.

TYPE 1 ERROR ADJUSTMENTS
A type 1 error is committed when we reject the Null
Hypothesis of no difference is true. If we take the
conventional level of statistical significance at 5%, it
means that there is a 0.05 (5%) probability that a result
as extreme as the critical value could occur just by
chance, i.e. the probability of a false positive is 0.05.

There are a few scenarios when adjustments for
type 1 error is required:
Multiple comparisons
When we are comparing between 2 treatments A
& B with a 5% significance level, the chance of a true
negative in this test is 0.95. But when we perform
A vs B and A vs C (in a three treatment study), then
the probability that neither test will give a significant
result when there is no real difference is 0.95 x
0.95 = 0.90; which means the type 1 error has
increased to 10%.

Table XIX. ANOVA Bonferroni adjustment for multiple comparisons.

Multiple comparisons
Dependent variable: systolic BP
Bonferroni

95% Confidence Interval

(1) GROUP (J) GROUP Mean Difference (I-J) Std. Error Sig. Lower Bound Upper Bound

over-weight over-weight

under-weight 36.1700* 3.45447 .000 27.8528 44.4872

normal-weight 28.7486* 3.46318 .000 20.4104 37.0868

under-weight over-weight -36.1700* 3.45447 .000 -44.4872 -27.8528

under-weight

normal-weight -7.4214 3.46318 .099 -15.7596 .9168

normal-weight over-weight -28.7486* 3.46318 .000 -37.0868 -20.4104

under-weight 7.4214 3.46318 .099 -.9168 15.7596

normal-weight

* The mean difference is significant at the .05 level.
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Table XXII shows the probability of getting a
false positive when repeated comparisons at a
5% level of significance are performed. Thus for 3
pairwise comparisons for a 3-treatment groups study
(generally, number of pairwise comparisons for a
n-group study is given by n(n-1)/2), without performing
a type 1 error adjustment, the probability of a false
positive is 14%.

Perhaps this p-value will be significant if we increase
the sample size. If the sample size was indeed
increased, then the obtained p-value will have to be
multiplied by 2! The reason being that we are already
‘biased’ by the ‘positive’ trend of the findings and the
type 1 error needed to be controlled.

Interim analysis
Normally in large sample size clinical trials, interim
analyses are carried out at certain time points to
assess the efficacy of the active treatment over the
control. This is carried out usually on the ethical basis
that perhaps the active treatment is really superior
by a larger effect difference than expected (thus a
smaller sample size would be sufficient to detect a
statistical significance) and we do not want to put
further subjects on the control arm. These planned
interim analyses with documentations of how the
type 1 error adjustments for multiple comparisons
must be specifically write-up in the protocol.

CONCLUSIONS
The concentration of the above discussions have been
on the application of the relevant tests for different
types of designs. The theoretical aspects of the various
statistical techniques could be easily referenced from
any statistical book.

The next article (Biostatistics 103: Qualitative
Data – Test of Independence), we will discuss on the
techniques available to analyse categorical variables.
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Table XXII.

Number of
comparisons 1 2 3 4 5 6 7 8 9 10

Probability of
false positive 5% 10% 14% 19% 23% 27% 30% 34% 37% 40%
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As mentioned in ANOVA, Bonferroni adjustments
(multiplying the p-value obtained in each multiple
testing by the number of comparisons) would be the
‘most convenient’ and conservative test. But this
test has low power (the ability to detect an existing
significant difference) when the number of comparisons
is ‘large’. For example with 4 treatment groups, we
will have 6 comparisons which means that for every
pair-wise p-value obtained, we have to multiply by 6.
In such a situation, other multiple comparison
techniques like Tukey or Scheffe would be appropriate.
Miller (1981)(4) gave a comprehensive review of the
pros and cons of the various methods available
for multiple comparisons. In ANOVA, this multiple
comparison is automatically handled by the post-hoc
option but for Kruskal Wallis test, manual adjustments
needed to be carried out by the user which means
that the Bonferroni method would normally be used
because of it’s simplicity.

‘Chasing’ after the p-value
In the example of the Paired T-test, the before & after
treatment analysis gave a p-value of 0.052 with n=167.


