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In the 100 series(1-4) the common univariate techniques
(summarized in Table I) available for data analyses
were discussed. These techniques do not allow us to
take into account the effect of other covariates/
confounders (except for partial correlation(4)) in an
analysis. In such situations, a Regression Model
would be required.

Table I. Univariate Statistical techniques.

Quantitative Data

   Parametric tests Non-Parametric tests

   1 Sample T-test Sign Test

   Paired Sample t-test Wilcoxon Signed Rank test

   2 Sample T-test Mann Whitney U test
Wilcoxon Rank Sum test

   One Way ANOVA Kruskal Wallis test

Qualitative Data

   For independent Samples: Chi Square / Fisher’s Exact test

   For Matched Case-Control Samples : McNemar Test

Bivariate Correlation (Quantitative data)

   Normality assumptions satisfied Pearson’s Correlation

   Normality assumptions not Spearman’s Correlation
   satisfied or Ordinal
   Qualitative data

Agreement Analysis

   Quantitative data Bland Altman Plots

   Qualitative data Kappa Estimates

Reasons why we want a Regression Model
1. Descriptive - form the strength of the association

between outcome and factors of
interest

2. Adjustment - for covariates/confounders
3. Predictors - to determine important risk factors

affecting the outcome
4. Prediction - to quantify new cases

In this article, we shall discuss the Regression
modeling for a quantitative response outcome. For
example, data (n = 55) on the age and the systolic

BP were collected and we want to set-up a Linear
Regression Model to predict BP with age. Here we
could, after checking the normality assumptions
for both variables, do a bivariate correlation
(Pearson’s correlation = 0.696, p<0.001) and a
graphical scatter plot would be helpful (see Fig. 1).

Fig. I Scatter plot of Systolic BP versus Age.

There’s a moderately strong correlation between
age and systolic BP but how could we ‘quantify’ this
strength.

SIMPLE LINEAR REGRESSION ANALYSIS
(HAVING ONLY ONE PREDICTOR)
A simple linear regression model to relate BP
with age will be

BP = regression estimate (b) * age + constant (a) + error
term (å)

The regression estimate (b) and the constant
(a) will be derived from the data (using the method of
least-squares(5)) and the error term is to factor in the
situation that two persons with the same age need
not have the same BP.

In SPSS (11.5), to perform a linear regression,
go to Analyse, Regression, Linear to get template I.
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Template I. Linear Regression Analysis.

Put sbp (systolic BP) as the Dependent and age as
the Independent; click on the Statistics button to get
template II.

Template II

Tick on the Confidence intervals box, continue
and click OK in template I. Tables II a – d show the
SPSS Simple Linear Regression outputs between
Systolic BP and age.

Table IIa
Variables entered/removedb

Model Variables Entered Variables Removed Method

1 Age (years)a . Enter

a  All requested variables entered.
b  Dependent variable: Systolic blood pressure (mmHg).

This table indicates the dependent and independent
variables. The method of including the independent
variable is Enter (see Model selection later)

Table IIb
Model summary

Model R R Square Adjusted Std. Error of
R Square the Estimate

1 .696a .485 .475 9.10072

a  Predictors: (Constant), Age (years)

Here the Pearson’s correlation between SBP and
age is given (r = 0.696). R square = 0.485 which
implies that only 48.5% of the systolic BP is explained
by the age of a person. We shall ignore the explanation
for the adjusted R Square for the time being (see
Multiple Linear Regression later).

Table IIc.
ANOVAb

Model Sum of df Mean Square F Sig.
Squares

1 Regression 4128.118 1 4128.118 49.843 .000a

Residual 4389.628 53 82.823

Total 8517.745 54

a  Predictors: (Constant), Age (years).
b  Dependent variable: Systolic blood pressure (mmHg).

The ANOVA table shows the ‘usefulness’ of the linear
regression model – we want the p-value to be <0.05.

Table IId
Coefficientsa

Unstan- Stan- 95%
dardised dardised Confidence

Coefficients Coef- Interval
ficients for B

Std. Lower Upper
Model B Error Beta t Sig. Bound Bound

1 (Constant) 115.706 7.999 14.465 .000 99.662 131.749

  Age (years) 1.051 .149 .696 7.060 .000 .752 1.350

a  Dependent variable: Systolic blood pressure (mmHg).

Table IId provides the quantification of the relationship
between age and systolic BP. With every increase of one
year in age, the systolic BP (on the average) increases by
1.051 (95% CI 0.752 to 1.350) units, p<0.001. The Constant
here has no ‘practical’ meaning as it gives the value of the
systolic BP when age = 0. Sometimes we may want to make
age 50 as reference. To do this, compute a new variable
(age50 = age - 50). The constant in Table IIe gives the
average systolic BP for a 50-year-old person : 168.3
(95% CI 165.6 to 170.9). Observe that the quantification
of the relationship between age and systolic BP
(b = 1.051) does not change with the ‘new’ model.

Table IIe. Age-centered at 50 years old.
Coefficientsa

Unstan- Stan- 95%
dardised dardised Confidence

Coefficients Coef- Interval
ficients for B

Std. Lower Upper
Model B Error Beta t Sig. Bound Bound

1 (Constant) 168.260 1.311 128.385 .000 165.632 170.889

   reference
   age = 50 1.051 .149 .696 7.060 .000 .752 1.350

a  Dependent variable: Systolic blood pressure (mmHg).
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For a single independent variable, the Standardised
Coefficient (Beta) is the Pearson’s correlation value
(we shall discuss the use of Beta later in Multiple
Regression).

To include a regression line in the scatter plot,
double-click on the plot to get into the Chart editor.
Go to Chart, Options to get template III :

Template III

Tick the Fit Line Total box and Figure II will
be obtained.

Fig. II Scatter plot with Regression line.

The equation of the Regression line is SBP = 115.706
+ 1.105 * Age (see Table IId). We can use this descriptive
relationship to predict the systolic BP for any age,
between 40 to 70 (must be cautious not to extrapolate
out of this range where this equation may not be valid
anymore). Thus for a 45 year old person, the on-the-
average SBP is 115.706 + 1.105 * 45 = 165.431 mmHg.

ASSUMPTIONS FOR THE LINEAR REGRESSION
MODEL - RESIDUAL ANALYSIS
The residue of each observation is given by the
difference between the observed value and the fitted
value of the regression line. For example, from the

dataset, we have a 50 year-old person with systolic BP
of 164 but the fitted-value from the regression line is
168.3 (see Fig. 2). Thus the residue for this person
is -4.3 (164 - 168.4). For this dataset, we will have 55
residual points.

For the linear regression model to be valid, there
are three assumptions to be checked on the residues:
a. No outliers.
b. The data points must be independent.
c. The distribution of these residuals should be

normal with mean = 0 and a constant variance.

a. Checking outliers
In template II, tick on the Casewise Diagnostic box
(default value of three standard deviations should
be fine) and table IIIa is obtained.

Table IIIa
Residuals Statisticsa

Minimum Maximum Mean Std. N
Deviation

Predicted Value 158.8004 189.2821 171.5091 8.74338 55

Residual -15.1799 18.2799 .0000 9.01606 55

Std. Predicted
Value -1.454 2.033 .000 1.000 55

Std. Residual -1.668 2.009 .000 .991 55

a  Dependent variable: Systolic blood pressure (mmHg).

Our interest is in the Std (Standardised) Residual;
making sure that the minimum and maximum values
do not exceed ±3. Here, we do not have any outliers.

b. Checking independence
In template II, tick the Durbin-Watson box to have this
estimate included in the model summary (see Table IIIb)

Table IIIb. Durbin-Watson Estimate
Model summaryb

Model R R Square Adjusted Std. Error of Durbin-W
R Square the Estimate atson

1 .696a .485 .475 9.10072 2.530

a  Predictors: (Constant), Age (years).
b  Dependent variable: Systolic blood pressure (mmHg).

The Durbin-Watson estimate ranges from zero to
four. Values hovering around two showed that the
data points were independent. Values near zero
means strong positive correlations and four indicates
strong negative. Here, the independence assumption
is satisfied.

c. checking the normality assumptions of the residuals
In template I, click on the Plots folder to get
Template IV.
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Template IV

Tick on the Histogram and Normal probability plot
to get Fig. III to check on the normality assumptions
of the residues.

Fig. III Histogram and Normal Probability Plot.

The distribution of the residual satisfies the
normality assumptions(2).

d. Checking for constant variance
In template IV, select *ZRESID (Regression
Standardized Residual) into the Y box and *ZPRED
(Regression Standardized Predicted Value) into the
X box to get Fig. IV :

Fig. IV Scatter plot of standardized residual vs standardised
predicted value.

What do we want to see? As long as the scatter
of the points shows no clear pattern, then we can
conclude that the variance is constant. See Fig. V for
problematic scatter plots.

Fig. V Problematic scatter plots.

MULTIPLE LINEAR REGRESSION
Given that we have also collected the smoking status
of each subject, a multiple regression model with both
age and smoking status correlating with systolic BP
could be performed.

Since smoking status is a categorical variable,
we need to understand the numerical coding, say,
smoker = 1 & non-smoker = 0. In this case, when
the multiple regression is performed, the regression
estimate in the model for smoking status will be for
the smoker comparing with the non-smoker, see
Table IV.

Table IV. Multiple Regression model for Systolic BP with
age and smoking status.

Coefficientsa

Unstan- Stan- 95%
dardised dardised Confidence

Coefficients Coef- Interval
ficients for B

Std. Lower Upper
Model B Error Beta t Sig. Bound Bound

1 (Constant) 110.667 7.311 15.136 .000 95.996 125.338

  Age (years) 1.055 .134 .699 7.893 .000 .787 1.324

  Smoker 8.274 2.234 .328 3.703 .001 3.791 12.758

a  Dependent variable: Systolic blood pressure (mmHg).

How can we interpret the result?
1. An Adjusting for covariate/confounder model
If our interest is only to determine whether age
affects systolic BP after taking into account the
smoking status, from table IV, we say that age is
still statistically significantly affecting systolic
BP (and the p-value of the smoking status is of
no interest).

2. A Predictor model
In this case, the p-values of all variables would be
of interest. From table IV, we conclude that both
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age and smoking status are significant risk factors
affecting the systolic BP. A smoker has on the
average 8.3 (95% CI 3.8 to 12.8) higher BP compared
to a non-smoker (given the same age).

Which independent variable has more influence
on SBP? This will be given by the (absolute) value of
the Standardized Coefficients Beta, the bigger the
more influence. In this example, Age (Beta = 0.699)
has a heavier influence on Systolic BP than the
Smoking status (Beta = 0.328). If we have collected
the information of whether a subject exercised or
not, then Beta for Exercise will be negative (since
exercise have a negative effect on increase of SBP).

ADJUSTED R SQUARE
In multiple regression, the R measures the correlation
between the observed value of the dependent variable
and the predicted value based on the regression
model. The sample estimate of R Square tends to be
an overestimate of the population parameter; the
Adjusted R Square is designed to compensate for the
optimistic bias of R Square, see Table V.

Table V.
Model Summary

Model R R Square Adjusted Std. Error of
R Square the Estimate

1 .770a .592 .577 8.17306

a  Predictors: (Constant), Smoker, Age (years).

Age alone explains only 48.5% of the variance on SBP
and when including the Smoking status, this increases
to 57.7%. As we include more independent variables
in the model, the Adjusted R Square will ‘improve’.

CATEGORICAL VARIABLES WITH MORE THAN
TWO LEVELS
Usually Race has 4 levels (with coding 1 = Chinese,
2 = Indian, 3 = Malay & 4 = Others). We cannot simply

put Race as one of the variables in the model for the
coding is arbitrary and the regression estimate obtained
for Race will not make sense. A reference category has
to be chosen, lets’ say Chinese, and we have to create
Dummy variables for the rest of the races. Table VI
shows the three new dummy variables for Indian,
Malay and Others by using the Recode option.

Table VI. Dummy variables for Race.

Subject Race Indian Malay Others

1 1 (Chinese) 0 0 0

2 1 (Chinese) 0 0 0

3 3 (Malay) 0 1 0

4 2 (Indian) 1 0 0

5 4 (Others) 0 0 1

6 2 (Indian) 1 0 0

Table VII shows the regression estimates for
the model with age, smoking and race. The way to
interpret the ‘Race’ regression estimates will be
‘the Indians on the average have 1.98 mmHg higher
in systolic BP with the Malays and Others having
lower systolic BP compared to the Chinese’ but this
is not statistically significant.

MULTI-COLLINEARITY
When multiple regression is applied in a situation
where there are moderate to high intercorrelations
among the independent variables, two situations
may happen. Firstly, the importance of a given
explanatory variable is difficult to be determined
because the effects are confounded (distorted
p-values) and the other is that dubious relationships
may be obtained.

Table VII. Regression model with Age, Smoking status and Race.

Coefficientsa

Unstandardised Standardised 95% Confidence
Coefficients Coefficients Interval for B

Std. Lower Upper
Model B Error Beta t Sig. Bound Bound

1 (Constant) 112.449 7.648 14.704 .000 97.080 127.818

Age (years) 1.033 .136 .684 7.590 .000 .760 1.307

Smoker 7.758 2.300 .307 3.373 .001 3.136 12.379

INDIAN 1.977 2.871 .067 .689 .494 -3.793 7.747

MALAY -1.861 3.177 -.058 -.586 .561 -8.245 4.523

OTHERS -2.742 3.246 -.082 -.845 .402 -9.265 3.781

a  Dependent variable: Systolic blood pressure (mmHg).



Table VIII shows the correlation between age,
weight and height of the 55 subjects.

Table VIII
Correlations

Age weight height
(years) (kg) (m)

Age (years) Pearson Correlation 1 .005 .840**

Sig. (2-tailed) . .968 .000

N 55 55 55

Weight (kg) Pearson Correlation .005 1 .547**

Sig. (2-tailed) .968 . .000

N 55 55 55

Height (m) Pearson Correlation .840** .547** 1

Sig. (2-tailed) .000 .000 .

N 55 55 55

**  Correlation is significant at the 0.01 level (2-tailed).

There are significant moderate to high correlations
between Height with Age and Weight. What happens
when we perform a multiple regression model?

Table IX. Multiple Regression Model with Multicolinearity.

Coefficientsa

Unstandardised Standardised
Coefficients Coefficients

Model B Std.  Error Beta t Sig.

1 (Constant) -87.123 2987.566 -.029 .977

Age (years) .829 3.098 .549 .268 .790

Smoker 7.517 2.542 .298 2.957 .005

INDIAN 1.747 3.071 .060 .569 .572

MALAY -2.525 4.271 -.078 -.591 .557

OTHERS -3.362 4.265 -.100 -.788 .434

weight (kg) -3.126 3.107 -.054 -.040 .968

height (m) 6.661 2.577 .159 .065 .948

a  Dependent variable: Systolic blood pressure (mmHg).

We can observe that the p-value of Age has

become not significant and a dubious-negative

relationship between weight and SBP is obtained,

see Table IX. Another tell-tale sign of

multicolinearity is that the Adjusted R Square is

severely reduced as the explanatory variables are

largely attempting to explain much of the same

variance in the response variable.

Pearson’s correlation only enable us to check

multicolinearity between any two variables; but

sometimes a variable could be co-linear with a

combination of other variables. In this case, we

can use the tolerance measure which gives the

strength of the linear relationships among the

independent variables.

To get this measure, in Template II, tick on the

Collinearity diagnostic box to get Table X.

Tolerance lies between zero to one (the VIF is

just the reciprocal of tolerance). A value close to zero

indicates that a variable is almost a linear combination

of the other independent variables. From Table X,

Age, Weight & Height were multicollinear.

What’s an acceptable tolerance range? Values

above 0.6 would be recommended but since most

likely there will be some correlation between variables

(especially with dummy variables), 0.4 and above

would be acceptable.

One way to combat the above issue is to combine

explanatory variables that are highly correlated

(e.g. taking their sum). An alternative is simply to

select one of the set of correlated variables for use

in the regression analysis.

Let’s say we remove Height (since lowest

tolerance) from the model.

Table X. Multiple Regression Model with Tolerance Measures.

Coefficientsa

Unstandardised Standardised
Coefficients Coefficients Collinearity Statistics

Model B Std.  Error Beta t Sig. Tolerance VIF

1 (Constant) -87.123 2987.566 -.029 .977

Age (years) .829 3.098 .549 .268 .790 .002 506.538

Smoker 7.517 2.542 .298 2.957 .005 .819 1.221

INDIAN 1.747 3.071 .060 .569 .572 .756 1.323

MALAY -2.525 4.271 -.078 -.591 .557 .474 2.108

OTHERS -3.362 4.265 -.100 -.788 .434 .517 1.934

Weight (kg) -3.126 3.107 -.054 -.040 .968 .005 216.734

Height (m) 6.661 2.577 .159 .065 .948 .001 723.602

a  Dependent variable: Systolic blood pressure (mmHg).
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This model is now statistically ‘stable’.

MODEL SELECTIONS
The above models have been based on the Enter
option which included all the independent variables
into the model regardless of their significance.

Template V. Model Selection Options.

Table V shows the various model selection options
available.

a. Forward
This model selection starts to include variables
by their order of significance. Only variables
that have p < 0.05 are in the model. This method
is usually used in an exploratory study where one
is not so sure what are the important variables
influencing the outcome.

b. Backward
This method starts with all the variables in the
model and variables are excluded on the basis
of their non-significance. Usually used for a
confirmatory study on the important variables
influencing the outcome.

c. Stepwise/Remove
This is the combination of the forward and
backward methods. In the stepwise method,
variables that are entered will be checked at
each step for removal. Likewise, in the removal
method, variables that are excluded will be
checked for re-entry.

How should we then derive our models?
Multicollinearity should be carried out first before
we perform the above model selections and then
the checking of the residual-assumptions for the
derived model to be done before we can ‘accept’ it
as the final model.

To conclude, the material covered here only
highlighted the basic and essential understanding
of Linear Regression Analysis; you are encouraged
to do further reading(5-9). Our next article, Biostatistics
202 : Logistic Regression Analysis, will discuss
on how to analyse the situation when the outcome
variable is categorical.
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Table XI

Coefficientsa

Unstandardised Standardised
Coefficients Coefficients Collinearity Statistics

Model B Std.  Error Beta t Sig. Tolerance VIF

1 (Constant) 106.890 23.992 4.455 .000

Age (years) 1.030 .138 .682 7.445 .000 .970 1.031

Smoker 7.522 2.514 .298 2.992 .004 .819 1.220

INDIAN 1.769 3.021 .060 .586 .561 .765 1.307

MALAY -2.533 4.224 -.079 -.600 .551 .475 2.106

OTHERS -3.387 4.204 -.101 -.806 .424 .521 1.919

Weight (kg) .075 .307 .032 .245 .808 .464 2.156

a  Dependent variable: Systolic blood pressure (mmHg).


